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AUTOCONVOLUTION EQUATIONS
OF THE THIRD KIND WITH ABEL INTEGRAL
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Communicated by Jurgen Appell

ABSTRACT. In this paper a class of autoconvolution equa-
tions of the third kind with additional fractional integral is
investigated. T'wo general existence theorems are proved, and
a new type of solutions is shown for an exceptional equation
of this class.

1. Introduction. In the paper [2] Berg and the author firstly
investigate the general autoconvolution equation of the third kind with
coefficient k(z) ~ Az as z — 0 and without a free term. These
investigations are being continued in recent papers by the author jointly
with Hofmann and Janno [5, 7-11]. In particular, in [9] the case
k(z) ~ Az®, a > 0 and in [11] the cases k(z) ~ Az and k(z) ~ Az'/?
with a free term p(z) ~ —y? ;¥ > 0 as z — 0 have been dealt with.

In the present paper the more general equation with an additional
fractional integral

(1.1)
K(o)y(z) = / WOl — &) de + 5 / y(€)(z — €)1t + plz)

where v € R, k(z) ~ Az® (o > 0) and p(z) ~ —y*z**~1 (y > 0)
or p(x) = o(z?* 1) as z — 0 is treated. For v = 0 with v = 0 this
equation has been considered in [9], for v = 0, & = 1/2 with v > 0
n [11]. Again using Janno’s theorem [6] in the iteration method with
weighted norms in C space, we prove the existence of a one-parametric
family of (real) solutions and an additional solitary solution in the main
case 7 > 0. These solutions also hold for v = 0 with the exception of
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one case where the existence proof for of a family of solutions requires a
different approach. We show this existence for some typical equations
by transforming these equations to related autoconvolution equations
to which a slight generalization of Janno’s method can be applied.

The plan of the paper is as follows. In Section 2 the main case v > 0
and the extensions to the case v = 0 and in Section 3 the exceptional
case of ¥ = 0 in equation (1.1) together with some related equations are
treated. In Appendix 1 a linear auxiliary equation, and in Appendix 2
the extension of Janno’s theorem in space C' with application to a class
of autoconvolution equations are stated. Further, a generalized Volterra
function with logarithmic factor which occurs in the treatment of the
exceptional case is briefly discussed in Appendix 3.

2. Main case. In dealing with equation (1.1) in the finite interval
(0,T), T > 0, we make the following general assumptions besides o > 0,
veR:

ke C0,T] with k(x)>01in (0,7] and

21) k(x) = Az* + B(z) (A >0), B(z)=o0(z%) asz—0
and

p € C(0,7]
with

(2.2) p(z) = *2* 7 +q(2) (v 2 0), g(z) = o(z*7 1) as z — 0.

In the main casey > 0 we are looking for solutions y of equation (1.1)
with asymptotic behavior y(z) ~ Ez®~! as ¢ — 0. Equation (1.1)
yields the equation

B(a,)E? +[v — AJE —~+* =0
with the beta function B(u,v) for E € R which has the two solutions

(2.3)

B = {[Afu]—k\/[Afz/]2+4fy2B(a,a)} >0

2B(a, )
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(2.4)
1

B = 2B(a, ) {[A —v] = V[A-v]? +472B(a,a)} <0

For E = E; we prove the existence of a family of solutions y to
equation (1.1) of the form

(2.5) y(z) = Eyz®' +2P2(z), 2€C0,T),

with a suitable parameter 5 > a — 1 defined below (cf. [9]) assuming

Q

(xa+ﬁ) as ¢ — 0 with q(a:)/xa+ﬂ+1 € L'(0,T),
(2'P) as  — 0 with B(z)/z**# € L'(0,T).

q(z) =

28 g

Q

Inserting the ansatz (2.5) into equation (1.1) gives the equation for z

z(z) = fi(z) + Golz(2) + Lu[z, 2](2)

(2.7) fi(z) = hi(z) = q(x) — E1z® "' B(),

Gol1) = capy | ey + 28| | €0 -9 0 de

28 Ll = g [ @0 a0
We further split up

Galel(a) = 22k [
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210) Gl =~ 2l [ -0
and obtain the equation for z in the form

(211) -2 [ -9 0k -
where

212) @) =allE) = 46+ GEIE + Lz d@).

From (2.1), (2.2) with (2.6), we have f; € C[0,T] with f1(0) = 0 and
fi(x)/x € L1(0,T); further for any z € C[0,T] the following holds

|G1[](2)], | L2, 2](2)] < Const &= - lz]| or |||,
respectively, so that G1[z], L[z, z] € C[0,T] with G1[z](0) = L1z, 2](0) =

0 and G1[2|(z)/z, L1[z, 2](z)/z € L*(0,T). Hence, we have g; € C[0,7]
with g1(0) = 0 and g;(x)/x € L'(0,T).

From (2.9) we see that A\; > 1/B(«, a). Defining now 8 > a — 1 as
the real root of the equation

(2.13) MB(a,f+1) =1,

equation (2.11) has the general solution with arbitrary parameter K
(cf. [9, Theorem 1))

(2.14) z2(z) = K+ g1(z) + % /Oz T1<§>gl(£) d¢, K eR,

where the nonnegative resolvent function 71 (u),0 < u < 1 is continuous
n (0,1) and satisfies the estimation

(2.15) r1(u) < C’[%—i—(l—u)”‘_l], 0<u<l,

with a positive constant C. From (2.14) and (2.12) we finally obtain
the family of integral equations for z € C[0,1]

(2.16) z(z) = f(z) + Gl2(z) + Lz, 2]()
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where
(2.17) f(x):K+f1(l‘)+%/Ozﬁ(%)fl(f)df, K e R,
(2.18)
Gll) = Gildla) + 3 [ (£ ) Gall ae
(2.19)

Liz1, z2](x) = L1 [21, 22](z) + % /Om 1 (%)Ll[zl,:@]({) dg.

We have f € C[0,T] with f(0) = K and G|z], L]z1, 23] are a bounded
linear and a bounded bilinear operator on C[0,T], respectively, with
G[z](0) = L[z, z](0) = 0 for any z € C[0,T].

Equation (2.16) has the form of equation (A.7) in Appendix 2 and
we apply Janno’s Theorem A.l1 to it. For this aim we estimate
the operators G and L in the exponentially weighted norms ||z||, =
maxo< <7 |€" 7" z(x)|. We start with the operators G1 in (2.10) and L,
in (2.8). In view of (2.1), (2.6) we have

1 T
=7 Galz)(2)| < C1 / e 70z g)otde - |zl
0

and by [9, (A.3)]

[t grae = (et - gpag < 0T
0 0 g

so that

(2.20) 1G1[2]]lo < (JIDT“HC*m if fB>2a 1.

O—CX

For o — 1 < 8 < 2a — 1 we estimate

T T w 1-w
[[eetemgries ([(ee-era) (0%

= D1 maw—i—ﬂ

ol @)’ 0<w< L
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Choosing w = 2 — (1 + )/« this gives

2a—1

/0 e_asfa_l( f)Bdf < Dlm

so that

(2.21) Mmmb<qplkkaifa—1<5<m_1
g

Analogously, due to (2.1) we obtain

1 xr
€7 Ly 21, 22](2)| < Ca—7 / e %P (@ — €)°de - || a1 |22l
z 0

with

1

sarpa—a 0<w<l

/ efaﬁfﬁ(x _ f)ﬁdf < szﬁ+(ﬁ+1)w
0

and choosing w = a/(f8 + 1) we have the estimation

[1z1][[]22l

(2.22) |L1[21, 22]||ls < C2Do SIth—a

Moreover, the following holds

le”7" L1 [z1, z2](z)| < C2

1 xr
7 | Ee-de lalilel,
< Coz® 2zl 2],

so that

(2.23) 11 [21, 2]l < CoTP 1|21 |o 122l

Further, we estimate G[z] in (2.18) and L[z1, #2] in (2.19). In view of
(2.15) we have

eerGEl@I < (14 20 )Gl + 20 [ g G de
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But the integral on the right-hand side can be estimated due to (2.10)
with (2.1), (2.6) by

vl —o(z— ¢ a—
Gy [ e 5)/ 7P (€ — n)>dn dé - | 2],
0 0
< C3B(B+1,0) / e 7 @=Ogh=ge ||z,

0
C ‘ —0o —a
=32 [ ete - wdg - |zl
1Jo

and by [9, (A.2)]
(2.24)

T pre i
—0€(,_¢\B—a ET lfﬂza
[t <G yome £z

Therefore, we get the estimation

16l < (14 29 )Galelle

Th—a .
8>
100, @ iff=a
CL+B8-a))/otthF if-1<B-a<0

which, together with (2.20) and (2.21) proves assumption (A.8) of
Theorem A.1.

Finally, analogously, in view of (2.15) we have
—ow MO
oL, 1)@ < (14225 I,
’ 1 —ox
+A10/ £e "l ()] d
0
and since e 7% = ¢ (@ 8 (E MM from (2.8) with (2.1) it follows
* 1 —oT
| ge il al(e)l de
) €
z —o(z—¢&) 13
e
<o [ S [ e nPinas ozl

e / e~ @O eB=age |zl ] 22l
0
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where the last integral can be estimated by (2.24) again. This, together
with (2.22) and (2.23), proves assumptions (A.9) and (A.10) of Theo-
rem A.1. The theorem then shows the existence of a solution z = zg
with z(0) = K to equation (2.16) for any K € R.

Theorem 2.1. Let k,p fulfill assumptions (2.1) and (2.2) with v > 0
and (2.6) where 8 > a — 1 is the real root of equation (2.13) with
A1 defined in (2.9). Then equation (1.1) in (0,T), T > 0 has a one-
parametric family of solutions yrx, K € R of form (2.5) with E; > 0
defined in (2.3) and zx € C[0,T] with zx(0) = K. These solutions are
the unique ones of equation (1.1) in the class of functions of form (2.5)
with positive coefficient E = E.

Corollary 2.1. The existence assertion of Theorem 2.1 remains
valid in the limit case v =0 ifv £ A. For v < A we again have Ey > 0
and A1 = (24 —v)/AB(a,a) > 1/(B(a,)); for v > A, E; = 0 holds
but again A\ = v/(AB(a, o)) > 1/(B(w, a)) implying B > a—1 in both
cases.

Remark 2.1. The case v = 0 with v = 0 where 8 = « has been dealt
with in [9, Theorem 3], the case v = 0 with v > 0 for « = 1/2 in [11,
Theorem 3.1]. The above estimations of G[z] and L[z, 23] for 8 = «
improve the estimations in [9].

For E = FE5 we show the existence of a solitary solution y to
equation (1.1) of the form

(2.25) y(z) = Byx®' + 2%¢(x), ¢ e Clo,T),

where the parameter § > o — 1 is prescribed such that

q(z) = dz®*° +e(z), deR, e(x) = o(z**?),
B(x) =bz'*’ 4 ¢(z), beR,  c¢(z)=o(z'T?)
instead of (2.6).

Inserting the ansatz (2.25) into equation (1.1), analogously as above,
we get the equation for

e [ € 9 = o)

(2.26)




AUTOCONVOLUTION EQUATIONS OF THE THIRD KIND 121

where
1[#
A| B(a, )
1 1 2 2
- m[l - Z\/(A—u) +472B(a, @)

with A2 < 1/B(a, o) and

Ap = + 2E2]

(2.28)

(229)  gale) = 0alc)(@) = fola) + Galcl(@) + LalC. ] (2)
with
230 fle) = A () = le) - BB
(2.31)

Galdlle) =~ | € o de
(2.32) -
Ll Gl(0) = 2 | €@ - 0G0a0w -0 de

It holds fo € CI[0,T] with f2(0) = (d — E2b)/A. Further, G, is a
bounded linear and L, a bounded bilinear operator in C[0,7] and
C10,T] x C[0, T}, respectively, with

|G2[C](x)| < Const z"*1=?||¢||  for any ¢ € C[0,T],
|L2[C1, G (w)| < Comst 21| Gu[[| o
for any (1,¢2 € C[0,T]
implying G2[¢](0) = L3[¢,¢](0) = 0 for any ¢ € C[0,T]. For the

solution ¢ of equation (2.27) we then have
f2(0) _d— Eqb 1
1-XB(6+1,a) A 1—XB(6+1,a)

(2.33)  ¢(0) =

Further, as above in (2.20)—(2.23) for Gy and L, from (2.31) and
(2.32) we obtain the estimations for G2 and Lo in weighted norms

(2.34)
lig

I
|Galc]lls < Const { -

ifd>2a—-1

ICH

2= fa—-1<d<2a-1
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and

(2.35)
GG llo /ot

I [<,<]||agconst{
o 1cull el

We now have to distinguish the three cases: 0 < A2 < 1/(B(a, @),
A2 = 0 and Ay < 0. In the first case 0 < Xy < 1/(B(a,q))
equation (2.27) has the form of equation (A.2) with the unique solution

(2.36) ((z) = f(z) + G[¢)(=) + L[¢, (=)

where
230 1) =R+ 2 [ ped
(2.38)

6ld) = Galdlia) + 52 [ na(£ ) Galcl©
(2.39)

LG Gal(a) = Lal6nnGalle) + 52 [ ra( ) e, cal(e) e

and the nonnegative resolvent function 72 (u) is continuous in (0,1) and
satisfies the estimation

1 a—1
%—I—(l—u) :|, O<u<l,

(2.40) ro(u) < C[
with some py € (—d,« —§). Like fo € C[0,T7] it holds f € C[0,T] since

po<a—40<1.
We estimate G[(] in (2.38) and L[(1, (2] in (2.39). As above we have

o) < (1+ 225 ) [Galdl

+A2(Jﬂc”°71/ £ P0e 70| G2[C](§)] dE

0
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and the last integral can be estimated in view of (2.31) with (2.1),
(2.26) by

241) Coam ! [Ce i@t
0
<C ¢ —0€(,. 57o¢d .
<SG | e (z—8)° “dE-|I¢ll
0
since (z — £)17P0 < 2!7Po due to pp < 1. But the integral in (2.41)
fulfills the estimation (2.24) with ¢ instead of S and, observing also

(2.34), we see that G[(] satisfies the assumption (A.8) of Theorem A.1
again.

Analogously as above, we also have

Ll cl@) < (1+ 2912k Gl
+aaCam [T e e oLl Gl g
0

and from (2.32)

/0 £ P0eE Ly [cr, Co) (6)] de
<t [T s 9 de - alllalo
0

with the same integral as in (2.41). This together with (2.35) proves
the assumptions (A.9), (A.10) of Theorem A.1.

In the second case A = 0 we have the solution ((z) = g2(z) of
equation (2.27) leading to the equation

((z) = fa(@) + G2[C](2) + La[¢, (] ()
for which by (2.34) and (2.35) the assumptions of Theorem A.1 are
fulfilled.

In the third case Ay < 0 equation (2.27) has been studied in [11,
Appendix 2]. From [11, Corollary A4] we obtain the unique solution
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of this equation in the form (2.36) with the resolvent function 73 which
is continuous in (0,1) and satisfies the estimation

[Fo(u)| < Clu? + (1 —w)* Y], d>a—-1>-1

corresponding to pp = —4§ in (2.40). Hence the assumption of Theo-
rem A.1 are fulfilled for the corresponding equation (2.36). Therefore,
from Theorem A.1 we obtain

Theorem 2.2. Let k,p satisfy the assumptions (2.1), (2.2) with
v > 0 and (2.26) where § > o — 1 is prescribed. Then equation (1.1)
in (0,T), T > 0 has a unique solution y of form (2.25) with E5 < 0
defined in (2.4) and ¢ € C[0,T] with value ((0) given by (2.33).

Corollary 2.2. The assertion of Theorem 2.2 remains valid in the
limit case v = 0 where E2 = 0 forv < A and E; = (A —v)/B(a,a) <0
forv > A. In the case vy = v = 0 where A2 = 0 the assumption (2.26)
on B can be weakened to B(z) = o(z*) as x — 0.

Remark 2.2. The case v = 0 with v = 0 where § = « has been dealt
with in [9, Theorem 4], the case v = 0 with v > 0 for & = 1/2 in [11,
Theorem 3.1].

As an example to both theorems we consider the modified Bernstein-
Doetsch equation (cf. [11])

Aa*y(z) = / YOyl — 6 de

(2.42) .

A ‘ a—1 _ $2a_1
+ m/o y(§)(z — &) d§ T(2a) .

It has a family of solutions of the form

a—1

—_ CEBZK X

with zx(0) = K € R and 8 > o — 1 the real root of the equation

_ AT%(a)
Bl = ar@a) +2r(e)’
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in particular the solution y; (z) = =t~z ! for K = 0, and the solitary

INE)
solution y5(z) = —1/T(a)z*~ L.

For « = 1 with A = 2 we have 8 = 1 and the functions zx (z) =
2[exp((K/2)x) — 1]/2, for « = 1 with A = 1 it is § = 2 and
we get the functions zg(r) = 2[coshvKz — 1]/2%, K > 0 and
2k (z) = 2[cosv/—Kz — 1]/z%, K < 0.

6. Exceptional case. It remains to prove the existence of a family
of solutions to equation (1.1) in the ezceptional case v = 0, v = A.
Putting A = 1 without loss of generality, we consider the basic equation
for this case

31 ayle) - [ " YOz —€) de + ﬁ / " YO — ).

Looking for solutions y(z) = o(z® ) as £ — 0 we make the ansatz

e e} .,L.t+oc71
(3.2) y(z) = /0 Srraed w0

where the function ¢ € C0,c0) satisfies an estimation
(3-3) ()] < Coe™, t>0(peR)

with a positive constant Cj.

From the integrals

/Oz y(&)y(x — €) dé = /Ooo % {/Ot o(s)p(t — s) ds] dt,
[ wee—er e~ [T E 0 a

we see that the function (3.2) is a solution to equation (3.1) if ¢ is a
solution to the equation

(3.4) A(t)p(t) = / o(s)p(t —s)ds, t>0,
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where
T(t+20) I(2a)
(3:5) A= Tera) T

The function A € C]0,00) satisfies A(0) = 0, A(t) > 0 for ¢ > 0 and
A(t) ~ t* as t — oo. It has the asymptotic expansion

A(t) = Aot + Bot* + O(t*) ast — 0,

where
Ao = o) [¥(20) ~ W(a)],
(3.6)
By — %FF((Q;‘)) [(T(20) — ¥(a))? + ¥'(20) — ¥'(a)]

with Gauss psi-function ¥ = I'/T. Therefore, by Theorem A.2 in
Appendix 2 we get a solution ¢g to equation (3.4) of the form

cpo(t) = AO — QBotlnt + tX()(t)

with Xy € C[0,00) satisfying X(0) = 0 and the general solution
© = ey, c € R of the form

(3.7) o(t) = Ao — 2Bot Int + tx(t)

where X € C[0,00) fulfills X(0) = K, K = Agc € R. Further, the
solutions ¢ obey inequalities of type (3.3). Hence the corresponding
functions y in (3.2) are solutions to equation (3.1).

From (3.7) we obtain for these solutions the representation
(3.8) yk(z) = Apv(z,a — 1) — 2Bow(z, 1,00 — 1) + p(z, 1, — 1)z(x)

with z € C[0,00) satisfying 2(0) = K, K € R and the Volterra
functions (cf. [4, Section 18.3] and Appendix 3)

o gtta—lgy
s &8 — 1) = T N\
v(z,a ) /0 Tt +a)

[eS) CUtJ'_a_ltdt
e la—1)=[ L 1
g ) /0 T(t+a)

o gtta—lyn ¢dt
w(ac,l,ozfl):/ TThta
0 (t+ )
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Theorem 3.1. The integral equation (3.1) has (besides y = 0) the
one-parametric family of solutions yx, K € R of form (3.8) given by
formula (3.2) where p = e g, c € R are the solutions of equation (3.4)
of form (3.7) with coefficients (3.6).

From (3.8) by formulas [4, Section 18.3, (9)] and (A.22) it follows

Corollary 3.1. The functions yx have the asymptotic expansion as
x—0:

Ay o 1\"" 2By _ 1\ 2 1
yK(w):T(z)wa 1<1n5> +ﬁ(10)w 1<1n;> IHIHE

1\ ? 1\ ?
—i—KOxO‘l(ln —> —|—o<x°‘1(ln —> >,
x x
where Ky € R is given by

Ko = ﬁ[K —Ap¥(a) — 2By¥(2)], KeR

with ¥(2) = 1 — C, C Euler’s constant.

From Remark A.2 in Appendix 2 a further corollary to Theorem 3.1
holds.

Corollary 3.2. Equation (3.1) with free term p(x) of the form

e e] xt+2a71
p(z) :/0 mf(t) dt,

where f € C[0,00) satisfies f(t) = o(t?) as t — 0 with f(t)/t® €
LY(0,T) for any T > 0 and an inequality of type (3.3), has a family of
solutions yx as in Theorem 3.1.

In the case of the more general equation than (3.1)

(3.9) (a)y(z) = /0 " y(©y(e —€)de + ﬁ /0 YO o e
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where

N
k() =2+ ) bt bR, 0<fy <--- < By

n=1

by the ansatz (3.2) we get the equation for ¢

(3.10) )\(t)ga(t):/o o(5)p(t — 5)ds — S buwa(t), >0

n=1

where ) is given by (3.5) and

{0 if0<t< By,

nt = a .
UnD) =\ b o6 it > G

Equation (3.10) can be solved successively in the intervals (8,1, 8n),
n=12....

Remark 3.1. We conjecture that under suitable assumptions on
k(z) ~ 2 and p(z) = o(x2* ") as x — 0 equation (3.9) with additional
free term p(z) has a family of solutions yx, K € R of form (3.8).

The ansatz (3.2) can be used for other types of equations to reduce
them to autoconvolution equations of the third kind. We give some
examples. The integral-functional equation

N .
(3.11) o3 anpenn) = [yl €)de,
n=0 0
where cg > ¢ > --- > cy > 0 witheg > 1and ag = 1, a, € R
(n=1,...,N) leads to equation (3.4) with
N

I'(t+2a) _ _
At) = ———2 ancttt o tecttoml a5t 5 00

which by the conditions

N N
Z anc® =0, Z anctt* >0 fort>0,
n=0

n=0
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fulfills the assumptions of Theorem A.2. Also related Stieltjes integrals
can be brought into the left-hand side of equation (3.11).

The integral-differential equation
al d
(3.12) z%y(z) + Z cnx™ %[aja+177”y]
n=1

M x
+ 3 dya o / g0 (@ — ) TPy (¢) d
m=1 0

- / YOy — €) de

(Ym, Omsy Bm € R with a4+ B, > 0, 6 > B — 15 ¢nydi € R) yields
equation (3.4) with

L(t+ 2a)

)\(t) = m [1 +nz::lcn(t+2a_7n)

M
+ deB(a+Bm7t+a+(5m_5m)

m=1
N N
NtO‘Hch as t — oo ichn>0
n=1 n=1

or

N N N
A(t)wt“(l—ch’yn> as t — oo if ch:0,20n7n<1.
n=1

n=1 n=1

If ¢,, d,, € R satisfy the relations

N M
1+ cn@a—y0) + > dn B0+ o, @+ b = ) =0,
n=1 m=1
N M
14> en(t+20— 7))+ Y dnB(a+ Byt + & + 6m — Bm) >0
n=1 m=1

for t > 0,
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and
N N N

ch>0 or ch:0,ch7n<1,

n=1 n=1 n=1

then Theorem A.2 proves the existence of a family of solutions to
equation (3.12).

Finally, by the slightly more general ansatz than (3.2)
mt+a71

y(w):/ooomcp(t)dt, 8 >a>0,

the related integral equation to (3.1)

sy(o) = [ " Py (@)y(a — €) de
(3.13) 0

g ) €O -0
is reduced to the equation
t
(3.14) AOplt) = [ et =) ds
with (s 8 r 8
At) = (Fz;i;) ) _ (lof(;) ) ~t* ast— oo,
u(t) = % ~tP as  t— oo

Equation (3.14) (after multiplication with the constant factor I'(3)/I'(«))
also satisfies the assumptions of Theorem A.2.

APPENDIX
1. A linear auxiliary equation. We deal with the equation
(A1) etw@ =) [ @- O w@ds+h() (a>0
0

where 0 < A < 1/B(a, ). In [9] this equation for A > 0 has been
considered in the class of solutions w(z) = z”2(x),z € C[0,T],T > 0
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with 8 > —1 real root of AB(l,8 + 1) = 1 in which the homogeneous
equation has the solution wg(z) = z°.

For 0 < A < 1/B(a,a) we have —1 < 8 < a — 1 and now we are
looking for the uniquely determined solution to equation (A.1) of the
form w(z) = 2°¢(x), ¢ € C[0,T] with prescribed § > a — 1. Then ¢
satisfies the equation

(A2 @)= [ -9 de+ a(a)

where g(z) = h(z)/z**® is assumed to be in C[0,7]. Then equa-
tion (A.2) has the unique solution in C|0,T]

(4.3) ) =gte)+ [ zr(—)g@) dé

where the nonnegative resolvent function r(u),0 < u < 1 is continuous
in (0, 1) and fulfills the equation

(A4)  r(u) = /l(v —u)* @) (p) dv + ul (1 — uw)* L.

Substituting ¢ = In(1/u) and ¢(t) = r(u) from (A.4) we obtain the
Laplace transform of ¢

(A.5) Bp) =

As in [9], from (A.4) and (A.5) we have the estimation
1 a—1
(A.6) r(u) <C %—l—(l—u) , O<u<l,

with some positive constant C' where py € (—d, @ — §) is the real root
of the equation AB(pg + J,a) = 1.

2. Existence theorem for quadratic operator equation. We
state a corollary to an existence theorem by Janno [6] for operator
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equations in spaces of continuous functions on R. We consider the
operator equation

(A7) 2(z) = f(z) + Gl2|(2) + L[z, 2] (=)

with f € C[0,T], a linear operator G : C[0,T] — C[0,T] and a bilinear
operator L : C[0,T]xC[0,T] — C[0,T],0 < T < co. The space C[0,T]
is equipped with the exponentially weighted norms

— —0ox — —0ox > .
2l = lle~2(a) | = max e~=2()], 020

Then we have (cf. [2, Lemma 1))

Theorem A.1. LetT > 0. Let the linear operator G and the bilinear
operator L in C[0,T] fulfill the inequalities

(A.8) 1Glz]lle < Mz (o)llzllo; o2 00>0,

for any z € C[0,T] with a continuous function My satisfying My (o) —
0 as 0 = o0,

(A.9) IL[z1, 22]lle < Nrll21llol22ll0, 0 = 00 >0,
with a constant Nt and

pa,r (o)l 21 [l 22l

A10 Llz, 22]lls <
( ) || [1 2]” {l‘t27T(U)||Z1|U|Z2||

, o>0a9>0,
with continuous functions prr, k = 1,2, satisfying pgr(c) — 0 as
o — oo for any pair z1, 22 € C[0,T].

Then, for any f € C[0,T], equation (A.1) has a uniquely determined
solution z € C[0,T].

From the proof of the general theorem of Janno in [6] the following
corollary to Theorem A.1 easily follows.

Corollary A.1. Let the assumptions on the operators G and L in
Theorem A.1 be fulfilled for any T > 0 where the functions Mr (o) in
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(A.2) and px, (o), k =1,2 in (A.4) can be chosen independently of T
for T > Ty with some Ty € (0,00). Let further f € C[0,00) satisfy the
inequality

(A.11) If(z)| < Coe*", x>0, with some o1 > 0y.

Then the uniquely determined solution z € C[0,00) of equation (A.T)
obeys the estimation

(A.12) |z(z)| < Ce®2*, x>0, with some o3 > 07.

We apply Corollary A.1 to an existence theorem for the equation

(A13) k(o)) = / @y g, >0,

extending Theorem 3 in [2].

Theorem A.2. Let k € C[0,00) with k(z) > 0 for 0 < z < 0o and
k(0) = 0 possess the expansion

(A.14) k(z) = Az + B2* + C(z) (A >0)

where B € R and C(z)/x* € L*(0,T) for any T > 0 and satisfy the
inequality

(A.15) ﬁ <D; forx>1

with a positive constant Dy. Let further a € C[0,00) with a(0) = 1
possess the expansion

(A.16) a(z) =14 uz +v(z)

where uw € R and v(x)/xz? € L*(0,T) for any T > 0 and satisfy the
inequality

(A.17) la(z)| < Dy forxz >0

with a positive constant Do.
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Then equation (A.13) has a solution yg € C[0,00) of the form
(A.18) yo(z) = A+ pelnx + zzo(z), p= Au—2B,
with zy € C[0,00) satisfying z0(0) = 0 and obeying the inequality
(A.19) |z0(z)| < Doe™®, x>0,

with positive constants Dy,e. The solution yo is unique in the class of
functions of type (A.18). The general solution y of equation (A.13) is
given by y = e““yp, c € R.

The proof of Theorem A.2 follows repeating the proof of Theorem 3
in [2] and observing the assumptions (A.15) and (A.17).

Remark A.1. From the expansion (A.18) for yo, the estimation (A.19)
for zg and the representation y = e“yp, ¢ € R the general inequality

(A.20) ly(z)| < Def®, x>0,

for any solution y of equation (A.13) obtained by Theorem A.2 follows,
where D is a positive constant and the constant p € R depends on the
specific solution y.

Remark A.2. Theorem A.2 with the estimation (A.20) also holds for
equation (A.13) with the additional free term p(z) € C]0,00) which
satisfies p(z)/z3 € L'(0,T) for any T > 0 and an inequality of form
(A.11).

For the proof compare Theorem 3 with Remark 3 in [9]. For further
extension to more general free terms p we refer to Theorem 5 in [7] and
Theorem 2.1 in [11].

3. A generalized Volterra function. In analogy to the Volterra
functions p [4, Section 18.3, (2)] we introduce the generalized Volterra
functions

2Ot (Int) dt
B+ 1I(§+t+1)

(A21)  w(wB,din) = / h F( 8> 1)
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forn=0,1,..., where w(z, 3,6;0) = u(z, 8,9), and we put w(z, 8, d;1)
= w(z,B,6). We are interested in the asymptotic expansion [1, 3] of
the function w(z,3,d;n) as z — 0. Using as in [4, Section 18.3, (8)]
the series

g (o)
F(6+t+1)_m220“(1’_m_1’5) m!

where p(1,-1,8) = 1/I'(6 + 1) (see [4, Section 18.3, (5)]) and z* =
exp(—tln(1l/z)) in (A.21) and integrating term-by-term, we obtain the
asymptotic expansion of the function w in descending powers of In(1/z)
times powers of InIn(1/x):

1 1\ 7!
w(z, B,0;n) ~ 71):v5<1n E)

I8+
]:0(—1)"—]' (;‘) rO@+m+ 1)<ln1n%>"j.

In particular, for n = 1 we have

1 1)
w(z,B,0) ~ mx‘s(ln 5)

N & A
+mz::0,u(1, m —1,9) o lnx

: [I‘(ﬂ-}-m-}-l)lnlnif'(,@-{-m—i—l)]

which implies the finite asymptotic expansion for 8 > —1, § > —1:

w(z,B,6) = fﬁﬁ <ln 1) o [lnln% ~¥(B+ 1)]

T

—B-2
—|—O<x5<lnl> lnlnl> asx — 0
T T

with the Gauss psi-function ¥ =I"/T.

(A.22)
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