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ABSTRACT. We consider the discretization in time of a
fractional order diffusion equation. The approximation is
based on a further development of the approach of using
Laplace transformation to represent the solution as a contour
integral, evaluated to high accuracy by quadrature. This tech-
nique reduces the problem to a finite set of elliptic equations
with complex coefficients, which may be solved in parallel.
Three different methods, using 2NV 4+ 1 quadrature points, are
discussed. The first has an error of order O (e_CN) away
from t = 0, whereas the second and third methods are uni-
formly accurate of order O (e_c‘/ﬁ). Unlike the first and
second methods, the third method does not use the Laplace
transform of the forcing term. The basic analysis of the time
discretization takes place in a Banach space setting and uses
a resolvent estimate for the associated elliptic operator. The
methods are combined with finite element discretization in the
spatial variables to yield fully discrete methods.

1. Introduction. For —1 < a < 1, we shall consider numerical,
particularly time discretization, methods for an initial-value problem
of the form

(1.1) Ou+ 0, “Au= f(t), for t>0, with u(0)=uy,
where 9; = 0/0t, and where A is a sectorial linear operator in a complex
Banach space B.

In the applications we have in mind, A is a linear, second-order elliptic
partial differential operator in some spatial variables (whose coefficients
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must be independent of t). If « = 0, the problem (1.1) then reduces
to a classical parabolic equation, providing, e.g., a macroscopic model
of the density u of diffusing particles that undergo Brownian motion
with mean-square displacement proportional to t. If —1 < a < 0 then
(1.1) instead models anomalous sub-diffusion, see Gorenflo, Mainardi,
Moretti and Paradisi [5], Henry and Wearne [6], Metzler and Klafter
[16], Yuste, Acado and Lindenberg [27], in which the mean-square
displacement of the diffusing particles is proportional to t!T. The case
0 < a < 1is of interest for applications in viscoelasticity. Schneider and
Wyss [21] describe (1.1) as a fractional diffusion equation if -1 < a < 0
and as a fractional wave equation if 0 < o < 1.

Denoting the Laplace transform of u with respect to t by

(1.2) (z) = L{u(t)} = /0 T ettu(t) dt,

we find that the solution of (1.1) formally satisfies

~

(13) (21 + 2 AYii(z) = g(2) := o + F(2),

where I denotes the identity operator in the Banach space B. This
equation serves as an implicit definition of 9, . Equivalently, since

L D)} =274, for p>0,

we may interpret the fractional order time derivative (o < 0) or integral
(o > 0) in the Riemann-Liouville sense,

(t—s)° :
O | =——u(s)ds, if —-1<a<0,
(9, “w)(t) := / ra+a)

twus s, 1 «a
/0 T u(s)ds, i 0<a<l

Thus, (1.1) is an integro-differential equation for o # 0, and so the
problem is non-local in time.

Instead of using time stepping for the numerical solution, as was
done for the case 0 < o < 1, e.g., in [10, 11, 13, 15, 17, 19], our
approach is to represent the solution of (1.1) as an inverse Laplace
transform, which is then approximated by quadrature. Developed
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first for parabolic problems (o = 0) in Sheen, Sloan and Thomée
[22, 23], such an approach is even more attractive for problems as
occurring in (1.1) with a # 0, involving convolution integrals in time,
see Lopez-Fernandez, Palencia and Schidle [8], McLean and Thomée
[14] and McLean, Sloan and Thomée [12]. Our present paper also
covers the case —1 < a < 0, which has received less attention from
a numerical point of view; see, however, some generalizations of the
implicit (Langlands and Henry [7]) and explicit (Yuste and Acedo
[26]) Euler method, and an example (Weideman [25]) in the context
of numerical inversion of Laplace transforms.

In Section 2, we will outline three time discretization methods of the
type mentioned above. In each method, we must solve 2N + 1 elliptic
problems, one for each quadrature point. The first is based on the
ideas of [8] and achieves a convergence rate of order O(e~") for ¢ in
a compact interval [tg, T], with 0 < to < T' < oo. For the second and
third methods, the error is of order O(e_“/ﬁ) but the convergence is
uniform on [0,7]. The third method, unlike the first two, does not
require the Laplace transform of the inhomogenous term f, but has
the disadvantage that the source terms in the elliptic problems depend
on t. Gavrilyuk and Makarov [4] considered a scheme of the second
type for the special case of a parabolic PDE (a = 0).

We set out the details of our error analysis in Section 3. Subsequent
parts of the paper proceed to consider the application of our methods
for time discretization to the design of fully discrete schemes for the
case of equation (1.1) when A = —A, where A is the Laplacian in
a smooth (or convex) bounded domain  C R?, under homogeneous
Dirichlet boundary conditions.

In Section 4 we show nonsmooth and smooth data error estimates
for the spatially-discrete, continuous-time problem. Subsequently, in
Section 5, we combine the separate error estimates for the space and
time discretizations to bound the error for fully discrete solutions.

Finally, in Section 6 we present the results of some simple numerical
experiments, illustrating our theoretical results.
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2. Preliminaries. We begin this section by stating some technical
assumptions. We require that A is a closed, densely defined linear
operator in a complex Banach space B, and that the spectrum of A lies
in the interior of a closed sector in C of the form

(21) S,={z#0: |argz| <} U{0}, with 0<np<(l—a)g.

In addition, we assume that for some constant M > 1 the operator A
satisfies the resolvent estimate

_ M
(2.2) (2T — A)7Y| < T+ 12 for z € C\ X,
or, equivalently,
(2.3) (2 + A)71| < et for z € ¥r_y,
where || - || also denotes the operator norm induced by the norm in B.

From (1.3), it follows that
(2.4)  4(z) =&(2)g(z),  where £&(z):=2%(z"t*I+ A),

and from (2.3) we obtain, for any 8 < 7 with 27 < 8 < (1—¢)/(1+a),

- Mzl* M
(2.5) IE@N < < for =€ %y,

+ [ ]

since 2! € ¥, _,, for z € Xg; note that (1 —¢)/(1+a) > im by (2.1).

For any w > 0, let T’y be the line Re 2z = w, with Im z increasing, and
recall the Laplace inversion formula

1

- zt
(2.6) u(t) = 57 /FO e”'u(z)dz, for t>0.

Now let I' be any curve in the sector EE which is homotopic with Iy,

and assume that the Laplace transform f(z), defined according to (1.2),
may be continued as an analytic function to the closed subdomain of EE
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to the right of I' and including I'. Deforming the contour of integration
in (2.6), we may then write

(2.7) u(t) = ! /Fez’fw(z) dz, where w(z) = &(2)g(2).

T 2mi

Taking f = 0 in (1.3), so that g(z) = wup in (2.4), we see that the
solution operator for the homogeneous case of problem (1.1) is given
by

1 ~
(2.8) E(t)up = o /. e* E(2)ug dz.

For the inhomogeneous case, the inverse Laplace transform of £ (z)f(z)
is the convolution of £(¢) and f(t), so one may show the Duhamel
formula

(2.9) u(t) = E(t)uo + /0 E(t—s)f(s)ds.

By the argument in [14, Theorems 2.1 and 2.2] one may establish the
stability and smoothing property

(2.10) |A7E®) (#)uo|| < CME=TAFI=E |40,

fort > 0,0 <0 <1 andk >0. In particular, by the case 0 = k = 0,
it follows from (2.9) that the continuous problem (1.1) is stable in the
sense that

(2.11) |u<t)|s0M(||uo|+ / ||f<s)|ds), for 0.

For our numerical methods we thus select an integration contour I'

~

in (2.7), such that f(z), and thus also g(z), is analytic on and to the
right of T, and then apply a quadrature formula to (2.7). To make this
more precise, we assume that fis analytic in XF := w+Xg C ZE’ with
w >0, %7‘(‘ < B < B < =, and we choose I to be a curve with parametric
representation of the form

(2.12) z(€) = w+ A(1 —sin(d —i€)), for £ € R,
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where the constants A and § satisfy
(2.13) A>0 and 0<4§<fB—1inm

Writing z = x + iy we find that T is the left branch of the hyperbola

z—w-A\\? y 2
2.14 _— | - =1
(2.14) ( Asind > (Acos&) ’
which cuts the real axis at the point z = w + A(1 — sind) and has
asymptotes y = *(z —w — A)cotd. Thus, the conditions (2.13)
ensure that I' lies in the sector X% and crosses into the left half-

plane. The same family of contours was used in [14], with a different
parametrization.

Using (2.12) in (2.7) we may represent u(t) as an integral in &,

ut) = [ ole.nde

(2.15) =
where v(€,t) = =— e*©'w(2(€))2'(€).
27
The factor e*(©* has modulus eRe2(€)t = gwtt(l—sindcosh§) - o} owing

that as a function of £, the integrand exhibits a very rapid, double-
exponential, decay as |£| — oo, for any fixed ¢t > 0.

2.1. First method. For our first approximation method, we choose a
quadrature step k > 0 and apply an equal weight quadrature rule

N

(2.16) Qn(v) ==k Y (&)~ J(v) ::/ v(€)dE, with & := jk.
j=—N oo
Setting z; = z(;), 2; = 2'({;), we then obtain an approximate

solution to our problem of the form
X
(2.17) Un(t) := @n(v( = 2— Z e*tw(

To compute Uy (t) we must then solve the 2V + 1 “elliptic” equations

(2.18) ()P T + A)w(z)) = 28'g(z), for [j| < N.
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These equations are independent and hence may be solved in parallel.
We remark that the w(z;) determine the approximate solutions (2.17)
for all t > 0. In practice, however, the accuracy of the approximation
Un(t) = u(t) deteriorates as t — 0 or t — oo. Notice that the numerical
solution (2.17)depends on the choice of the curve I, even though the
representation (2.7) does not.

To analyze the quadrature error, we extend the parametric represen-
tation (2.12) of ' to a conformal mapping

(2.19) z2=®(() =w+ A1 —sin(s — iQ)),

which transforms the strip ¥, = { ¢ : [Im (| < r } with » > 0 onto the
set S, ={®(¢): (€Y, } DT. In fact, ® maps the line Im ¢ = 7 to the
left branch of the hyperbola

em (i) - Gestry) 0

FIGURE 1. The region S; (shaded) and the contour I for the case w = 0.
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so S, is bounded on the left by the left branch of the hyperbola
corresponding to Im{ = r and on the right by the hyperbola branch
corresponding to Im { = —r. To ensure that S, C Y5 and that Rez —
—oo if |z| = oo with z € S, Werequire0<5—r<(5+r<ﬁ—%7r,
see Figure 1, or equivalently that

(2.21) 0<r<min(6,8— im —94).

We introduce the notation

(2.22) llgllx,z :==sup ||g(2)||x, for X C Band Z CC,
zZ€Z

which we abbreviate by ||g||z if X = B. In Section 3 below, following
recent work of Lépez-Fernandez, Palencia and Schadle [9], we shall
see that with a specific quadrature step in (2.16) satisfying k o 1/N
and with A appropriately chosen, depending on N, then we have, with
>0,

(2:23) [[Un(8) = u(t)| < CMe™™ (|luoll + || fllng), 0<to<t<T.

An error bound of order O(e °N/1°8 ) for ¢ bounded away from 0,
was derived in Lépez-Fernandez and Palencia [8] for 0 < a < 1, and
the same argument was also applied in McLean, Sloan and Thomée
[12] for a related integro-differential equation of parabolic type. In
this case, the contour of integration I' was fixed, independent of IV,
but both parameters w and X in (2.12) were used to accommodate
the singularities of f(z). In [14], we treated (1.1) in the case 0 <
a < 1 using two other quadrature rules with points on the hyperbola
(2.14), and obtained error bounds of order O(e ¢V¥) and O(N ),

respectively, with ¢ > 0, for ¢ bounded away from zero.

2.2. Second method.  For the case a« = 0 of a parabolic partial
differential equation, Gavrilyuk and Makarov [4] modified the integrand
in the representation formula (2.7) in a way that gave O(e=°VN)
convergence, uniformly down to ¢ = 0, provided the data possess some

“spatial” regularity. A similar modification works when o # 0: If we
define

F(¢) ::/0 f(s)ds and F(t) =uo+ F(t),
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then L{F(t)} = 27 (uo + f(z)) = z71g(2), so we may write

1 ~ ~
@20) u(t) = F(0) + 5 [ SEEE)z ) =E6) 2.
T Jr
The point of this modification is that if g(z) possesses some spatial
regularity, then ||£°(2)g(z)|| decays more quickly than ||E(z)g(z)| as
|z| = oo for z € T

Setting
(2.25) w’(2) == E°(2)9(2) = w(z) — 27 g(2),

and using the parametric representation (2.12) of I', with \ appropri-
ately chosen in the modified integral in (2.24), we now have

oo

P60 dE, (6 1= e OWO3(6)) 2 (€),

u(t) = F(t) + /

— 00

Applying again the quadrature rule (2.16) we obtain our second ap-
proximate solution to (1.1),

N
k
0 . zt, 0 i ’
(2.26) Up(t) := F(t) + 37 jzg_Ne w (25) ;-

Once again, to compute this approximate solution, we must first obtain
the values of w(z;) for |j| < N by solving the “elliptic” equations (2.18),
and then use (2.25) to find the w°(z;). The approximate solution UY(t)
is then determined by (2.26) for all ¢ > 0.

To define the “spatial” regularity we introduce a scale of Banach
spaces B? with norms || - ||, for o > 0 by

B :={veB:A°veB} and ||v|,=|v|]ss = ||A%V].

For our modified method (2.26), with the quadrature step chosen in
a specific way such that & o 1/v/N, and with 0 < o < 1 and

l9lle,z = |lgl|Bo,z, cf. (2.22), we prove

(2:27) [UR(®) —u@)]| < OM eV (|luollo + | fllozy), 0<t<T.
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In practice, it is important to minimize the spatial regularity require-
ments for the inhomogeneous term so that we avoid imposing unwanted
restrictions on the boundary values of f(t). Fortunately, we may rely
instead on regularity in time, as reflected in the decay of the Laplace

~

transform f(z) as |z| — co. Defining

(2.28) gl z = sup (@ +1zD)"llg(2)llo),  for o, v >0,

we will show that if (1 + a)og +v > (1 + a)o, oo > 0, then the error
estimate (2.27) may be replaced by

(2.29) [US(6) - u(®)] < OM eV (Juglly + | Floguzs), 0<t<T.

For example, if f(t) = e~tv, then f(z) = (1+ 2)7'v so that ||ﬂ|1yguﬁa <

oo requires Av € BB, whereas H'ﬂ|0717zg < oo only requires v € B.

2.3. Third method. A serious restriction in the application of these
two schemes is that they require the Laplace transform f(z) to exist,
to be computable for each z on the contour I', and to be such that the
norms of f(z) indicated above are finite. We remark that using the
stability estimate (2.11), one can see that it suffices that the given f(¢)
may be approximated sufficiently well by a function f(t) which has the

above properties; such approximation is discussed in [23].

We therefore consider a third alternative, based on the application
of Duhamel’s formula (2.9), which does not have the disadvantages
mentioned above. Substituting the integral representation (2.8) into
(2.9), we find that

1 = b1 ~
— | €*'&(2)updz —l—/ — / et=IE(2) f(s) dzds
T 0 211 r

(2.30) w(t) 57
/F fj'(z)g(z, t)dz,

1

2mi

¢
g(z,t) == e*tug + / e*t=%) f(s) ds.
0

This means that, compared to (2.7), we have restricted the integration

~

in the definition of f(z) to (0,t), which is consistent with the fact that
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u(t) only depends on f over this interval. Note that we have included
the factor e*! in the definition of g(z,t) to avoid floating-point overflow
when Re z is large and negative. Since

1 t
el R CULEE

it follows that
L [ 20
ut) = FO) + 5 [ gt b

which is similar to (2.24). Setting w(z,t) := £(2)g(z,t) and
(2.31) W(z,t) := E%2)g(z,t) = w(z,t) — 27 g(z, t),

and using once again the parametric representation (2.12) for T, we
obtain

u(t) = F(t) + /OO 0(&,t)dE, where (¢, t) = i,ﬁ(z(f),t)z'(f).

— 00
The quadrature rule (2.16) now gives our third approximate solution

N

(2.32) Un(t) = F(t)+ 5= Y @(z,t)2},

where the @(z;,t) may be obtained by first solving the equations
(233) (z;+al + A)w(zjat) = Zgo'tg(zjat)a for |.7| <N,

and then using (2.31). In contrast to the elliptic equations (2.18) arising
in the previous two schemes, the right hand sides in (2.33), and hence
also the solutions, may now depend on ¢. This is the price we pay to
obtain a scheme requiring only f(¢) and not its Laplace transform f(z).
Fortunately, the equations (2.33) are independent both for different j
and for different ¢, so not only can we solve each system of 2N + 1
equations in parallel, but we may also solve the systems for different ¢
in parallel.
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For our third scheme (2.32) we prove that with a k o< 1/v/N, and if
oo+ (14+a)~! > o, then

10 () = u@)l] < CM e (|luoll,

(2.34) wﬂwm+énﬂmmw)

for 0 <t<T,

i.e., the convergence rate is the same as in (2.29) but with no require-

~

ment that f(z) exist and be bounded for z € X%.

The error in approximating f(¢) by a function f(t), for instance by
some interpolation process, which makes g(z,t) defined in (2.30) more
easily computable, may again be handled by the stability estimate
(2.11).

2.4. Fully-discrete schemes. Suppose now that A = —A in (1.1),
where A is the Laplacian in a smooth (or convex) bounded domain
Q C R%, under homogeneous Dirichlet boundary conditions. We then
first discretize (1.1) in the spatial variables by piecewise linear finite
elements, which results in an initial boundary value problem of the
form (1.1) in the finite element space, where now A = A, = —A,
with A, the discrete Laplacian. To define a fully discrete solution we
may then apply one of our above time discretization methods to this
spatially semidiscrete problem.

Thus, our initial value problem (1.1) now takes the form
(2.35) Ou — 0y “Au = f(t), fort >0, with u(0)= uy,

and we consider this equation in the Hilbert space Ly = L2(£2) equipped
with the usual norm || - ||z, Since A = —A is positive definite,
we have spec(A) C (0,00), and it is clear that A generates an
analytic semigroup e®!, and that the resolvent estimate (2.2) holds
for arbitrarily small ¢. In particular, it follows that the stability and
smoothness estimates (2.10) hold in this case.

To discretize in space only, we use a family of triangulations T, = {K}
of Q indexed by h, the maximum diameter of the elements K. Let V},
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denote the corresponding space of continuous piecewise linear functions
vanishing on 0f2, and recall the approximation property

inf {[lv =X, +hlIV(© =Xz, } < Ch*|[v]|n=.
XEVh

The spatially semidiscrete problem is then to find up(t) € Vj, for t > 0,
such that

(2.36) (O¢un, X) + (0 “Vun, VX) = (f,X), V x eV, t>0,
up(0) = wop.
Here, as usual, (-,-) denotes the inner product in L2(Q2) and ugp € V3

is a suitable approximation to ug. Introducing the discrete Laplacian
Ay : Vi, =V, defined by

*(AM/J,X) = (Vi/% VX), for 1/1, X € Vha
the problem (2.36) is equivalent to
(237) (9tuh — 8;”‘Ahuh = th(t), for ¢ Z 0, with uh(O) = UQh,

where Pp, : L2(Q2) — Vj is the orthogonal projector with respect to
(+,+). Since —Ay, is positive definite, the resolvent estimate (2.2) again
holds for arbitrarily small ¢, with M independent of h. Thus, also the
analogue of (2.10) applies to the solution operator & (t) of the spatially
semidiscrete homogeneous equation.

In the analysis in Section 4 of the spatial discretization we show the
nonsmooth and smooth data error estimates, with ug, = Ppug,

lun(t) = w(®)llz < C* 7R3 (lluollz, + 1fllzozg), for0<t<T,

and, for uy and f sufficiently smooth, but with f(¢) not necessarily
satisfying any boundary conditions for ¢ > 0,

llun(t) — u(t)||, < C(uo,f)hZ, for0<t<T.

Subsequently, in Section 5, we apply the error estimates (2.23), (2.29)
and (2.34) for our time discretization methods to the spatially semidis-
crete problem, in a way that yields error estimates for the corresponding
fully discrete solutions.
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We note that the problems (2.35) and (2.36) could also have been
considered in the Banach space Cy(2) of continuous functions, vanishing
on 0f), equipped with the maximum-norm. In fact, the resolvent
estimate (2.2) then holds for A = —A by Stewart [24], and for
A = —Ay, uniformly in A, in the case of quasiuniform triangulations,
by Bakaev, Thomée and Wahlbin [1]. We shall not give the details
here.

3. Time discretization. @ We begin by showing the nonsmooth
data error estimate (2.23), which is based on an error bound for the
quadrature rule (2.16). The analysis will depend on assuming that
the integrand may be analytically continued into a strip Y,. around the
real axis in the complex (-plane, and satisfies a certain boundedness
property there.

The next lemma is essentially an improvement, used in [9], of [8,
Theorem 2], cf. also [12], and shows that under appropriate conditions
the quadrature error is of order O(e #~) as N — oo, with x> 0, for ¢
bounded away from zero. For completeness we include a sketch of the
proof. Here and below we write 7 = 277 and () = max(1,log(1/t)).

Lemma 3.1. Assume v is analytic in the strip Y, = {¢: |Im | < r},
and that there exist positive V,, and ,, increasing in n, such that

(3.1) [v(Q)Il < Vye™ e for (=€ +in €Y.

Then, with Qn(v) and J(v) as in (2.16), and if k = b/N, where b
satisfies bcoshb = 7N /vy, we have, for k < 7/log2,

(32) 1O (v) = J@)I| < CVib(y—r) e ™/,

Proof. Let Qu(v) =k Z;iim v(jk). Using contour integration as
in [14, Theorem 3.1] it can be shown that

e—F/k o]
(33) 1) =IO < 757 [ (Iule-+in)]+ ofe - in)]) de,

— 00
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so we have, since e /¥ < 1/2 and 7#/k = 7N/b,

4 —7/k 0o -
Qoo (v) = T (v)] < 1”7/,“/ eV OREdE < CVl(y-p)e ™Y,
e T

where we have used, see [8], that the integral is bounded by C£(v,).
Estimating the remainder of the infinite sum, we have

||Qoo(v) _ QN('U)” < Q%k Z e~ cosh(jk) < 2‘/; e~ 0 cosh & d§,
j=N+1 Nk

and, because 7gcosh(Nk) = qpcoshb = 7N/b, we find, using the
substitution s = cosh & — cosh(Nk), that

e oS

/ e~ 0 cosh & d€ — 0 cosh(Nk) /
Nk /(s + cosh(Nk))2 —

e oS

< e—FN/b

- 0o VsZ+2s

Since ¢(t) is decreasing, this completes the proof of (3.2).

ds < Ce™/b4(~p).

To apply Lemma 3.1 to our numerical method, recall the conformal
mapping P : ¢ — z defined in (2.19), whose restriction to the real axis
coincides with the parametric representation (2.12) of the integration
contour I' C S, = ®(Y;.). In the proof of our error estimate for Uy ()
we shall need the following technical lemma for the behavior of ®(().

Lemma 3.2. If( = ¢ +in, then we have, for ( € Y,,

2'(¢)

“P(C)—w 2

~ cos(0+m)’

|2(¢) — w| > %)\em cos?(6 +n) and

Proof. We have, setting ¢y = § 4+ n for brevity,

[@(¢) — w|* = A1 —sin(y — i€)[*
= )\2((1 — sintp cosh €)% 4 cos? ¢ sinh? £) = A%(cosh & — sin ).
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Hence

e ¥@(¢) — w| = Ae ™I/ (cosh & — sinep) = IA(e7 2l — 2e 7l sinp + 1)
= IX((e7¥ = sin ) + cos? ¥) > L cos? ¥

Similarly

(34)  |®/(QIF = N[ cos(¥ — i€)[* = A\ (cosh? € — sin? ),

and hence

B cosh? € —sin? ¢ ~ cosh{ +siny
~ (cosh¢ —sin¢)2  cosh& —siny
< 1+siney < 4 ‘
~— 1—sinvy ~ cos29

"0 -2

O

We are now ready for the proof of (2.23). We recall from (2.22) the
notation ||gl[z = sup.cz [l9(2)]|

Theorem 3.1. Let u be the solution of (1.1), with f analytic
in Xg. Let 0 <t < T, 0 <8 <1, and let b > 0 be defined by
coshb = 1/(87sind), where 7 = to/T. Let r satisfy (2.21) so that
I' ¢ S, C X%, and let the scaling factor be X = OFN/(bT). Then
we have, for the approzimate solution Uy (t) defined by (2.17), with
k=0b/N <7/log2,

U (8) = u(®)]| < OM e 6(p,N)e™N (|[uol| + [|fllss), forto <t < T,

where pp = 7(1 —6)/b, pr = OFTsin(d —r)/b, and C = Cs 3.
Proof. To apply Lemma 3.1 to the representation (2.15), we set

(3.5) o(C) = %e‘}@tw(@(())@'((), for €Y,

Since w(z) = g(z)g(z), cf. (2.7), the resolvent estimate (2.5) and the
inequality |z| > cg|z — w| for z € Y, with cg = sin 8 > 0, give

lw()) < Mz~ g(=)]] < CM]z — w|Hlg(2)], for = € 35,
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and so, since Re ®(¢) = w + A(1 — sin(é + 1) cosh §), we have

. @(0)
v C,t < CMe*t e)\t(l sin(6+n) cosh &) | /s, for C €v,.
Thus, using Lemma 3.2, we see that v((,t) satisfies (3.1) with
CM
(3.6) V, = —— et
cos(d + n)
Yy = Atosin(d +n), for t > to.

lgll=y

With b and A chosen as stated we have bcoshb = b/(f7sind) =
bT\/(OAtysind) = FN/vg, and hence Lemma 3.1 yields

lUN(t) —u(t)]] < CME('y,T)e“’te)‘Te*FN/b||g||z§, for tp <t <T.

Since \T' — #N/b = (0 — 1)FN/b = —uN and y_, = Agsin(d —r) =
67T N sin(d — r)/b = p,N, this shows the result stated. o

We remark that ¢(p,N) = 1 for N > 1/(p,e) but that this lower
bound is large for 6,7 and § — r small, and also note that the constant
Cs,r,p is independent of 6, ¢y and T'.

Although Theorem 3.1 implies stability in the sense that
U~ ()] < C(lluoll + I fllsg),  for tg <t < T,

numerical evaluation of the sum (2.17) is sensitive to perturbations in
w(z;), cf. [9]. To illustrate this, assume that there are perturbations
of w(z;) (in applications containing the errors in solving the elliptic
equations (2.18)), which are bounded by & in norm for all j. Then,
using (3.4), the effect on Un(t) may be bounded by

k
eo- Z e2ED P! ()| < Cene@ Vg Z cosh & e 10 c0sh&s,
l7I<N lFI<N

One may show (cf. [9], p. 1340) that the Riemann sum is bounded by
C/v, and since A/yp < C and Xt < AT = (67/b)N, for ty) < t < T,
the above error is bounded by Ceel®/®)N  which grows exponentially
with V. The instability is weaker with a smaller 6, at the expense
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of the rate of convergence in Theorem 3.1, and may be removed by
choosing § = 1/N: In this case b = O(log N) and the error of order
O(e=¢N/18 N with ¢ > 0, cf. also [8, 12]. For a more sophisticated
approach to choosing 8 = O(1/N), see the discussion in [9, Section 4].

We shall now consider error estimates which hold uniformly down to
t = 0, under some regularity assumptions on the data, for the modified
approximation rules (2.26) and (2.32) based on the representations
(2.24) and (2.30), respectively. We remark that it is not difficult to
show that the result of Theorem 3.1 is valid also when the quadrature
rule (2.16) is applied to the modified representation (2.24), i.e., the
choice k = b/N again leads to convergence of order O(e V) for ¢
bounded away from zero. We begin with a technical lemma.

Lemma 3.3. If A satisfies the resolvent estimate (2.2) and if
0 < o < 1, then, with £°(z) as defined in (2.24), we have

CoM o
||§O(Z)’UH S WH’UHU, fO’I" S EE and v € B°.

Proof. Setting w = 2'*®, R(w) = (wl + A) "1, we have
E%z) = (wl + A)~ (2T — 2z Y (wl + A)) = =2 TA "R (w) A”,
and, using the interpolation inequality, cf. Pazy [18, p. 73],
(3.7) [vlli-o < Collvll§ [[vlli™ = Collvll” || Av]|*~7,
we conclude
&0 - o
I1E°@)el| = 1217 [R(w) A%, _,
— o |9 o ||1—0o
< Colz|7H|R(w) A0 || AR (w) A%w|| 7.
If z € X7, then (2.5) and the fact that AR(w) =1 — wR(w) give

M| A%v|]

||'R(w)A”vH < T+ o

and ||AR(w)A%v|| < CM|A%v].
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Together these estimates show the desired bound. O

The following lemma provides the modification of Lemma 3.1 appro-
priate to an assumed “single exponential” decay rate for the integrand.

Lemma 3.4. Assume that v is bounded and analytic in Y,, and
that

[o(Ql < Ve 8, for ¢ =€+ineY,, withy> 0.

Then, with Qn(v) and J(v) as in (2.16), we have, for k = /7/(yN) <
7/log2,

(3.8) 1Qn () = J@)|| < Cp VA~ e VPN,

Proof. By (3.3) we obtain, since e=™/* < 1/2,

4Ve /R oo .
o) =JW)| < 67_ 6_75d§§87_1 Ve_r/k,
Qu(v) = IO < T
—e T 0

whereas for the tail of the infinite sum,

Qo) - @ <2Vk 3 e <oy [T ertae
Nk

j=N+1
< 2V~ lemINE,

The error bound (3.8) now follows by the triangle inequality, after
choosing 7/k = YNk, i.e., as stated. ]

We are now ready to show the convergence of order O(e‘c‘/ﬁ),
uniformly down to ¢ = 0, for our second approximation method
(2.26). In order to reduce the demands for “spatial” regularity on

the inhomogeneous term f(t), we use the norms H]?Ha,, z introduced in
(2.28).
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Theorem 3.2.  Let u be the solution of (1.1), with f analytic in
Y5 Let 0<o <1, sety=(1+a)o, and let ' C S, C X% be defined
by A =v/(kT), where K =1 —sin(d —r). Let Un(t) be the approzimate
solution (2.26) with k = \/7/(yN) < 7/log2. Then, if o9, v > 0 and
oo +v(l+a)™! > o, we have, with C = Cs1.5.0,00, for 0 <t < T,

IUR () = w@®)]| < OMA T eV N ([lug|lo + || fllog,v,xs)-

Proof. Define v°((,t) as v(¢,t) in (3.5), but with w® in place of w,
where w’(2) is defined by (2.25). By Lemma 3.3 we have, for z € %%,

=~ CoM
l® ()] < 1E°(2)uol| + [1E°(2) f (2)]] < 21+ [2]) 0+ [[uollo

CoyM o
2| (1+ |Z‘0)(1+a)go+y (L4 12D)"I1f (=)l

CM < CM
Tl Tz Wt

G, where G = |lu||s + ||f||oo,V7E;’7

where we have used (1 + a)og +v > (1+ a)o = v and |z| > cglz — w|
on ¥%. Hence, by Lemma 3.2, using also 1 —sin(d + ) cosh{ < &,

(3‘9) HUO(C t)” < CM ewte)\t(l—sin(5+n) cosh &) |<I)I(C)| G
T [@(C) —w[**Y

AT
<CM ewt%e—vlélg <CM e“’t'y_VTVe_VlElG, for ¢ €Y,.

Since 777 is bounded it follows by Lemma 3.4 that
(UR () —u(t)|]| < CM ey 1TV e VTN G, for0 <t <T.

Note that our choice of A\ minimizes the ratio e’ /\7. |

We remark that the contour I" used in Theorem 3.2 depends on the
parameter o, i.e., on the regularity we wish to assume on the data.
We also remark that in (3.9) we have simply disregarded the double
exponential decay of the factor e~Asin(0+ncoshe by ysing cosh ¢ > 1.
See our later comments on the numerical results in Figure 2.
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Under the choices of parameters made one may show a weak stability
result for Uy (t) in terms of data. In fact, similarly to (3.9) one finds

[0, )| < CM " ([uo|l + | fllsy), for € €R,
and hence we have from (2.16), since kN < Cv/N, for t > 0,
(3.10) [Ux@®)]| < IF @) + lQn (°(, 1))l

< Jluol| +/0 1£(s)]| ds + CMe“" VN ([luol + || fll5)-

—F(1-6)N/b

In view of the exponential decay factors e *V = e and

e_\/f"’_N that occur in the preceding error bounds, we see that the larger
the value of the angle r in Figure 1, the faster the convergence. Thus,
in practice, one should choose r slightly smaller than § = %(ﬂ — %w)
Consider a problem in which the spectrum of A allows us to take B8
close to m, but f(z) has poles at z = p; € Ygfori=1,2...,L
forcing us to use a value of 8 close to %71' and hence a small value of r,
or a large value of w, resulting in serious exponential growth of the
error bound. To improve the convergence rate, we may instead choose
I passing to the left of the poles provided we incorporate the residues
in the representation (2.7), so that

(3.11) u(t) = wl(t) + ﬁ / tu(z) dz,
1=1 r

~

where, if m; denotes the multiplicity of the pole of f(z) at z = py,

1 d m;—1
_ zt . E o my zt
w(t) = Tese w(z) = Zlggl =) (_dz> ((z — p)™ e w(z)).

For a simple pole, i.e., for m; = 1, we can compute w;(t) = eP'*v; by
solving the elliptic problem

(le'”‘I + Ay = pf‘zr:eslf(z).

In Section 6, we present some numerical results where the integral in
(3.11) is approximated as in Theorem 3.1.
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We now turn to the error bound of our third method, which looks
as for our second method, and is also valid uniformly down to ¢ = 0.

~

Since the method does not use f(z) the error bound is now expressed

directly in terms of up and f(¢). Here we may use w =0 and 8 = 3.

Theorem 3.3. Let u be the solution of (1.1). Let 0 < o < 1, set
7= (1+a)o, and letI' C S, C Xz be defined by A = v/(kT), with
k =1—sin(d —r). Then, if oo + (1 + a)™' > o, we have for the

approzimate solution Uy (t) from (2.32), with k = \/7/(yN) < 7/log2
and C =Cs. 5 5 505

10 (8) = w(®)l] < CMyT7e VI (g,

t
SO+ [ 17 )lrgds). foro<e<,

Proof. Recalling the definition (2.31) we show, for z € 25

e/\nt

3:12) 130l < O e (Juoll +17 Ol [ 176V ):

For this purpose, we note that integration by parts gives

go(z) (eZtuo + /t =9 f(s) ds),
0

w(z,t)

t
=&°(2) (eZtuo + 271 (f(O)eZt —f)+ / e*(t=5) f/(s) ds))
0
Thus, using Lemma 3.3, we find, with 79 = (1 + a)oy,

_ . 1
Jate.)] < oarer( Il

[2[(1 + 2|

1 i
+ st (O le + 170 + [ 17Ol ds) ).

Since 1+ 99 > 7, and bounding ||f(¢)||,, in the obvious way, (3.12)
follows. For .
0(¢5t) = 5— w(®(), )@"(),

211
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we hence have, for { € Y,

. w 1'0) g
1906, 0) < oM s (ol + 15 0) oy + / 1)l ds)-

We may now proceed as in the proof of Theorem 3.2. o

Since the factor e~Atsin(d+n) cosh& of (3 .9) is not present in the above
estimate for ||v((,t)]|, the earlier argument for an O(e ) error bound
for ¢ bounded away from zero does not apply. As mentioned in the
introduction, the exponential factor is now needed to make the integral
term in g(z,t) in (2.30) appropriately convergent.

Similarly to (3.10) one shows easily the weak stability result

|ﬁN(t)||§cM¢N<||uon+ / ||f(s)||ds), for t > 0.

4. Spatial discretization by finite elements. In this section
we prepare the analysis of our fully discrete methods by showing three
error estimates for the spatially semidiscrete method (2.36) which are
designed to be combined with the error bounds in Section 3 for our
three time discretization methods. We begin with a nonsmooth data
error estimate for the semidiscrete problem, which was shown in [14,
Theorem 5.1] for 0 < a < 1. The argument for —1 < a < 0 is the
same, but for completeness and later reference we include the proof.

Theorem 4.1. Let up(t) and u(t) be the solutions of (2.36)
and (2.35), with f analytic in X%, and let ugp, = Prug. Then, with
C=Cgr,

lun(t) = u(®)llz, < CR* ¢ (luollz, + 1 Flzaisy), for 0<t<T.

Proof. With notation as above we have, taking I' = 0%%,

(4.1) up (t) — u(t) = /F e*' 2% Gp(2)g(z) dz,

- 2711
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where, with A = —A and A, = —Ay, cf. (2.4),

Gn(2) == 2% (En(2) Pn — £(2)) = (21790 + Ap) 1P, — (21T + A)~L
We shall prove below that

(4.2) |Gr(2)v||, < Ch?||v||L,, for z€ X5

Assume this has been shown. Then, since cg|z —w| < |2] < |z —w| 4+ w
for z € Xz, with cg = sin 8 > 0, we have, setting z = w + set ¢ T,
that |z|* < C's® when o < 0 and |2|* < C(1 + s*) when a > 0. Hence,
for a < 0, since e*? is bounded for ¢t < T,

(oo}
[[un(t) = u(®)|L, < Ch?/ 5% ds |lgllLo.r < Ch*t T ||gll L, .z,
0

and similarly, for o > 0,
lun(t) = u(t)l|z, < CR2A™! +t717%) llgllar < CR*T 7% lgllLa -

Together these estimates show the result stated.

To show (4.2), we set w = 2!+, R(w) = (wl + A)~! and Ry (w) =
(wI + Ap)~! and write

Gn(2) = Ru(w) Py — R(w) = G4 (2) + G} (2),
where
G}(2):= (P, — )R(w) and Gj(z):= Ru(w)Pn — PyR(w).
We recall the elliptic regularity estimate
(4.3) [ollg> < CllAv|L,, ifv=0on Q.

Since ||Pyv — v||L, < Ch?||v|]|y2 and since the operator AR(w) is
uniformly bounded for z € ZE’ we obtain

(44) [|G(2)vllz, < CR?|R(w)v]| = < Ch*|[ AR (w)v]z, < CR*|[v]|L,.
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To bound G3(z), we use the Ritz projector Ry, : H}(2) — V4, defined
by
(VRAv, VX) = (Vo,VX), VX € Vi
The identity P,A = Ap R}, implies

Gh(2) = Ru(w) (Pr(wl + A) — (wl + Ap)Py)R(w)
= Rh(w)Ah(Rh — Ph)R(’LU) = Rh(’w)AhPh(Rh — I)R(w)

Since Rp(w)ApPp, is uniformly bounded on 25’ and using the well-

known error estimate |R,v — v|| < Ch?||v|| gz together with (4.3), we
obtain as in (4.4)

(4.5) IGR(2)vllz. < CR*[R(w)vl|lg2 < Ch?|[v]]L,,

which completes the proof of (4.2), and thus of the theorem. O

We now show a smooth data estimate holding uniformly down to ¢t =
0, intended for use with our second method. Recalling (2.28) and
setting H? = B°/2 for A = —A, with homogeneous Dirichlet boundary
conditions, we use the notation

19l tre v,z = sup (@+1zD" gl g-)-

Theorem 4.2. Let up(t) and u(t) be the solutions of (2.36) and
(2.35), with f analytic in ¢, and with uor = Prug. Then, if
0<o<1l,v>0and (1+a)oc+v>1+a, we have, with C = Cg,

Jun(®) = (@)1, < CW2e (ol + 1 Fll e s ) Jort > 0.

Proof. We shall again use (4.1), now with I' = w + I'? U T'$°, where
I) ={z: |zl = 1/t, |argz| < B} and I{° = {2 : |argz| = B, |2| >
1/t}. First note that by (4.4) and (4.5), and since A commutes with
R(w), we have, for z € X%,

(4.6) 1Gh(2)vllz, < CR?||R(w)Av| L,
Ch? Ch?

<—4 < — o
=1+ ‘w|H U||L2 =1+ ‘Z|1+D‘ HUHH2
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Hence, in the case that f(t) =0, we have

€]

2| ||uoll g2

lun(t) - ()|, < CH2e /

roury |z — wl

and, since |z| > cglz — w| on X, the result stated follows in this case
from

|ez'5‘ B |ezt| 0o ,—cst
|dz| < C df < C and E |dz| < C ds < C.
r -3 o

? |Z‘ 1/t S

To treat the term in f, we interpolate between (4.6) and (4.2) to obtain

Ch?

16w (=0llz. < e ((

1+ |2))" |v]l g2 ), for z € %%,

cf. (3.7), and hence, since (1+a)o+v>1+ a,

- 2
121G () F@)la <

W ||f||f12cr,,,72;, for z € .

In the same way as above this shows the result stated for ug = 0.

For the purpose of application to the analysis of our third time
discretization method we next show a classical type smooth data

~

estimate that does not use f(z).

Theorem 4.3. Let up(t) and u(t) be the solutions of (2.36) and
(2.35), respectively, with uop, = Phug. Then

(@) = u0lzs < Ok (Jaoll st [ Jea()leds). fort >0

Proof. Writing up, — u = (up, — Rpu) + (Rpu — u) =: ¥ + ¢ we have,
using again ||Rpv — v|| < Ch2||v|| g2,

t
let6)ls < CHu@)ls < OF (ol + [ )l g ).
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Further, one easily finds
09 — 0, “Ap¥ = —Pro, fort >0,

and hence, using Duhamel’s principle (2.9) and the stability of & (t),
¢
19))1z, < C(I1900)]1, + / lov(s) | £.ds)

t
< O (Juall g+ [ (@l ds).
0
The integral on the right in (4.7) is finite under smoothness assump-
tions that do not require f(t) to vanish on 92 for ¢ > 0. In fact, for

0 < a < 1, it follows from the regularity result [11, Theorem 2.4] (an
improved version of [13, Theorem 5.6]) that, if ug = 0, then

t
[ el ds < C<t(”a)”“|f(0)||mcr

2 t ]
£ [0 Gl ) ifo > a/1+a),
j=0"0

The following alternative regularity result admits —1 < o < 0.
Lemma 4.1. Let —1 < o <1 and ug = 0. Then, for o > o/(1+a),

| s ds < 7 (U@ e+ [ 150 d5)

Proof. By Duhamel’s principle (2.9) we have

- %/0 5(T)f(t77')dT:E(t)f(0)+/0 £Vl 7 dr.

and hence, with A = —A,

Ut (t)

Au(t) = AE(t) £(0) + /0 AE(T) fe(t — ) dr.
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Using (2.10) (with o replaced by 1 — ¢ and ug by A%ug) this shows
lue (@)l 2 < Ct~EFOCDY £(0)]|

t
40 [ O )
0

Replacing ¢ by s and integrating we obtain, since (1 + a)(1 — o) < 1,
t
[ o)l ds < 050D £ 0)

t t
+c/ T—(1+a><1—o—>/ 1 £e(s = 7|l g2 ds dr,
0 T

which is bounded as stated. n|

We note that if o < 0 the inequality in Lemma 4.1 holds with ¢ = 0.
Further, if 0 < oo < 1/3, then o/(14+ ) < 1/4, and we may thus choose
o < 1/4, so that boundary conditions on f(t) will not be required.

5. Discretization in both time and space. In this section we
analyze the error in the fully discrete methods obtained by applying
our three time discretization methods to the spatially semidiscrete
problem (2.36), or, equivalently, (2.37). The fully discrete solution
Un r(t) obtained by application of our first method (2.17) to (2.37),
with won, = Prug, is thus defined by

(5.1)  Unn(): R Z e“wy(z5) 25, wn(z) = En(2)Prg(2).

= omi 2

To find Un 1 (t) for a range of values of t it is now required to solve the
2N + 1 discrete elliptic problems, with |j| < N,

(5.2) zjl-+°‘ (wn(25),X) + (Vwa(z)), VX) = 25 (9(25),X), Y X € V.

As before, these problems may be solved in parallel.

Since the triangle inequality gives

1UN () = u(@®)]] < [Unn(8) — un(@)]] + [lun(t) — w(@)]l;
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combining Theorem 3.1 (with A; playing the role of A) and Theo-
rem 4.1, we immediately obtain the following error bound for the fully
discrete method.

Theorem 5.1.  Let u(t) be the solution of (2.35), and, under the
assumptions and with the notation of Theorem 3.1, let Un 5 (t) be the
approzimate solution defined by (5.1). Then we have, for tg <t < T,
with C' = Cs,r 8,075

[UNA(E) = u®)z. < OB+ LpN)e™N) ([uoll o + 1] 2255)-

Applying the modified time discretization method (2.26) to the spa-
tially semidiscrete problem (2.36), again with ugp, = Phup, we obtain
a different fully discrete solution, namely, with w(z;) = wp(z;) —
Z]‘_lphg(zj)v

N
k N
(5.3) U n(t) == PoF(t) + o > etwp(z) 7
J=-N

Using Theorem 3.2 we now have the following estimate for the error in
the discretization in time of the spatially semidiscrete problem (2.36).
This estimate may then be combined with Theorem 4.2 to obtain a

complete O(h%+e~ V™) error estimate for the fully discrete solution.
This result will require a condition on the triangulations 7} underlying
the finite element spaces V3,.

Theorem 5.2. Let uy(t) be the solution of (2.35), and assume that
the Ty, are such that
(5.4) ||A7 Prv|lL, < C||A%0||L,, forve D(A%), with0<o <1

Under the hypotheses of Theorem 3.2, let U&h(t) be defined by (5.3).
Then, if (L+ a)og +v > (1 + a)o = vy, we have, with C = Csr8,0,005

(5.5  [[URn(8) = un(t)]lL, SCy~'T7e e VTN ([|ug|l g2
+ 200 1 34)s  for 0<t<T,
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We make some remarks concerning condition (5.4). We first note that
in the case that the triangulations 7} form a quasiuniform family, then,
as is easily seen, (5.4) holds with o = 1.

We now recall from [3] that, in two space dimensions (d = 2), the
L-projector Py, is stable in H} under weaker conditions on the 7 than
quasiuniformity. More precisely, stability holds if ., /h,, < C§ for any
T, To € Tr, where 7 is “j triangles away from 7¢”, under the assumption
that 1 < § < y~/5 ~ 1.26, where v = v/3 — v/2, thus allowing serious
non-quasiuniformity. This result follows from Theorem 4 of [3], with
k=1,p=2 a=04%and 8 =a? = §*, since then a/28y = §°y < 1.
In this case, (5.4) holds with o = 1/2. In fact,

1432 Puvll3, = (AnPav, Pav) = [ VPw|}, < C|| Vo3, = C|| 42013,

By interpolation between this inequality and |Pyv||L, < ||v[[z, one
finds that (5.4) holds for 0 < o < 1/2. In particular, since H®* = H® =
D(A*/?) for 0 < s < 1/2, this means that (5.5) applies if f(z) € H?°
on X, with 0 < o9 < 1/4, thus not requiring f(z) = 0 on 9, provided
v > (1+a)(3 —oo).

In one space dimension, the stability of Py, in H} holds for any & < 2,
which is a very weak condition on the partitions.

We now turn to the third method, applying (2.32) to (2.35), or taking

N
~ k _
(5.6) Unn(t) == PaF(t) + 5~ .Z Wn(zj,t)2},
j=—N
where wy(2;,t) = wp(zj,t) — zj_lPhg(zj, t), with wy(z;,t) the solutions
of the obvious modifications of the elliptic finite element equations (5.2).
For this method, Theorem 3.3 gives the following bound.

Theorem 5.3.  Let up(t) be the solution of (2.35), and under the

assumptions of Theorem 5.2, let Un (t) be defined by (5.6). Then, if
oo+ (1+a)™' > o, we have, with C = Cj, 5

0,007

103 (®) = wn ]z < Oy T VN (g g2

t
17 Olseo + [ 1) s d5), for0< e <.
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We note that, by the above, no boundary conditions on f or f; are
required if o9 < 1/4. If @ > 0, we may choose 0 = 1, o9 = 0, and,
for any a € (—1,1), we have (1 + a)~! > 1/2, so that we may take
o =1/2, o9 = 0. Combination of Theorem 5.3 with Theorem 4.3 then
yields an O(h% + e*\/F'Y_N) error estimate, uniformly down to t = 0,
without artificial boundary conditions on f.

6. Numerical experiments.

6.1. A scalar problem. To see the effect of discretizing in time only,
we consider a problem in which B = C, namely

(6.1) Ou+ 0y “au = f(t), fort>0, with u(0)=wug,

for a scalar a > 0. The exact solution may be expressed in terms of the
Mittag-Leffler function E,,(z) = Y e, z*/I'(1 + kp); in fact,

(6.2) u(t) = Eryo(—at'™) + /0 Eiia(—as'™ ) f(t — s)ds.

We take o = —1/2, because in this case the Mittag—Leffler func-
tion can be expressed in terms of the complementary error func-
tion, Ey/p(—z) = e*" cerf(z), and is easily evaluated with the help
of the function DERFCX from the specfun library [2]. The substitu-
tion s = ty? then yields the formula

1
u(t) = Ey/z(—av't) +/ Eqja(—avty) f(t — ty®)2ty dy,

0

in which the integrand is a smooth function of y for any smooth f(t),
allowing accurate evaluation via Gauss—Legendre quadrature.
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TABLE 1. Absolute error in Uy (t) at ¢ = 2.0 using two different contours.

w = 0.0, § = 0.1541 w=2.0,§ =0.3812
r =0.1387 r = 0.3431

N | error | £l(pN)e N | error | ¢(pN)e N
10 | 4.50e-02 | 2.88e+00 | 1.95e-01 3.03e-01
20 | 2.01e-03 8.86e-01 5.73e-05 1.24e-02
30 | 2.68e-03 | 2.82e-01 9.18e-05 | 5.29e-04
40 | 4.49e-04 9.08e-02 2.21e-06 2.29e-05
60 | 3.92e-05 | 9.62e-03 1.07e-09 | 4.42e-08
80 | 1.79e-06 1.03e-03 1.01e-13 | 8.68e-11

100 | 6.76e-09 1.12e-04 1.38e-15 1.73e-13

120 | 8.81e-09 1.22e-05 8.59e-16 3.45e-16

We applied each of our three methods to problem (6.1) with a = 1,
taking as the initial data and the inhomogeneous term

up =1 and f(t) =e *cosnt.

Our choice of f(t) makes the problem somewhat challenging because the
Laplace transform f(2) = (z+1)/((z+1)?+n?) has poles at z = — 1=,
forcing 8 < w/2 + arctan((1 + w) /).

Table 1 shows the absolute values of the error at ¢ = 2.0 for the
approximation Uy (t) defined in (2.17), where w is now the scalar
function w(z) = 2%(z'7® + a) " 'g(z), with two choices of the set of
parameters w, § and r. The integration contour was constructed as in
Theorem 3.1 with § = 0.1 and [tg, 7] = [0.5,5.0]. The table also shows
the factor £(pN)e™*¥ that occurs in our theoretical error bound. For
N = 10 the results are better with w = 0, but for larger NV we observe
faster convergence with w = 2, due to the larger allowable value of r.

Table 2 gives results for our other two methods. In this example,
U (t) is generally less accurate than Uy (t) because the integration
contour for the latter is not constrained by the poles of f(z), allowing
a larger value for 7. In other computations, we observed little difference
between the accuracy of U%(t) and Uy (t) when using common values

of w, § and r.
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TABLE 2. Absolute error in U%(t) and ﬁN(t) at t = 2.0 using two different

contours.

w =1.0, 6 =0.2835 w = 0.0, 6 =0.7854
r = 0.2551 r = 0.7069

N | error in UR, 7 1T7ewte=VTIN | error in ﬁN ’yflT"Ve_\/h_N

10 1.14e-02 1.95e+00 1.06e-02 4.02e-02

20 5.08e-04 6.03e-01 1.25e-03 5.70e-03

40 3.65e-04 1.15e-01 6.01e-05 3.61e-04

60 1.42e-04 3.22e-02 5.71e-06 4.34e-05

80 1.22e-05 1.10e-02 7.93e-07 7.28e-06
100 2.90e-06 4.28e-03 1.36e-07 1.51e-06
120 2.19e-06 1.82e-03 2.86e-08 3.64e-07
160 6.97e-07 3.99e-04 1.71e-09 2.91e-08
200 9.32e-08 1.05e-04 1.48e-10 3.15e-09

Figure 2 shows how the errors |Uy(t) — u(t)| and |U%(t) — u(t)|
depend on ¢ for the case N = 100. Note the logarithmic scale on
the vertical axis and the range 0 < ¢t < 1.0 on the horizontal axis.
We chose [tg, T] = [0.5,5.0], with the values of w, § and r as in the
left half of Table 2. As expected, for ¢ > ¢, we observe that Uy(t) is
more accurate than U3 (¢), but as ¢ decreases from ¢y = 0.5 the error
in Uy(t) grows steadily and becomes larger than the error in U%(t)
at around t = 0.2. Observe also how |UY () — u(t)| changes abruptly
near t = 0. Closer investigation revealed that this error drops from
2.75x 1074 at t = 0 to 2.31 x 1076 at ¢t = 4 x 1079, perhaps because
of the factor e~ A sin(d+n) cosh& that occurs in (3.9) and whose influence
is not captured by our error bound.

In Table 3 we present results using a contour that passes to the left of
the poles of f(z), using a modified version of U (¢) that incorporates
the residues at z = —1 =+ im, following the representation (3.11). In
the left column we list the errors using the fixed value § = 0.1, and
observe that these errors grow for N > 60. A perturbation analysis
similar to the one discussed following Theorem 3.1 explains why the
roundoff errors grow exponentially with V; for details, see [9]. In the
right column, taking 6 = 1/N, the errors become much smaller for
larger values of N, reaching the order of the machine precision when
N =100.
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FIGURE 2. Absolute errors in Un (t) and U% () for N = 100.

TABLE 3. Absolute error in a modified version of Uy (t) at ¢ = 2.0 using two
different choices of 6, for a contour passing to the left of the poles of f(z).

w = 0.0, § = 0.7854, r = 0.7069
9=01 9=1/N
N | error | £(pN)e N | error | £(pN)e HN
10 | 1.52e-04 4.28e-03 1.52e-04 4.28e-03
20 | 2.98e-06 3.11e-06 4.68e-06 8.59e-06
30 | 2.30e-07 2.37e-09 2.98e-08 2.67e-08
40 | 2.31e-08 1.85e-12 1.72e-09 1.06e-10
60 | 7.34e-10 1.16e-18 1.45e-12 2.67e-15
80 | 1.36e-09 7.52e-25 3.11e-15 1.01e-19
100 | 8.80e-09 4.92e-31 7.77e-16 5.10e-24
120 | 1.79e-07 3.25e-37 8.33e-16 3.19e-28
140 | 4.92e-06 2.16e-43 7.22e-16 2.36e-32
160 | 8.50e-04 1.45e-49 7.77e-16 2.02e-36
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TABLE 4. Errors in Uy 4(t), UY, , (1), ﬁN’h(t) at t = 2.0 for a 50 x 50 grid.

w 1.0000 1.0000 0.0000
8 0.2835 0.2835 0.7854
r 0.2551 0.2551 0.7069
N | method 1 | method 2 | method 3

20 | 1.2543e-02 | 6.2889e-03 | 4.1395e-03
30 | 6.1977e-03 | 6.1683e-03 | 4.6533e-04
40 | 2.4728e-04 | 2.7850e-03 | 2.6436e-04
60 | 5.0109e-04 | 3.2581e-04 | 4.6450e-04
80 | 4.8512e-04 | 4.6280e-04 | 4.8232e-04
120 | 4.8519e-04 | 4.9304e-04 | 4.8509e-04

6.2. Two-dimensional problems. We take A = —A on the square
Q = (0,4) x (0,4) with homogenous Dirichlet boundary conditions. As
in the scalar example, we choose o = —1/2, § = 0.1, [tg,T] = [0.5, 5.0].
To triangulate the spatial domain €2, we first construct a uniform square
grid and then bisect each square along its north-west to south-east
diagonal. The regular structure of the mesh allows us to apply (5.4)
with ¢ = 1, and, after incorporating a lumped-mass approximation, to
handle the elliptic problems using a fast Poisson solver.

Table 4 shows results for a 50 x 50 grid when the initial data and the
inhomogeneous term are of the form

up(z) = ¢11(x) — p21(x), where ¢ji(z) = sin(jrz1/4) sin(krz2/4),
f(z,t) = e "/* cost du1 (x) + %eft cos mt ¢a1();

notice that the ¢;, are eigenfunctions of the Laplacian. The exact
solution is u(x,t) = uy1(t)P11(z) +u21 (¢) P21 () where uq1(t) and ug (¢)
have similar forms to the solution (6.2) of the scalar problem. Table 4
gives the discrete f2-error in the nodal values of Un x(t), Uy ,,(t) and

U ~,1(t) at t = 2.0, and also shows the contour parameters used. As
in the scalar case, method 3 allows use of a more advantageous value
of 7 because the poles of f(-,z) do not constrain the choice of I". The
table shows that in this instance we achieve comparable accuracy to
the semi-discrete solution up(t) by taking N equal to about 40, 80 and

30 for methods 1, 2 and 3, respectively.
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TABLE 5. Errors in Uy, (), U . (£), ﬁN,h(t) at t = 2.0 for a 100 x 100 grid with
flz,t) = e t/4,

N | method 1 | method 2 | method 3
10 | 2.3995e-03 | 9.8575e-02 | 8.3087e-02
20 | 6.9963e-05 | 2.1067e-02 | 9.5705e-03
30 | 7.2634e-05 | 5.6638e-03 | 1.9222e-03
60 | 7.2623e-05 | 1.4630e-04 | 1.1144e-04
80 | 7.2623e-05 | 8.9950e-05 | 7.7738e-05
100 | 7.2623e-05 | 7.4365e-05 | 7.3500e-05

Finally, Table 5 shows the results obtained for a 100 x 100 grid using
up = ¢11 and f(z,t) = e~t/*, again taking the discrete fo-error at
t = 2.0. For our reference solution, we used method 1 with N = 120,
solving each elliptic problem with an accuracy of O(h*) by performing
one step of Richardson extrapolation. Since f(z,z) = 1/(z + 1) has no
singularities off the real axis, we used for all three methods the values
of w, § and 7 shown in the final column of Table 4. The accuracy of
method 1 is striking: with IV = 20 the error from the time discretization
is already much smaller than the error from the spatial discretization,
compared with N = 80 for methods 2 and 3. Of course, for ¢ sufficiently
close to zero method 1 would be less accurate than methods 2 and 3,
as for the scalar case illustrated in Figure 2.

Note that the inhomogenous term f(z,t) = e /% does not vanish
on 9, so || f(-,t)]| g20o < oo if and only if oy < 1/4. Nevertheless, with
oo < 1/4, our error bounds in Theorems 5.2 and 5.3 apply with o = 1,
taking v > (1 —0¢)(1 + o) = %(1 — 09) in Theorem 5.2.
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