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ABSTRACT. In the following paper, we provide a stochas-
tic analogue to work of Shea and Wainger by showing that
when the measure and state-independent diffusion coeffi-
cient of a linear It6-Volterra equation are in appropriate LP-
weighted spaces, the solution lies in a weighted LP-space in
both an almost sure and moment sense.

1. Introduction. This paper examines the asymptotic stability and
decay rates, in various modes of stochastic convergence, of solutions of
stochastically perturbed Volterra equations to the equilibrium solution
of a related unperturbed deterministic Volterra equation. For determin-
istic equations the phenomenon of asymptotic stability has been shown
to be distinct from that of exponential stability. These phenomena
were shown to coincide in linear Volterra integrodifferential equations
by Murakami [30, 31] if and only if the kernel lies in an exponentially
weighted L!-space. On the other hand, non-exponential rates of decay
in spaces of integrable functions with general weights have been con-
sidered by Gelfand et al. [12], Shea and Wainger [32] and Jordan and
Wheeler [19], with extensions of the last paper presented in Jordan,
Staffans and Wheeler [18]. An account of this research is summarized
in Gripenberg et al. [13].

Asymptotic stability results for stochastic functional and evolution
equations without concern for the rate of decay appear in, e.g., Hauss-
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man [15], Ichikawa [16], and Zabczyk [33]. However, more recently
a substantial proportion of researchers’ efforts have centered on deter-
mining exponential stability of solutions of stochastic functional differ-
ential equations. To this end, it is principally equations with bounded
delay and mild nonlinearity which have been studied cf., e.g., Mao [23,
25], Mohammed and Scheutzow [29] and Kolmanovskii and Myshkis
[22]. In these works, the exponential decay exhibited by deterministic
equations with bounded delay is recovered. In the cases when stochas-
tic Volterra equations have been studied, exponentially fading memory
has often been postulated (cf., e.g., Mao [24] and Appleby and Free-
man [3]) in which case the rate of decay is exponential, just as in the
deterministic case.

Fewer results for non-exponential decay in autonomous linear stochas-
tic Volterra equations exist. Kadiev and Ponosov have determined
conditions for the admissibility of solutions in certain weighted func-
tion spaces in [20, 21], so that general rates of decay can be com-
puted. Other results give the so-called subexponential almost sure rate
of convergence to an equilibrium e.g., Appleby [1, 2]. While this ap-
proach gives exact almost sure rates of convergence, and supersedes
the LP-weighted space results in determining exact L°°-convergence
rates, it suffers from some limitations. Firstly, in this approach condi-
tions on the asymptotically stable deterministic resolvent are in gen-
eral more restrictive than those needed to establish stochastic stability
outright; for instance, only the Ll-stability of the underlying deter-
ministic Volterra equation suffices for asymptotic stability of equations
with state-independent diffusion coefficients, as shown in Appleby and
Riedle [9]. Moreover, the class of weight functions employed in the
subexponential approach appears somewhat more restrictive than the
class of submultiplicative weight functions employed in Gelfand et al.,
Shea and Wainger, and Jordan and Wheeler. It is therefore highly de-
sirable to obtain complementary and general results which estimate the
rate of decay in weighted LP-spaces, and which require only standard
deterministic stability hypotheses. Furthermore, results on measures
unify existing results on Volterra equations with point delays and con-
tinuous kernels. A first paper in this direction is Mao and Riedle [26].

The contribution of this work is to extend the results of Gelfand et
al., Shea and Wainger, and Jordan and Wheeler to perturbed Volterra
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equations of the form

X (1) = </[0 IR s)> dt +5(8) dW (1),

where p is a finite measure lying in a weighted measure space, and X is
a deterministic function lying in a weighted L?-space. The underlying
deterministic equation is presumed to be stable. Results are established
which estimate the almost sure LP convergence rates of X and which
connect these convergence rates to weight functions describing the
spaces in which ¥ and p lie. The convergence of the pth mean of
the solution X in weighted spaces is also considered.

2. Supporting results. Let d,d’ be some positive integers, and let
R%%4" denote the space of all d x d’ matrices with real entries. The
identity matrix on R%*? is denoted by Idg. We equip R%*¢" with a
norm |-| and write R? if ¢ = 1 and R if d = d = 1. We denote
by R, the half-line [0,00). The complex plane is denoted by C and
Co:={z€C:Rez >0}.

Let M (R, R**?) be the space of finite Borel measures on R, with

values in R%*?| The total variation of a measure v in M (R, R4*%)
on a Borel set B C R is defined by

VI(B) = sup Y (B,

where (E;)Y, is a partition of B and the supremum is taken over all
partitions. The total variation defines a positive scalar measure |v| in
M (R, R). If one specifies temporarily the norm |-| as the /*-norm on
the space of real-valued sequences and identifies Rdxd’ by R4 one can
easily establish for the measure v = (v; ;)¢ ;_, the inequality

d d
2.1) V(B)<CY Y |wiy

i=1 j=1

(B)

for every Borel set B C R

with ¢ = 1. Then, by the equivalence of every norm on finite-
dimensional spaces, the inequality (2.1) holds true for the arbitrary
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norms || and some constant C' > 0. Moreover, as in the scalar case we
have the fundamental estimate

I ) 19

for every function f : Ry — R¥*9" which is |v|-integrable. The
convolution of a function f and a measure v is defined by

< A F(5)] [v](du)

v f:Ry - R> (v f)(t) = / v(ds) f(t—s).

[0,7]
The convolution of two functions is defined analogously.

We first turn our attention to the deterministic Volterra equation in
R%:

(2.2) Z'(t) = /[0 ) u(ds)z(t —s) fort>0, z(0)= zo.

For any zo € R? there is a unique R%valued function = which satisfies
(2.2) on [0,00). The function z = 0 is a solution of (2.2) and is called
the zero solution of (2.2). The definition of various standard notions
of stability of the zero solution required for our analysis are detailed in
Miller [27], to which the reader may refer.

The so-called fundamental solution or resolvent of (2.2) is the matrix-
valued function r : Ry — R%*?, which is the unique solution of (2.2)
with the initial condition r(0) = Id4, where Idg denotes the identity
matrix in R%*¢. Even such simple Volterra equations of the form (2.2)
enjoy the property that not every solution decays exponentially if the
zero solution is asymptotically stable. See Murakami [30, 31] and
Appleby and Reynolds [7]. On the contrary, linear differential equations
with bounded delay are asymptotically stable if and only if every
solution decays exponentially, see Hale and Lunel [14]. Consequently,
it is quite an open-ended task to determine the rate of convergence
of the solutions of (2.2). Such results are covered by the work Shea
and Wainger [32], Gelfand et al. [12], and Jordan and Wheeler [19],
and are based on weighted function spaces, which we introduce in the
sequel. Other results on pointwise and subexponential rates of decay of
solutions of Volterra equations may be found in Appleby and Reynolds
[7] and Appleby, Reynolds, and Gydri [5, 6].
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A function ¢ : Ry — R with ¢(0) = 1 is called a weight function if
1 is positive, Borel measurable, locally bounded and locally bounded
away from zero. A weight function is called submultiplicative, if

Y(s+1t) <Y(s)y(t) for all s,t > 0.
For submultiplicative weight functions % : Ry — R, the limit

51/, = — lim M

t—o00 t

exists and is finite, see Gripenberg et al. [13, Lemma 4.4.1]. We
present some examples of submultiplicative weight functions which
occur frequently:

Y(t) = e for a € R with By = —q,
P(t) =1 +1t)" fory>0 with 5y =0
P(t) = (1+In(l+1¢))” fory >0 with 8y =0.

Let ¢ be a weight function. We define the weighted space of integrable
functions by

LP(Ry, RY Yy = {f : R — R&9 /Ooo V()| f()|dt < oo}.

For the ordinary space of integrable functions with ¢y = 1 we use
the notation LP(R,,R?). Similarly, we define the weighted space of
measures

M(R,, R*?; ) := {,, e MRy, R¥¥) /

Ry

e(t)|v|(dt) < oo}.

Moreover, we use the Landau symbols for functions f : Ry — Rdxd
and g: Ry = R:

f=olg™) <= lim lg@)lIf(1)] =0,

f=0@g") = lim sup |g(¢)[1£ ()] < co.

We denote by det A the determinant of a matrix A € C%*4.
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The following result was first established in Shea and Wainger [32].

Theorem 2.1. Let p; be a submultiplicative weight function and p
a measure in M(Ry,R%9%; 0,). Then the resolvent r of (2.2) satisfies

r e L' (R, R4 o)

if and only if

23 det [zIdd— /R e u(du)} 20

for every z € C with Rez > f3,,.

Moreover, in this case the resolvent r obeys r = o(p]").

Since the function ¢ in Theorem 2.1 is not assumed to tend to infinity,
one obtains a rate of convergence for the solutions of (2.2) even in the
non-stable case. This remark will remain true in the sequel when we
consider stochastic differential equations.

In general, the verification of (2.3) cannot be accomplished explicitly.
But there are several analytical or numerical techniques to deal with
this equation, see for instance Bellman and Cooke [10] or Hale and
Lunel [14]. Moreover, in some specific examples equivalent conditions
to (2.3) are known.

Example 2.2. Let p be of the form pu(dt) = —ady(dt)+ K (t) dt where
dp denotes the Dirac measure at 0 and K is a continuous and positive
function in L' (R4, R). Then the resolvent of (2.2) is in L'(Ry,R) if
and only if

(2.4) a> /00 K(s)ds.

Consequently, if K € L'(R,,R;p;) for the weight function ¢ (t) =
(1 + t)« for some a > 0, then (2.4) implies r € L'(R;,R;¢;) and
_ (-1
r=o(p; ")
If K € LY(Ry,R;%) for the weight function (t) = exp(Bt) for
some (8 > 0 the function z — z — [;° e *K(u)du is analytic for
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z € C with Rez > —f3. Therefore its zeros are isolated, and so it
has only finitely many zeros in a compact region. Therefore, if (2.4) is
satisfied, there exists a v € (0, 8) such that equation (2.3) has no roots
in {z € C:Rez > —v}. For the weight function ¢5(t) = exp(yt) one
obtains r € L' (R4, R; @2) and r = o(p3 ).

Let (2, F,P) be a probability space equipped with a filtration
(Ft)¢>0, and let (W(t));>0 be a d’-dimensional Brownian motion on this
probability space. We will consider the stochastic integro-differential
equation with stochastic perturbations of the form

AX (1) = </[07t]u(ds)X(t— s)> dt

+X(t)dW(t) fort >0,
X(0) = Xo,

(2.5)

where 1 is a measure in M (R, ,R%*?) and ¥ is a continuous func-
tion from R, to R4*4. The initial condition X; is an R%valued,
Fo-measurable random variable with E|Xg|?> < oo. The existence and
uniqueness of a continuous solution X of (2.5) with X(0) = X, P-
almost surely is covered in Berger and Mizel [11], for instance. Inde-
pendently, the existence and uniqueness of solutions of stochastic func-
tional equations was established in It6 and Nisio [17] and Mohammed
[28].

3. Stochastic Shea-Wainger theorems. In this section, we
present some general results for the existence of solutions of (2.5) in
weighted spaces, both in an almost sure and pth mean sense.

We start with a result which enables us in the rest of the paper to
estimate the rate of decay of convolutions of functions and measures.

Lemma 3.1. Let ¢1 and py be weight functions, and define ¢ by

p(t) == Jin p1(t — 8)pa(s).

Let v € M(R,,R¥>% 1) and f : Ry — R4 be a measurable
function.
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(a) If f = O(p3t), then v f = O(p1).
(b) If f = o(py "), then v+ f = o(p™ ).
(c) If f € LY(R4,R; 92), thenvx f € LY (R, R; ).

Proof. By assumption there is a constant ¢ > 0 such that pa(t)|f(t)] <
c for every t > 0. Then, we obtain

e(®)| (v f)(B)] < / p(t)|f(t = )| [v|(ds)

)

e S lds
< /[] 0 ()
—o(),

which proves the first assertion. The other assertions can be similarly
established. o

We define for all ¢ > 0 the random variable
t
(3.1) Y(t) = / S(s) AW (s).
0

If ¥ is in L2(Ry, R¥?), then the process (Y (t));>0 is a uniformly
square-integrable martingale and converges therefore P-almost surely
and in L?(Q2, R?) to a random variable Y*. We define for all ¢ > 0 the
random variable

/too S(s)diV (s) = Y™ — Y (£).

Note that Y* —Y () is not adapted but nevertheless a well-defined ran-
dom variable on (2, F, P). We call a function ¢ : Ry — R eventually
non-decreasing, if there is a ¢y such that ¢ is non-decreasing on [tg, 00).
In what follows we define the function loglog by (loglog)(z) = 1 for
0 < z < e° and (loglog)(z) = loglog z for x > e°.

Lemma 3.2. Let ¢ be an eventually non-decreasing weight function

which tends to infinity. If ¥ is in L?(Ry, R4 0?), then there exists
a non-random constant ¢ > 0, such that

lim sup #(t) /°° X(s)dW(s)

t—oo 4/loglogo(t)

<c P-a.s.
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Proof. If |-||; is the ! norm in R? and X(t) = (o(t)):; and
W = (Wy,... ,Wga)T, then we have

Therefore, we can assume d = d = 1. An argument in Appleby,
Gleeson and Rodkina [2] guarantees

d d

<.

1 i=1 j=1

| s@awe)

A

=1 P-a.s.

_— 7 S W (s)
oo (2 [, 5(s)2dsloglog( [~ E(s)2ds)~1)1/2

By the monotonicity of ¢ we obtain for sufficiently large ¢ that

() /too Y(s)?ds < /too ©%(s)%(s)? ds
</ T ()8 (s) ds

=:cp < 00.

Since the function z — xloglogz ! is increasing for sufficiently small

z and ¢ %(t) tends to 0 for ¢t — co we obtain for ¢ sufficiently large

°° * - ?(t)
/ ¥(s)* dsloglog </ ¥(s)? ds> < cop?(t) loglog T—2
¢ ¢

co
< cp 2(t)loglog ¥*(t)

for a constant ¢ > 0. m|

Theorem 3.3. Let p; be a submultiplicative weight function and o
an eventually non-decreasing weight function which tends to infinity. If
wis in M(Ry, R4 01) and ¥ is in L2(Ry, R¥*%; 02), then

det [zIdd - /R ) ez ,u(du)} #0

for every z € C with Rez > B,
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implies for every solution X of (2.5):

limsup p(¢)| X (¢)] < 0o P-as.,
t—o00

where p(t) := @1(t) ming<s<¢(p2(5))/p1(s)1/loglog va(s).

Proof. Let Y (t) denote the random variables defined in (3.1). The
stochastic random variables Z(t) := X(¢t) = Y(t) + Y*, ¢t > 0, are
differentiable and obey

7'(t) = /[ () X (=9
- /[Ot]n(dS)Z(t—S)

ds) (Y(t—3s)—=Y™).

+/M#( ) (Y(t - 5)— Y)

Hence, the variation of constants formula implies for ¢ > 0
t
(32) 2(8) = r(t)Z(0) + / r(t— s)F(s)ds, P-as.
0
where r is the fundamental solution and F = p * (Y(-) — Y*). Let
Y(t) := (loglog @a(t)) /24 (t). Then, by Lemma 3.2 we have

(3.3) limsup ¢ (¢)|Y (¢t) = Y™*| < Cy P-as.

t—o0

Since p € M (R4, R p1), part (a) of Lemma 3.1 results in

(3.4) F = (9((,03_1) P-a.s., where @3(t) := Orélgrétw(t — 8)p1(s).

Theorem 2.1 guarantees 7 € L'(R.,R%*%; ;) for the fundamental
solution r of (2.2) which, in combination with (3.4) and by applying
part (a) of Lemma 3.1, yields:
rxF =0(p;") P-as.,
where @4(t) := oglsilgjt @3(t — s)p1(s)-
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Since also r = o(p;") by Theorem 2.1 and obviously ¢, < ¢; the
variation of constants formula (3.2) implies Z = O(p, ') P-almost
surely. Since ¢4 < 1), and by using (3.3), we arrive at

0a(t)| X (t)] < @a(t)|Z(t)|ra + @a(t)|Y (t) = Y™ |ga = O(1) P-a.s.

By means of the submultiplicative property of ¢1, we obtain

a(t) = goin, (i (005~ W () er(t )

0<s<t \0<u<s

> min, (02525 <¢(“) :28) o ((3)
— () min pa(s)

0<s<t oy (s)y/loglog @2 (s)’

which completes the proof. ]

The effect of the stochastic perturbation on the resulting convergence
rate in Theorem 3.3 is weakened by the logarithmic term. This arises
from the excursion associated with the law of the iterated logarithm.

Remark 3.4. Assume the conditions and notations of Theorem 3.3. If

. p(t)
(3:5) o p1(t)

= 00, where (t) := po(t)(loglog s (s)) /2,

one can even obtain X = O(p7") P-almost surely. This is a conse-
quence of Theorem 3.3, because (3.5) forces the choice ¢ = ¢y in that
result.

Condition (3.5) can be interpreted to mean that the stochastic per-
turbation decays more rapidly than the solution of the unperturbed
equation, because (3.5) states that the weight function for |X|? tends
to infinity more rapidly than the weight of y. Then Remark 3.4 states
that the perturbed system inherits the decay rate of the deterministic
system. If, on the other hand, we assume the relation

)
t—o00 (pl(t)

=0,
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and in addition ¢ + 9 (t)e; " () is decreasing for t > T, it follows that

p(t) = ¢a(t) orélsirslt ;/}1((5‘3)

=1(1)

for t large enough. In this situation, the stochastic perturbation fades
out more slowly than the solution of the deterministic system, so
the solution of the stochastic equation is dominated by the stochastic
perturbation.

Finally, if one assumes

)
t—o0 @1 (t)

for a constant ¢ € (0,00) then ¢ = O(p1) = O(¥), and the effects of
the noise and the underlying deterministic system are in balance; and
this is also reflected in the decay rate.

We proceed to consider pathwise stability properties of the solution.

Theorem 3.5. Let p; be a submultiplicative wetght function, and let
o an eventually non-decreasing weight function which tends to infinity.
If uis in M(Ry,R¥%01) and ¥ is in L2(Ry, R 2), then

det [zId4 — / e “" pu(du)] #0, for every z € C with Rez > B,
Ry

implies for every solution X of (2.5):

X € LY(R,,R% ) P-a.s.,
where (t) = ¢1(t) ming<s<¢ p2(s)(s)p1(s)™*, and ¢ is such that

¢Vloglog ¢, is in L*(R4, R).

Proof. By means of Lemma 3.2 one establishes that Y(-) — Y™ is in
LY(Ry,R% s (). Lemma 3.1 part (c) implies that F = pu* (Y —Y*)
is in L'(R.y, R% p3) where

p3(t) == Olélsil%tw(t — 8)pa(s)C(s)-
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One can proceed as in the proof of Theorem 3.3, but this time employing
part (c) of Lemma 3.1. o

Now we turn our attention to the stability properties of the p-th mean
of the solution.

Theorem 3.6. Let ¢ be a submultiplicative weight function, and
let oo be a weight function. If p € M(Ry,R¥™>% ) and ¥ is in
L2(Ry, R¥*; 02), then

det [2Idg — /R e ** u(du)] # 0 for every z € C with Rez > f3,,
+
implies for every solution X of (2.5):
BIX(OF = olp™) and [~ o()BIX(5) ds < o,
where ¢(t) := ming<,<¢ @3 (t — 5)3(s).

Proof. The solution X obeys the following variation of constants
formula for ¢ > 0:

(3.6) X(t)=r(t)Xo+ /0 r(t — s)X(s) dW(s) P-as.,

where the integral can be understood as an It6 integral or as a Riemann-
Stieltjes integral defined pathwise. It6’s isometry yields

t
51 EXOP <e(IrOPRIXR + [ - PP ).

0
with a constant ¢ > 0 depending on the norm. Since |r|? = o(p]?) and
¥2 € L'(Ry,R¥%; 3), part (b) of Lemma 3.1 implies |r|? * |Z|? =
o(¢~2) which establishes the first assertion of the theorem by (3.7) and
the fact that ¢ < 2.

Since ¢y (t)|r(t)] — 0 for t — oo and r € LY(Ry,R¥>% ) we
obtain 72 € L'(R., R%*%; p?). Therefore, Lemma 3.1 part (c) implies
7|2 % |22 € LY(R4,R; ). Since ¢ < ¢? the result follows by (3.7). O
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We conclude the paper with a corollary on p-th mean stability for
general p in weighted spaces.

Corollary 3.7. Let ¢ be a submultiplicative weight function and
let oo be a weight function. If p € M(R4,R¥%p), ¥ is in
L2(Ry, R¥*?: o2) and E|Xy|P < oo for some p > 0, then

det [zIdg — /R e " u(du)] #0

for every z € C with Rez > B,
implies for every solution X of (2.5):
E[X(t)? = o(p™")

and, if p > 2, we have
| e@BxE)Pds <o,
0

where ¢(t) := ming<,<¢ Y (t — s)p5(s).

Proof. For 0 < p < 2, Holder’s inequality implies
BIX () < (BIX(1)P)"
and the first result follows by Theorem 3.6.

Now, assume p > 2. Using (3.6), we obtain
(3.8)

E[X (1) < 271 <cl|r(t)|pE|X0p + E/O r(t — 5)5(s) dW (s)

p>
with a constant ¢; > 0 depending on the norm. Let us assume for a
moment that d = d’ = 1. Then the last expectation on the right hand
side is the p-th moment of a normally distributed random variable with
expectation 0 and variance fot r?(t —5)X(s)? ds. Hence we can estimate

from above the p-th moment of this variable in terms of its variance
and a constant ¢ depending only on p and the norm; this gives

"< ( / e - s>2|z<s>|2ds)p/2
—c((Irl? *I=P) ©)"*.

E /0 r(t — 5)(s) AW (s)

(3.9)



STOCHASTIC VOLTERRA EQUATIONS 15

By norm equivalence, we also obtain the estimate (3.9) generalized
to arbitrary dimensions. To conclude the proof of the first assertion,
we note from Theorem 2.1 that r2 = o(p?). Now, by part (b) of
Lemma 3.1, it follows that |r|? x |Z|2 = o(¢?/P). Using (3.8) and (3.9)
we arrive at the first assertion of the theorem.

To establish the second assertion, we define the function
F@) = ()7 (Irl* + 1Z) (1), ¢ >0.

Since f = o(1) and f € L*(R,,R) we have that f?/? is in Ll(R+,R)
for p > 2. The same argument results in |r[? € L*(R, R%*4; o) which,
using (3.8), completes the proof. O
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