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FUNCTIONS APPROXIMATION

DANILO COSTARELLI AND RENATO SPIGLER

Communicated by Hermann Brunner

ABSTRACT. In this paper, a numerical collocation method
is developed for solving linear and nonlinear Volterra integral
equations of the second kind. The method is based on the
approximation of the (exact) solution by a superposition of
sigmoidal functions and allows one to solve a large class of
integral equations having either continuous or Lp solutions.
Special computational advantages are obtained using unit step
functions, and analytical approximations of the solution are
also at hand. The numerical errors are discussed, and a
priori as well as a posteriori estimates are derived for them.
Numerical examples are given for the purpose of illustration.

1. Introduction. A collocation solution to a Volterra integral equa-
tion on an interval [a, b], is an element from some finite-dimensional
function space (the collocation space), which satisfies the equation on
an appropriate finite subset of points in [a, b]. The latter is the set of
collocation points, whose cardinality matches the dimension of the col-
location spaces. In this paper, we introduce a new collocation method
for solving linear as well as nonlinear Volterra integral equations of the
second kind, of the form

y(t) = f(t) +

∫ t

a

K(t, s) y(t) ds, t ∈ [a, b],(I)

and

y(t) = f(t) +

∫ t

a

K(t, s; y(s)) ds, t ∈ [a, b],(II)
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where f : [a, b] → R and the kernels K are sufficiently smooth. Our
method is based on approximating the exact solutions by a superpo-
sition of “sigmoidal functions,” i.e., functions σ : R → R such that
limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1. In particular, we shall use
unit step functions (Heaviside functions).

Every either continuous or Lp real-valued function on [a, b] can be
approximated uniformly or in Lp-norm by a finite superposition of
bounded sigmoidal functions, like

(III)

N∑
k=0

αkσ(w(t − tk)), t ∈ R,

where σ is a sigmoidal function, αk ∈ R, and the tk’s, k = 0, 1, . . . , N ,
N ∈ N+, are suitable real points, and w > 0 is a suitable scaling
parameter [9, 10, 12]. The sums above represent a kind of univariate
Neural Networks, largely used in a number of engineering problems
and in approximation theory as approximants. Many authors, such
as Cybenko, Mhaskar and Micchelli have studied the approximation
properties of sums like those in (III), and basic results were proved in [1,
12, 13, 18, 24]. In particular, in [12], the coefficients αk, the abscissae
tk and the parameter w in (III) were obtained explicitly, in connection
to a given either continuous or Lp function to be approximated.

On the other hand, collocation methods have been widely used to
solve integral equations like those in (I) and (II). The most popular
of these methods are based on piecewise polynomial collocation spaces
(see [3, 7], e.g.). Other methods are based on wavelets or on Bernstein
polynomial approximation (see, e.g., [21, 26]).

Here, the choice of the collocation spaces generated by the unit step
functions allows one to solve a large class of integral equations having
either continuous or Lp solutions, with some computational advantages.
In fact, in the case of equation (I), the method reduces merely to
solve a linear lower triangular algebraic system. In the nonlinear case
(II), the method instead leads to a nonlinear system that can always
be solved explicitly by means of a direct formula, without using any
iteration (such as, e.g., Newton’s methods). In both cases, an analytical
form for the approximate solution can be obtained, and the numerical
algorithm is very fast. In the linear case (I), with a convolution kernel,
K(t, s) ≡ K(t− s), we can show that the square matrices, MN , of the
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related linear algebraic system, turn out to be lower triangular Toeplitz
matrices. Moreover, under suitable conditions onK, some estimates for
the condition number of MN in the infinity norm, can also be derived.

The paper is organized as follows. In Section 2, we review some results
concerning the sigmoidal functions approximation. In Sections 3 and
4, we introduce the collocation method based on unit step functions,
to solve numerically linear and nonlinear Volterra integral equations,
respectively. In Section 5, we discuss the numerical errors, both a
priori and a posteriori, affecting our approach. Finally, in Section 6, a
few numerical examples are given to illustrate the performance of our
method.

2. Approximation results by superposition of sigmoidal
functions. Applications of neural networks involve many areas of
research. In particular, neural networks play an important role in
approximation theory, where they play the role of approximants. There
is much interest for networks having a sigmoidal function as activation
function. Recall that

Definition 2.1. A function σ : R → R is named a “sigmoidal
function” whenever

lim
x→−∞σ(x) = 0 and lim

x→+∞σ(x) = 1.

Sometimes, boundedness, continuity and/or monotonicity are pre-
scribed in addition.

Many authors have studied how a given continuous real-valued func-
tion, f : [a, b] → R, could be uniformly approximated by a superpo-
sition of finitely many sigmoidal functions, i.e., by neural networks of
the form in (III). In [12], the following was proved:

Theorem 2.2. Let σ be a bounded sigmoidal function, and let
f ∈ C0[a, b] be fixed. For every ε > 0, there exist N ∈ N+ and w > 0
(depending on N and σ), such that, if

(1) (GNf)(t) :=
N∑

k=1

[f(tk)−f(tk−1)]σ(w(t− tk))+f(t0)σ(w(t− t−1))
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for t ∈ [a, b], h := (b − a)/N , and tk := a + kh, k = −1, 0, 1, . . . , N ,
then

‖GNf − f‖∞ := max
t∈[a,b]

|(GNf)(t)− f(t)| < ε.

We stress that continuity of σ is not required. Theorem 2.2 represents
a modified form of a result earlier proved in [9, 10]. This was, in turn,
a constructive version of a non-constructive theorem due to Cybenko
[13].

Remark 2.3. (a) The form of the coefficients in (1) is independent
of the choice of the sigmoidal function σ. Therefore, one can provide
various approximations of f using different sigmoidal functions, keeping
the same coefficients. The scaling parameter w > 0 in (1) depends on
N and σ.

(b) Assuming σ to be continuous, Theorem 2.2 provides a density
result in C0[a, b] for the set of functions of the form in (1), with respect
to the uniform norm.

(c) The error made approximating a given function by a superposition
of sigmoidal functions was studied in [4, 8, 14, 15, 19, 20]. In
particular, it was shown that the error made approximating functions
of bounded variation or Lipschitz continuous functions with GNf is of
order of O(1/N) (for N sufficiently large), N being the number of the
superposed sigmoidal functions.

In [12], the following constructive approximation theorem was also
established for Lp[a, b] functions, with 1 ≤ p < ∞:

Theorem 2.4. Let σ be a bounded sigmoidal function, and let
f ∈ Lp[a, b], 1 ≤ p < ∞, be fixed. Set fn := ρn ∗ f̃ , where (ρn)n∈N+ is
a fixed sequence of mollifiers, ∗ is the usual convolution product, and

(2) f̃(t) :=

{
f(t) t ∈ [a, b],

0 otherwise.

Then, for every ε > 0 there exist N , n ∈ N+, and w > 0 (depending
on N and σ), such that

‖GNfn − f‖Lp[a,b] < ε,

where GNfn is defined in (1).
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By choosing a specific sequence of mollifiers, and a sufficiently large
n ∈ N+, one can obtain the analytic form of the coefficients of GNfn
of Theorem 2.4, for every N ∈ N+. Moreover, the same observation
in Remark 2.3 (a) can be made for the case of Lp[a, b] functions,
1 ≤ p < ∞.

A useful example of sigmoidal function is given by the logistic func-
tion, defined as σ(t) := (1 + e−t)−1, t ∈ R. Logistic functions are
largely used in many fields, such as biology, physics, biomathematics,
statistics, economics and demography (see, e.g., [6, 16]). Clearly, σ is
bounded, with 0 < σ(t) < 1, for all t ∈ R. Using logistic functions and
Theorem 2.2, we obtain the following

Corollary 2.5 (see [12]). Let σ(t) := (1 + e−t)−1, t ∈ R. For any
given f ∈ C0[a, b], and for every ε > 0, there exists an N ∈ N+ such
that

‖GNf − f‖∞ < ε,

for every GNf defined as in (1) with w > [N/(b− a)] ln(N − 1).

Corollary 2.5 provides an estimate for w > 0, for every N ∈ N+,
in the case of uniformly approximations of continuous functions by
superposition of logistic functions.

Other interesting (and useful) examples of sigmoidal functions are
given by the class of Gompertz functions, defined by

σαβ(t) := e−αe−βt

, t ∈ R,

where α and β > 0 represent an effective translation and a scaling,
respectively. Gompertz functions find applications, e.g., in modeling
tumor growth [2, 11, 23]. For every pair α and β > 0, we have
0 < σαβ(t) < 1, t ∈ R, and, similarly to the case of logistic functions,
we have

Corollary 2.6 (see [12]). Let σαβ(t) := e−αe−βt

, t ∈ R, α, β > 0.
For every given f ∈ C0[a, b], and for every ε > 0, there exists an
N ∈ N+ such that

‖GNf − f‖∞ < ε,
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for every GNf defined in (1) with

w >
N

(b− a)β
max

{∣∣∣∣ ln(
− 1

α
ln

(
N − 1

N

))∣∣∣∣, ∣∣∣∣ ln(
1

α
ln (N)

)∣∣∣∣}.

As in Corollary 2.5, Corollary 2.6 provides an estimate for the
parameter w > 0, when Gompertz sigmoidal functions are used.

Remark 2.7. Note that the estimates for w > 0 provided by Corollar-
ies 2.5 and 2.6 for the special cases of logistic and Gompertz functions,
also hold when Lp[a, b] functions are being approximated.

Finally, we consider the special case of unit step (or Heaviside)
functions, H(t) := 1 for t ≥ 0, and H(t) := 0 for t < 0. In this
case, the results established in Theorem 2.2 and in Theorem 2.4 hold
true. In the case of Theorem 2.2, sums of the form (1) reduce to

(3) (GNf)(t) :=
N∑

k=1

[f(tk)− f(tk−1)]H(t− tk) + f(t0)H(t− t−1),

t ∈ R, where f ∈ C0[a, b], h := (b − a)/N , and tk := a + hk,
k = −1, 0, 1 . . . , N , [12]. Note that in (3) GNf becomes independent
of the scaling parameter, w > 0, and the same happens in Theorem 2.4
when applied to the case of Heaviside functions.

Remark 2.8. SetHk(t) := H(t−tk), withHk : [a, b] → R, tk := a+hk,
h := (b− a)/N , for k = −1, 1, . . . , N , and

ΣN := span {Hk : k = −1, 1, 2, . . . , N} .
Then, the vector function space ΣN is an N + 1 dimensional space,
and the set {Hk : k = −1, 1, 2, . . . , N} is a basis for ΣN . Indeed,
it can be proved that the functions Hk’s are linearly independent: if∑N

k=1 αkHk + α0H−1 ≡ 0, i.e.,

N∑
k=1

αkH(t− tk) + α0H(t− t−1) = 0,
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for every t ∈ [a, b], we have, in particular,

N∑
k=1

αkH(ti − tk) + α0H(ti − t−1) = 0,

for every i = 0, 1, . . . , N . Then, for i = 0, we have α0 = 0,
and for i > 0, we obtain

∑N
k=i αk + α0 = 0; hence, necessarily,

α0 = α1 = · · · = αN = 0.

3. Collocation method for linear equations based on unit
step functions. In this section, we describe a collocation method
for solving linear Volterra integral equations of the second kind, of the
form

(4) y(t) = f(t) +

∫ t

a

K(t, s) y(s) ds, t ∈ [a, b],

a, b ∈ R, where the function f : [a, b] → R and the kernel K : D → R,
D := {(t, s) : a ≤ t, s ≤ b}, are sufficiently smooth.

Our method, based on unit step functions, consists of determining
approximate solutions to equation (4), of the form GNy as defined in
(3), i.e., GNy belonging to the collocation space ΣN , N ∈ N+. Set

(5) (GNy)(t) =

N∑
k=1

ykH(t− tk) + y0H(t− t−1), t ∈ [a, b],

where the coefficients y0, . . . , yN , N ∈ N+, in (5) are unknowns, and
tk := a+hk, k = −1, 0, . . . , N , h := (b−a)/N . Inserting GNy in place
of the exact solution y in (4), we obtain

(GNy)(t) = f(t) +

∫ t

a

K(t, s) (GNy)(s) ds, t ∈ [a, b],

and, rearranging all terms, we have

N∑
k=1

yk

[
H(t− tk)−

∫ t

a

K(t, s)H(s− tk) ds

]

+ y0

[
H(t− t−1)−

∫ t

a

K(t, s)H(s− t−1) ds

]
= f(t),
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for every t ∈ [a, b]. If CN := {t0, t1, . . . , tN} is the set of the collocation
points, we can evaluate the equation above at such points. Set

mi0 := H(ti − t−1)−
∫ ti

a

K(ti, s)H(s− t−1) ds,

mik := H(ti − tk)−
∫ ti

a

K(ti, s)H(s− tk) ds,

for ti ∈ CN , i = 0, . . . , N , and k = 1, 2, . . . , N . We obtain the following
linear algebraic system of N + 1 equations,

(6)

N∑
k=0

mik yk = f(ti),

for i = 0, 1, . . . , N . Now, setting MN := (mik)i,k=0,1,... ,N , YN :=
(y0, y1, . . . , yN)t and FN := (f(x0), f(x1), . . . , f(xN ))t, the linear sys-
tem (6) can be written as MNYN = FN , N ∈ N+. Solving (6), we
can determine y0, y1, . . . , yN , the coefficients providing an analytical
representation of the solution, y(t), of (4), as a superposition of unit
step functions as in (5).

Remark 3.1. By Theorems 2.2 and 2.4, the collocation method
based on unit step functions can be applied to linear Volterra integral
equations with either regular solutions on [a, b], or solutions in Lp[a, b],
1 ≤ p < ∞, such as equations with singular kernels.

We can now prove the following

Theorem 3.2. The collocation method for solving (4), based on
Heaviside functions, admits a unique solution. Moreover, the square
matrix MN of the linear system associated with the method is lower
triangular, for every N ∈ N+.

Proof. Let i = 0, 1, . . . , N be fixed. We have H(ti− tk) = 0 for every
k > i, and H(ti − tk) = 1 for k ≤ i. Besides,

(7)

∫ ti

a

K(ti, s)H(s− tk) ds = 0,
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for k > i, since H(·−tk) = 0 on [a, ti] (equation (7) also holds for i = 0,
i.e., for t0 = a). Furthermore,∫ ti

a

K(ti, s)H(s− t−1) ds =

∫ ti

a

K(ti, s) ds,

and ∫ ti

a

K(ti, s)H(s− tk) ds =

∫ ti

tk

K(ti, s) ds,

for k ≤ i, with k 
= 0, since H(· − tk) = 0 on [a, tk) and H(· − tk) = 1
on [tk, ti]. Hence, we obtain

(8) mik :=

⎧⎨⎩
0 for k > i,

1 for k = i,

1− ∫ ti
tk

K(ti, s) ds for k < i,

for i, k = 0, 1, . . . , N . Then, the (N + 1)× (N + 1) matrix MN of our
method is lower triangular, for every N ∈ N+, i.e.,

(9) MN :=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0

m10 1 0 · · · 0

m20 m21
. . .

. . .
...

...
...

. . .
. . . 0

mN0 mN1 · · · mNN−1 1

⎤⎥⎥⎥⎥⎥⎦
Hence, det (MN) = 1, and the linear system MNYN = FN admits a
unique solution, for every N ∈ N+.

Note that, in Theorem 3.2, an integrability assumption on the kernel
K of the integral equation in (4) is needed. The entries of MN of

the form 1 − ∫ ti
tk

K(ti, s) ds can be evaluated by exact (analytical)
integration, in many instances, or, more generally, upon numerical
quadratures.

The method based on unit step functions can be implemented easily,
and, in addition, it is definitely characterized by an extremely low
computational cost.
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In the special (but noteworthy) case of integral equations of the
convolution type, the linear Volterra integral equations of the second
kind,

(10) y(t) = f(t) +

∫ t

a

K(t− s) y(s) ds, t ∈ [a, b],

we have the following

Corollary 3.3. The collocation method for solving (10), based on
unit step functions, admits a unique solution. Moreover, the real-valued
matrix MN is a lower triangular Toeplitz matrix, for every N ∈ N+.

Proof. By Theorem 3.2, MN is lower triangular with det (MN ) =
1, for every N ∈ N+; then the method admits a unique solution.
Moreover, if h := (b − a)/N is the step-size separating the collocation
points ti, i = 0, 1, . . . , N , we obtain the changing variable, s = z − h,∫ ti

tk

K(ti − s) ds =

∫ ti+h

tk+h

K(ti + h− z) dz

=

∫ ti+1

tk+1

K(ti+1 − z) dz.

Then, mi,k = mi+1,k+1 for every k < i (see (8)), and thus, MN is
seen to be constant along all its diagonals. This means that MN is a
Toeplitz matrix, and it can be represented as

(11) MN :=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

m1 1 0
. . . 0

m2 m1
. . .

. . .
...

...
. . .

. . .
. . . 0

mN · · · m2 m1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where

mi := 1−
∫ ti

a

K(ti − s) dt,

for every i = 1, 2, . . . , N .
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In the case of equations with convolution kernel, the required com-
putational cost is much lower than in the case of general kernels. In
fact, by Corollary 3.3, for every N ∈ N+, the linear system to be
solved is characterized by lower triangular Toeplitz matrices, and thus
to compute all entries of MN , it suffices to evaluate only the N terms
m1, . . . ,mN .

Remark 3.4. The approach proposed above can also be useful to
determine approximate solutions to initial value problems (IVP) for
ordinary differential equations. In fact, generally speaking, every linear
IVP, e.g., of the second order, say

y′′ +A(t)y′ +B(t)y = g(t), y(a) = c1, y′(a) = c2,

where A, B and g are sufficiently smooth functions, is equivalent to a
linear Volterra integral equation of the second kind (see, e.g., [17]), like
that in (4), where

f(t) :=

∫ t

a

(t− s) g(s) ds+ (t− a)[c1A(a) + c2] + c1,

and

K(t, s) := (s− t)[B(s)−A′(s)]−A(s).

At this point, we introduce some notation. Given the kernel K, we
define

(12) K(t) :=

∫ t

a

K(t, s) ds, t ∈ [a, b].

Under suitable conditions on K, we can obtain some estimates for
κ(MN ), the condition number of MN in the infinity norm, in case of
integral equations of the convolution type, (10). Recall that, for every
nonsingular real-valued matrix A := (ai,j)i,j=0,1,... ,N ,

κ(A) := ‖A‖∞‖A−1‖∞,

where ‖A‖∞ := maxi=0,1,... ,N

∑N
j=0 |ai,j |.
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We can establish the following

Theorem 3.5. Let (10) be a Volterra integral equation with convo-
lution kernel, K. Let K be defined in (12), and such that

(i) 0 ≤ K(t) ≤ 1, for every t ∈ [a, b];

(ii) K is non decreasing.

Then, the square matrix MN , N ∈ N+, obtained applying our colloca-
tion method to (10), enjoys the property

κ(MN ) ≤
{

2
1−K(b)

(
1−K(b)[N/2]+1

)
(N(1−K(t1)) + 1) K(b) < 1,

2
([

N
2

]
+ 1

)
(N(1−K(t1)) + 1) K(b) = 1,

where [ ] means taking the integer part, for every N ∈ N+. In
particular, if K(b) < 1, we have

κ(MN ) <
2

1−K(b)
(N(1−K(t1)) + 1) .

Proof. By Corollary 3.3, MN is a lower triangular Toeplitz matrix of
the form in (11). By (i) and (ii), we have 0 ≤ K(t0) ≤ K(t1) ≤ · · · ≤
K(tN ) ≤ 1, where ti, i = 0, 1, . . . , N , are the collocation points, and
then, the elements of MN satisfy the inequalities

1 ≥ m1 ≥ m2 ≥ · · · ≥ mN ≥ 0.

Hence, by well-known results concerning lower triangular Toeplitz
matrices with non-increasing monotonic entries ([5, Theorem 1.1] and
[25]), we obtain the bounds

‖M−1
N ‖∞ ≤

{
2

1−K(b)

(
1−K(b)[N/2]+1

) K(b) < 1,

2
([

N
2

]
+ 1

) K(b) = 1.

Now, since ‖MN‖∞ ≤ N(1−K(t1))+1, and κ(MN) := ‖MN‖∞‖M−1
N ‖∞,

the proof of the first part of the theorem is complete. Moreover, if we
note that in the case of K(b) < 1, there is (1 − K(b)[N/2]+1) < 1, we
have

κ(MN ) <
2

1−K(b)
(N(1−K(t1)) + 1) .
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4. Nonlinear Volterra integral equations. In this section, we
use the collocation method based on unit step functions to solve general
nonlinear Volterra integral equations of the second kind, like

(13) y(t) = f(t) +

∫ t

a

K(t, s; y(s)) ds, t ∈ [a, b],

a, b ∈ R, where the function f : [a, b] → R and the kernel K : Ω → R,
Ω := D × R, are sufficiently smooth. Proceeding as in Section 3, we
can approximate the solution to (13) on the interval [a, b] by means of
(5), i.e.,

(GNy)(t) :=

N∑
k=1

ykH(t− tk) + y0H(t− t−1),

where H is the Heaviside function, tk := a+ hk with h := (b − a)/N ,
k = −1, 0, 1, . . . , N , and the coefficients y0, y1, . . . , yN are unknown.
Inserting GNy for y in (13), we obtain

(GNy)(t) = f(t) +

∫ t

a

K(t, s; (GNy)(s)) ds, t ∈ [a, b].

Again, to obtain an approximate solution to (13) in the form of a
superposition of unit step functions, we should determine the unknown
coefficients y0, y1, . . . , yN . Given the set CN := {t0, t1, . . . , tN} of
collocation points, we evaluate the equation at such points as in the
linear case. Now we obtain the system of N + 1 nonlinear equations

(14)

N∑
k=1

ykH(ti − tk) + y0H(ti − t−1)

= f(ti) +

∫ ti

a

K

(
ti, s;

N∑
k=1

ykH(s− tk) + y0H(s− t−1)

)
ds,

i = 0, 1, . . . , N.

It is easy to check that, for i = 0, (14) reduces to y0 = f(t0). Now let
i > 0 be fixed. In this case, H(ti − tk) = 1 for every k = 0, . . . , i and
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H(ti − tk) = 0 for k > i. Moreover,

∫ ti

a

K

(
ti, s;

N∑
k=1

ykH(s− tk) + y0H(s− t−1)

)
dt

=

i∑
ν=1

∫ tν

tν−1

K

(
ti, s;

N∑
k=1

ykH(s− tk) + y0

)
ds

=

i∑
ν=1

∫ tν

tν−1

K

(
ti, s;

ν−1∑
k=0

yk

)
ds,

since, for every ν = 1, . . . , i, there is an H(· − tk) = 1 on [tν−1, tν ] for
k = 0, . . . , ν − 1 and H(· − tk) = 0 on [tν−1, tν ] for k ≥ ν. Therefore,
(14) reduces to the nonlinear system

y0 = f(t0),

i∑
k=0

yk = f(ti) +

[ i∑
ν=1

∫ tν

tν−1

K

(
ti, s;

ν−1∑
k=0

yk

)
ds

]
, i = 1, . . . , N,

which admits a unique solution that can be given by the formula

(15)⎧⎪⎪⎨⎪⎪⎩
y0 = f(t0),

yi = f(ti) +
∑i

ν=1

[∫ tν
tν−1

K(ti, s;
∑ν−1

k=0 yk) ds
]

−∑i−1
k=0 yk i = 1, . . . , N ,

for every N ∈ N+.

We stress that the nonlinear system in (14) can be solved explicitly,
and its solution does not required any iterative method (such as
Newton’s method, e.g.). Note also that (15) provides an algorithm
for solving a large class of nonlinear Volterra integral equations. Only
an integrability assumption on the kernel K(t, ·; y) on [a, t] for every
y ∈ R and t ∈ [a, b] is required.

In the special case of Volterra-Hammerstein integral equations of
the second kind, i.e., when the kernel is of the form K(t, s; y(s)) :=
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K̃(t, s)G(y(s)), where G and K̃ are sufficiently smooth functions, (15)
reduces to⎧⎪⎪⎨⎪⎪⎩

y0 = f(t0),

yi = f(ti) +
∑i

ν=1

[
G

(∑ν−1
k=0 yk

) ∫ tν
tν−1

K̃(ti, s) ds
]

−∑i−1
k=0 yk i = 1, . . . , N .

Also, in this case, the integrals
∫ tν
tν−1

K̃(ti, s) ds can be evaluated

by an exact (analytical) integration, in many specific instances, or,
more generally by numerical quadrature. As in the case of linear
integral equations, our collocation method can be applied to nonlinear
Volterra integral equations having either regular or Lp[a, b] solutions
(with 1 ≤ p < ∞), in view of the results on approximation through
superposition of sigmoidal functions discussed in Section 2.

5. Error analysis. In this section, we discuss the various sources
of errors which affect our method. Our numerical method is based
on using for the sought solution y its approximate representation in
terms of bounded sigmoidal functions, (see GNf in (1)). In view of
Theorem 2.2 (and also Theorem 2.4), we can write

(16) y(t) = (GNy)(t) + eN (t),

provided that y(t) is continuous (or in Lp[a, b]), where the error term,
eN (t), can be estimated uniformly (or in Lp-norm), for every ε > 0, as

(17) ‖eN(t)‖∞ < ε,

for a suitable N ∈ N+ (and w > 0, depending on N).

Clearly, (17) holds when GNy is written with the coefficients com-
puted in Section 2. In the following theorem, we establish an estimate
for eN , defined in (16), when GNy is represented in terms of unit step
functions (recall that in this case GNy is independent of w > 0), and
with the coefficients yk determined applying our collocation method to
the nonlinear integral equation in (13).

Theorem 5.1. Let (13) be a given nonlinear Volterra integral
equation of the second kind. Suppose that the function f is Lipschitz
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continuous, with Lipschitz constant Lf > 0, and that the kernel K ∈
C0(Ω) satisfies the following conditions:

(i) there exist L1 > 0 and L2 > 0 such that

|K(t1, s, y)−K(t2, s, y)| ≤ L1|t1 − t2|, for all (t1, s, y), (t2, s, y) ∈ Ω,

|K(t, s, y1)−K(t, s, y2)| ≤ L2|y1 − y2|, for all (t, s, y1), (t, s, y2) ∈ Ω;

(ii) for every bounded function y : [a, b] → R, there exists a C =
C(y) > 0 such that

|K(t, s, y(s))| ≤ C, for all (t, s) ∈ D.

Then, for every N ∈ N+, we have

|eN (t)| ≤ (b− a)

N
[Lf + L1(b − a) + C] eL2(t−a), t ∈ [a, b],

where eN is defined in (16), GNy being represented in terms of unit step
functions and with coefficients, yk, determined applying our collocation
method to (13).

Proof. Let N ∈ N+ and t ∈ [a, b] be fixed. Define j := max{i : ti ≤
t, i = 0, 1, . . . , N}, where ti := a+ ih, h := (b − a)/N , i = 0, 1, . . . , N
are the collocation points. We can write

|eN (t)| = |y(t)− (GNy)(t)| ≤ |y(t)− y(tj)|+ |y(tj)− (GNy)(t)|.
Now, observing that (GNy)(t) = (GNy)(tj) (since GNy is written in
terms of unit step functions), we obtain

|eN (t)| ≤ |y(t)− y(tj)|+ |y(tj)− (GNy)(tj)|

=

∣∣∣∣f(t) + ∫ t

a

K(t, s, y(s)) ds− f(tj)−
∫ tj

a

K(tj , s, y(s)) ds

∣∣∣∣
+

∣∣∣∣ ∫ tj

a

K(tj , s, y(s)) ds−
∫ tj

a

K(tj, s, (GNy)(s)) ds

∣∣∣∣
≤ |f(t)− f(tj)|+

∫ tj

a

|K(t, s, y(s))−K(tj , s, y(s))| ds

+

∫ t

tj

|K(t, s, y(s))| ds

+

∫ tj

a

|K(tj , s, y(s))−K(tj , s, (GNy)(s))| ds.
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Using conditions (i), (ii) and the Lipschitz continuity of f , we have

|eN(t)| ≤ Lf(t− tj) + L1(t− tj)(tj − a) + C(t− tj)

+ L2

∫ tj

a

|y(s)− (GNy)(s)| ds

≤ (t− tj)[Lf + L1(b − a) + C] + L2

∫ tj

a

|eN (s)| ds

≤ (b− a)

N
[Lf + L1(b− a) + C] + L2

∫ t

a

|eN (s)| ds.

The inequality above holds for every t ∈ [a, b], and then, by Gronwall’s
lemma, we obtain

|eN (t)| ≤ (b − a)

N
(Lf + L1(b− a) + C)

[
1 + L2

∫ t

a

eL2(t−s) ds
]
,

for every t ∈ [a, b]. Since L2

∫ t

a e
L2(t−s) ds = eL2(t−a)−1, it follows that

|eN (t)| ≤ (b− a)

N
(Lf + L1(b− a) + C) eL2(t−a), t ∈ [a, b].

Theorem 5.1 provides an a priori estimate for the approximation
errors of our collocation method applied to the nonlinear equations in
(13). In addition, we can infer from Theorem 5.1 that ‖eN‖∞ → 0
as N → +∞, and then that the sequence approximations for the
solution to (13), as determined by our method, converges uniformly
to the (exact) solution y.

Remark 5.2. In Theorem 5.1, the Lipschitz condition on the kernel
K, with respect to y, is global. Hence, Theorem 5.1 cannot cover, e.g.,
the case of nonlinear equations like that in (13) with kernels of the form

K(t, s; y) = K̃(t, s) yp, with p > 1.

Clearly, in the special case K(t, s, y(s)) = K̃(t, s) y(s), equation (13)

reduces to the linear equation (4) with kernel K̃. Therefore, if f is

Lipschitz continuous with Lipschitz constant Lf and K̃ ∈ C0(D) is
such that

|K̃(t1, s)− K̃(t2, s)| ≤ L1|t1 − t2|,
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for all (t1, s), (t2, s) ∈ D and some positive constants L1, we infer from
Theorem 5.1 that

(18)
|eN (t)| ≤ (b− a)

N
(Lf + L1(b− a) +M‖y‖∞) eM(t−a),

t ∈ [a, b],

where y is the (exact) continuous solution to (4) with kernel K̃ and

M := max(t,s)∈D |K̃(t, s)|, for every N ∈ N+. Also, in this case,
we obtain that ‖eN‖∞ → 0 as N → +∞. Now, since ‖y‖∞ =
‖GNy + eN‖∞, (18) becomes

‖eN‖∞ ≤ (b − a)

N
(Lf + L1(b− a) +M‖GNy‖∞ +M‖eN‖∞) eM(b−a),

and we have

‖eN‖∞
(
1−M

(b− a)

N
eM(b−a)

)
≤ (b− a)

N
(Lf + L1(b− a) +M‖GNy‖∞) eM(b−a).

Now, for N sufficiently large, we have M [(b− a)/N ]eM(b−a) < 1, and
hence,
(19)

‖eN‖∞ ≤ (b− a)

N−M(b− a) eM(b−a) (Lf+L1(b− a)+M‖GNy‖∞) eM(b−a),

which represents an a posteriori estimate for the approximation error
made in case of the linear equations (4), when GNy is given in terms
of unit step functions.

Now we can use the estimate provided by Theorem 5.1 to derive
another interesting estimate for eN (t). This can be obtained when
the approximate solution is expressed by a superposition of general
bounded sigmoidal functions. We denote with GH

Ny the collocation
solution to (13) represented in terms of unit step functions, and with
Gσ

Ny the solution obtained by superposing general bounded sigmoidal
functions. Note that the collocation solution can also be represented
by Gσ

Ny, in view of Remark 2.3 (a). Setting

(Gσ
Ny)(t) = (GH

Ny)(t) + sN (t), t ∈ [a, b],
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we obtain

|sN (t)| ≤ |(Gσ
Ny)(t)− (GH

Ny)(t)|

=

∣∣∣∣ N∑
k=1

yk[σ(w(t − tk))−H(t− tk)] + y0[σ(w(t − t−1))− 1]

∣∣∣∣.
Observing that

σ(w(t − tk))−H(t− tk) :=

{
σ(w(t − tk))− 1 t ≥ tk

σ(w(t − tk)) t < tk,

for every k = 1, . . . , N , we have

|sN (t)| ≤
∑

k:tk≤t

|yk||σ(w(t − tk))− 1|+
∑

k:tk>t

|yk||σ(w(t − tk))|.

Therefore, under the conditions of Theorem 5.1, we obtain

|eN (t)| = |y(t)− (Gσ
Ny)(t)| = |y(t)− (GH

Ny)(t)− sN (t)|
≤ |y(t)− (GH

Ny)(t)|+ |sN (t)|
≤ (b − a)

N
[Lf + L1(b − a) + C] eL2(t−a)

+
∑

k:tk≤t

|yk||σ(w(t − tk))− 1|

+
∑

k:tk>t

|yk||σ(w(t − tk))|,

for every t ∈ [a, b]. Now, we know by Definition 2.1 that, for w > 0
sufficiently large, the terms |σ(w(t− tk))− 1| and |σ(w(t− tk))| in (20)
are small.

In (20), a bound is given for the approximation error, in terms of the
yk’s. These have been computed in our collocation method, and thus
this can be viewed as an a posteriori estimate. Note that, in general,
from (20) we cannot infer that Gσ

Ny converges to y.

Using (18), considerations similar to those above can be made to
obtain an a posteriori bound for eN in the case of linear equations,
where the approximate solution is given by Gσ

Ny.
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6. Numerical examples. In this section, we apply the method
developed above, in this paper, to solve numerically some linear as well
as nonlinear Volterra integral equations.

6.1. Linear equations. Here are some examples of linear Volterra
equations of the second kind.

Example 6.1.1. Consider the Volterra equation (4) with

K(t, s) = ets, f(t) = e2t − 1

t+ 2
(et(t+2) − e−(t+2)),

on the interval [a, b] = [−1, 1]. Its solution is y(t) = e2t.

We test our collocation method based on step functions for solving
this equation. By Remark 2.3 (a), we know that various approximations
of y(t) can be obtained using different sigmoidal functions, using the
same coefficients. We denoted by

(21) εiN :=
‖Gi

Ny − y‖∞
‖y‖∞ , i = 1, 2, 3,

where y is the exact solution of the integral equation and Gi
Ny, i =

1, 2, 3, is its approximation obtained as a superposition of sigmoidal
functions, of the Heaviside, logistic, and Gompertz (with α = 0.85 and
β = 0.1) type, respectively. The Gi

Ny’s are all obtained evaluating
the coefficients y0, y1, . . . , yN , solution of the linear system MNYN =
FN . In the cases of G2

Ny and G3
Ny, the scaling parameter w was

chosen accordingly to Corollaries 2.5 and 2.6, respectively, yielding
w = N2/(b−a) for G2

Ny, and w = N2/[(b−a)αβ] for G3
Ny. In Table 1,

the relative errors εiN are shown. As for the condition number in the
infinity norm of the matrices MN , say κ(MN), we note that they are
not very small, being for instance κ(M10) ≈ 39.84, κ(M50) ≈ 125.73,
κ(M500) ≈ 816, 39, but its value is not very important, since we stress
that our method, used to solve the linear equations, is not iterative,
but rather a pure direct elimination method. In Figures 1 and 2, the
approximate solutions G1

Ny, G2
Ny for N = 20 and N = 60 are plotted,

respectively.
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FIGURE 1. Approximate solution G1
Ny of Example 6.1.1, for N = 20 and N = 60.

FIGURE 2. Approximate solution G2
Ny of Example 6.1.1, for N = 20 and N = 60.
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TABLE 1. Numerical results for Example 6.1.1.

N ε1N ε2N ε3N
10 4.45× 10−1 3.80× 10−1 4.15× 10−1

20 2.73× 10−1 2.59× 10−1 2.73× 10−1

30 1.95× 10−1 1.94× 10−1 1.95× 10−1

40 1.50× 10−1 1.50× 10−1 1.50× 10−1

50 1.20× 10−1 1.20× 10−1 1.20× 10−1

60 9.98× 10−2 9.98× 10−2 9.98× 10−2

500 1.16× 10−2 1.21× 10−2 1.26× 10−2

1000 4.10 ×10−3 6.10× 10−3 6.40× 10−2

Example 6.1.2. Consider the following initial value problem of the
second order,

y′′ − t

2
y′ + y =

t

2
sin t, y(0) = −1, y′(0) = 0.

Its solution is y(t) = t2 + cos t− 2.

To such an IVP, a linear Volterra integral equation like that in (4)
can be associated (indeed, it is equivalent to it), with

K(t, s) := 2s− 3

2
t, f(t) := − t

2
sin t− cos t,

see Remark 3.4. Consider such an integral equation on the interval
[a, b] = [0, 1]. In Table 2, the relative errors εiN , i = 1, 2, 3 are shown, as
in Example 6.1.1. The same observation can be made on the condition
number of the MN ’s. In Figures 3 and 4, the approximate solutions
G1

Ny, G2
Ny for N = 10 and N = 50 are shown.

Our method can be compared with other classical collocation meth-
ods, e.g., those based on piecewise polynomials [7]. We have compared
the numerical errors made applying both methods to Example 6.1.2,
choosing for the latter method quadratic polynomials on the subinter-
vals of [0, 1], when the same number of collocation points are used.
Taking M subintervals, we need N = 3M collocation points. The
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FIGURE 3. Approximate solution G1
Ny of Example 6.1.2, for N = 10 and N = 50.

FIGURE 4. Approximate solution G2
Ny of Example 6.1.2, for N = 10 and N = 50.
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TABLE 2. Numerical results for Example 6.1.2.

N ε1N ε2N ε3N
10 9.52× 10−2 7.08× 10−2 8.82× 10−2

20 4.31× 10−2 4.21× 10−2 4.31× 10−2

30 3.02× 10−2 2.86× 10−2 3.02× 10−2

40 2.12× 10−2 2.12× 10−2 2.12× 10−2

50 1.06× 10−2 1.07× 10−2 1.24× 10−2

500 8.09× 10−5 1.10× 10−3 1.20× 10−3

1000 4.06× 10−5 5.38× 10−4 6.22× 10−4

relative approximation errors, εpM , made with M = 7, M = 10, and
M = 15, turn out to be εp7 = 3.03 × 10−2, εp10 = 2.82 × 10−2, and
εp15 = 2.55 × 10−2, respectively. These should be compared with the
results shown in Table 2.

Example 6.1.3. Consider the following singular Volterra integral
equation (of Abel’s type), with convolution kernel as in (10), with

K(t, s) = − 1√
t− s

, f(t) = t2 +
16

15
t5/2,

whose solution is y(t) = t2, see, e.g., [26].

We consider this equation on the interval [a, b] = [0, 1]. The numerical
results obtained by our collocation method with unit step functions are
described in Table 3. The computed relative errors εiN , i = 1, 2, 3 are
those defined in (21).

Example 6.1.4. Finally, consider the singular Volterra integral
equation (4) with

K(t, s) = − 1√
t− s

, f(t) = 1 + 3
√
t+

π

2
t,

on the interval [a, b] = [0, 1]. Its solution is y(t) = 1 +
√
t, which has

an unbounded derivative at t = 0.
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TABLE 3. Numerical results for Example 6.1.3.

N ε1N ε2N ε3N
10 1.07× 10−1 6.47× 10−2 9.53× 10−2

20 4.61× 10−2 4.43× 10−2 4.61× 10−2

30 3.56× 10−2 3.27× 10−2 3.56× 10−2

40 2.32× 10−2 2.32× 10−2 2.32× 10−2

50 1.28× 10−2 7.20× 10−3 1.00× 10−2

500 1.20× 10−3 7.85× 10−4 1.10× 10−3

1000 6.02× 10−4 3.97× 10−4 5.42× 10−4

TABLE 4. Numerical results for Example 6.1.4.

N ε1N ε2N ε3N
10 1.5× 10−1 1.21× 10−1 1.41× 10−1

20 10−1 9× 10−2 10−1

30 8.66× 10−2 8.1× 10−2 8.66× 10−2

40 7.07× 10−2 7.07× 10−2 7.07× 10−2

50 5× 10−2 5× 10−2 5× 10−2

500 8× 10−4 1.8× 10−3 2.2× 10−3

1000 3.78× 10−4 9.01× 10−4 1.1× 10−3

The numerical results for such an example, obtained by our colloca-
tion method with unit step functions, are given in Table 4.

From the tables, one can observe that the convergence of the method
is rather slow, and its accuracy poor. This is due to the basic
approximation result based on sigmoidal functions, see Remark 2.3 (c).
One should note, however, that the method can be applied under very
weak assumptions on the kernel and the data. A large class of integral
equations can then be solved in this way, and analytical representations
of the solutions can also be obtained (as a superposition of sigmoidal
functions), at a low computational cost. In fact, all coefficients (of
GNy) needed to approximate a given solution, are evaluated just solving
a lower triangular algebraic system. In the special case of integral
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equations of the convolution type, such matrices are Toeplitz matrices;
hence, only N integrals must be computed. It follows that the methods
we propose may actually be very fast, but the so-obtained solution
could also be used as a starting point of other methods.

6.2. Nonlinear equations. Here are some examples of nonlinear
Volterra equations.

Example 6.2.1. Consider the nonlinear Volterra-Hammerstein
equation (13) with

K(t, s; y(s)) := K̃(t, s)G(y(s))

:= ey(s) cos s,

f(t) := sin t− esin t + 1,

on the interval [a, b] = [0, 1]. The solution is y(t) = sin t, see, e.g., [22].

The numerical results obtained applying our method with unit step
functions (introduced in Section 4), are shown in Table 5. As above, we
computed the relative errors εiN , i = 1, 2, 3, defined in (21). In Figures
5 and 6, the approximate solutions G1

Ny, G2
Ny are depicted, for N = 30

and N = 80.

FIGURE 5. Approximate solution G1
Ny of Example 6.2.1, for N = 30 and N = 80.
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FIGURE 6. Approximate solution G2
Ny of Example 6.2.1, for N = 30 and N = 80.

TABLE 5. Numerical results for Example 6.2.1.

N ε1N ε2N ε3N
10 1.66× 10−1 1.53× 10−1 1.63× 10−1

20 8.76× 10−2 8.70× 10−2 8.76× 10−2

30 6.00× 10−2 5.90× 10−2 6.00× 10−2

40 4.53× 10−2 4.53× 10−2 4.53× 10−2

50 3.34× 10−2 3.37× 10−2 3.46× 10−2

60 3.09× 10−2 3.09× 10−2 3.09× 10−2

70 2.74× 10−2 2.74× 10−2 2.74× 10−2

80 2.31× 10−2 2.31× 10−2 2.31× 10−2

500 2.90× 10−3 3.50× 10−3 3.60× 10−3

1000 1.40× 10−3 1.80× 10−3 1.80× 10−3

Example 6.2.2. Consider the nonlinear Volterra-Hammerstein
equation (13) with

K(t, s; y(s)) := K̃(t, s)G(y(s)) = es−t
(
e−y(s) + y(s)

)
, f(t) := e−t,

on the interval [a, b] = [0, 1]. The solution is y(t) = ln(t+ e), see, e.g.,
[22].
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FIGURE 7. Approximate solution G1
Ny of Example 6.2.2, for N = 10 and N = 50.

FIGURE 8. Approximate solution G2
Ny of Example 6.2.2, for N = 10 and N = 50.

TABLE 6. Numerical results for Example 6.2.2.

N ε1N ε2N ε3N
10 2.73× 10−2 2.06 × 10−2 2.38× 10−2

20 1.38× 10−2 1.14 × 10−2 1.16× 10−2

30 8.40× 10−3 8.10 × 10−3 8.40× 10−3

40 6.90× 10−3 5.80 × 10−3 5.80× 10−3

50 3.40× 10−3 3.40 × 10−3 3.70× 10−3

500 1.40× 10−4 3.45 × 10−4 3.75× 10−4

1000 7.03× 10−5 1.72 × 10−4 1.87× 10−4
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As above, we show in Table 6 the relative numerical errors εiN ,
i = 1, 2, 3. Again, we plotted in Figures 7 and 8 the approximate
solutions G1

Ny, G2
Ny, for N = 10 and N = 50.

As in the case of linear equations, our collocation method exhibits
slow convergence and poor accuracy. However, the procedure in (15)
quickly yields all coefficients that can be used in an analytical approx-
imate representation for the solutions in terms of sigmoidal functions,
to a large class of nonlinear equations. The low computational cost
of the algorithm allows one to considerably increase the number N of
collocation points, and hence the number of the superposed sigmoidal
functions, so to obtain a higher accuracy.
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