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PROJECTION METHODS FOR FREDHOLM
INTEGRAL EQUATIONS ON THE REAL SEMIAXIS

C. LAURITA AND G. MASTROIANNI

Communicated by Giovanni Monegato

ABSTRACT. Numerical procedures to solve Fredholm
integral equations of the second kind on the real semiaxis are
proposed. Their stability and convergence are proved and
error estimates in LP weighted norm are given. Numerical
examples are also included.

1. Introduction. Let us consider Fredholm integral equations of
the second kind on unbounded intervals of the following type

(L1) i) / " ke, y)f (2uw(@)de = g(y),

where w(z) = e o> -1, 8> 1/2, k(z,y) and g(z) are known

functions and f(z) is an unknown function. We want to study equation
(1.1) in the spaces LP, 1 < p < oo and u(z) = ave ™12y > —1/p.

When y € (—1,1), w is a Jacobi weight and the integral is defined
on the bounded interval (—1,1), there is a large literature about the
numerical solution of such kind of equations (see, for example [1, 3,
6, 17]). In [5] Fredholm integral equations of the second kind on the
interval (0, +o00) are considered. Here the weight w(z) is the classical
Laguerre weight (8 = 1) and the space is Lf/a.

In this paper both w(z) and u(z) are more general weights. Moreover
the index p can assume any real value in (1, +00). The main difficulties
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by going from the L%/E case in [5] to the LP case is to have and to apply

new suitable tools of approximation theory (estimates of Lagrange
interpolation error, polynomial inequalities, etc.) which hold in such
more general spaces of function.

The aim is to introduce a new numerical procedure to approximate

the solution of (1.1), if it is unisolvent. This procedure is based on
the theory of the polynomial approximation in L? and leads to the
resolution of a system of linear equations.
Such kind of approach involves some difficulties. In the first place,
in LP (0, +00) there is no uniformly bounded sequence of projections
P, : LP(0,400) — P, being P,, the subspace of all algebraic
polynomials of degree at most m, for any value of p.

Furthermore, when w(z) = :c"‘e_””ﬁ, with 8 # 1, i.e. w(z) is not
the classical generalized Laguerre weight, the nodes and weights of the
quadrature formula cannot be computed by using a standard procedure
because, in this case, the coefficients of the recurrence formula satisfied
by the system of orthonormal polynomials {p,(w)},, are not known.

In this paper, to overcome the first problem, we consider special
sequences of Lagrange interpolation operators, based on a part of the
zeros of the polynomial py,(w) (see Section 2.2). Moreover we use
(truncated) quadrature rules to approximate the integral

/000 k(z,y)f(z)w(x)dz,

when k(z,y) is sufficiently smooth. This idea, introduced in [10] has
been used in different contexts [5, 12].

The numerical computation of nodes and coefficients of these Gauss-
ian type quadrature formulas, related to generalized Laguerre weight
w(z), is carried out by using a Mathematica package appearing in [2].

We prove that the linear system related to the discrete operator is
well conditioned. The approximating solution converges to the exact
one and error estimates are given. As a consequence we, also, prove
that the Nystrém method is stable and convergent.

The paper is organized as follows. In Section 2 we introduce some
notations and obtain some preliminary results. In Section 3 we describe
our numerical methods. In Section 4 we present some numerical tests
while Section 5 contains the proofs of the main results.
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2. Notations and preliminary results.

2.1. Spaces of functions. For 1 < p < +00, S C (0,400) let LP(S)
be defined in the usual way and, with u(z) = aﬂe*zﬁ/z, v > —1/p,
B8 >1/2,let LP(S) be the collection of all measurable functions f such
that fu € LP(S). The norm in LZ(S) is defined by

1/p
£l (s) = </s |ful?(z) dac> .

For simplicity of notations, we set L2 = LP((0, +00)).
When p = 400, we define the space

L :=Cy = {f € C°((0,+00)) : lim (fu)(x) = o}

T—r 00

both equipped with the norm

[fllzee = I flle. = sup [(fu)(z)].
z>0

Moreover, let WP(u) be the weighted Sobolev-type space of the order
r €N, r > 1, defined by

Wr(w)={f e LL: [fD¢rull, < +oo}, w(z) =V,
and equipped with the norm

1wz ey = 1 Fully + 17T ull,.

Let us, also, consider Zygmund-type spaces defined as follows

Z8(u) = {f € LE([0,+00)) : || fll 22wy < o0}
where (/.0
||f|Z§(u) = Hfu||P+Sup %Wa r>s,
>0
with the main part of modulus of continuity
QF(f,t)up = su A7 u) ,
o(fi)up P (Ahyf) o)
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o(x) = vz, I, = [8(rh)?,Ch*], C arbitrary fixed constant, h* =
1/(h?/(28=1)) and

Ko@) = Y1) () fles (5 i)nva).

1=

Denote by P, the set of all algebraic polynomials of degree at most m
and by Ep(f)up = Pinlpf I(f — P)ul|p the error of best approximation
EPm

by algebraic polynomials of degree at most m. In [14] the authors
proved the following estimate, holding for functions f € WP (u),

@) Bulfuy <€V ) 1O ul, € £ )

where a,, is the Mhaskar-Rachmanov-Saff number a,, = a,(u) =
C(a, B)m!/? and the constant C(a, 8) (see [13, 16]) is not essential for
our aims.

Here and in the sequel we denote by C a positive constant which may
assume different values in different formulae. We write C # C(a, b, . ..)
if C is independent of the parameters a, b, .... If A, B > 0 are quantities
depending on some parameters, we write A ~ B, if there exists a
positive constant C independent of the parameters A and B such that
(B/C) < A<C(CB.

2.2. Lagrange interpolation and Fourier sums. Let w(z) =
xae’zﬁ, z >0,a> -1, 8> 1/2 be a generalized Laguerre weight,
P

e /27 Y > _1/p

Let {pm(w)}m be the sequence of orthonormal polynomials with
respect to the weight w(x) having positive leading coefficient, and let
X1, L2, yTm, (Tx = Tmi) be the zeros of p,,(w). We recall that
Clam/m?) < x1 < 2o < -+ < Ty < A, With @y = @ (w) ~ m/B
the M-R-S number with respect to the weight w(z) (see [14]), and for
6 € (0,1) fixed, we define the integer j = j(m) by

u(z) =z

z; = min {zp:x, > ba
J 1§kgm{ m}

with m sufficiently large (say m > myg). Then we define the function
fi(z) = f(x)®;(x) with ®; the characteristic function of the interval
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[0, z;]. For any continuous function f on [0,+0), i.e., f € C(R"), by
definitions, f; = f in [0,z;] and f; = 0 in (x, +00). Let us introduce
a Lagrange polynomial L, ., (w, f) which interpolates f € C(R") on

the m + 1 points 1, X2, ... , Ty, A, 1-€.
. = A — T D (W, T)
2.2) L sxT) = E l _— " fla;,
( ) m+1(w7 f’ w) e k(x) Uy — xkf(xk) + pm(w,am) f(a )

where [;(z) are the fundamental Lagrange polynomials based on the
zeros of p,,(w). One can also represent L7 ., (w, f) as

m+1
Ly (w, fi2) = k(@) f (),
k=1
with
~ A — X
l =1 ™ , k=1, , M,
k(@) = lk() p—— m
and
= pm(w, )
1 () = 2L
+ ( ) pm(w,am)
the fundamental Lagrange polynomials on the nodes 1,3, - - - , T, Gm

and T, 41 = Q.

Moreover, for our aims, we will consider the polynomial interpolating
the truncated function f;, i.e.,

(23) Linsaw, fj30) = Y- ls(@) 7= f(a)
k=1 m
(2.4) Ly (w, fjz) = Zik(x)f(xk)

and use the following estimates it satisfies (see [7]).
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Lemma 2.1. Letl < p < +o0 and v°(z) = z°. If the weights
w(z) = vo‘(:v)e_””ﬁ and u(z) = v"’(al:)e_””ﬁ/2 satisfy the conditions

a b5 1
<'y<§+———,

(2.5) i

+

| R
o~ =
Q=

then, for all functions f € C(R"), we have

J 1/p
20 |ato s, <¢( X Anlrur)

k=1
where Az = g1 — x and C # C(m, f).

Let us remark that conditions (2.5) are equivalent to the following
ones

(2.7) ~—err(0,1) and Y eL9(0,1),

Ve v

p
= Ve, q=T.

p—1

-G T
—~ =2
GRS

Lemma 2.2. For any function f € C(RT), 1 < p < 400, we have

(2.8) <;Axkfup(mk)> v

<c

/P pfam/m O

vV am ! Q(p(f) t)u,p
”quLP(U,fCHl) + ( m o t1+(1/p) dt
where Az = xy1 — x and C # C(m, f).

Lemma 2.3. Let1l < p < +oo. Under assumptions (2.5), for any
f € Zb(u), s> 1/p, we have

@9 - Lt sl < (Y2 )l
and for any f € WP(u)
210) i - Lo Sl <€ (V22 Ulbwrcs

with C # C(m, f).
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Let us consider, now, the mth Fourier sum S,,(w, f) of a function
ferr

Sm(w, f) = z_: ckpr (w)

where

cp = /000 f(@)pr(w, z)w(z)de.

In [12] the authors establish the following results.

Lemma 2.4. Letl <p < 400, v7(z) =27, w(z) = v“(m)e*wﬁ and
u(z) = v”(w)e*wﬁﬁ. Then, for all functions f € LP, we have

(2.11) 1Sm (w, £i)ull, < Cm' (| full,, C #C(m, f).
Moreover, for any 0 € (0,1),

(2.12) 1Sm(w; £)ull Lo ((0,6a,my) < Cllf5tllps € # C(m, f)

if and only if
(2.13)

Let us note that conditions (2.13) are equivalent to

VY ve 1
2.14 L?(0,1 d /——¢€L%0,1
( ) \/W € ( ’ ) an © 7 € ( ) )7

1 1
where = + = =1 and p(z) = /z.
p g

2.3. Approximations of the integral operator. Let us define
the integral operator K as

(2.15) (K f)(y) = / " ke, y) fl@)w(e da,
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with w(z) = a:o‘e_””ﬁ, a> -1, 8>1/2. Now, if € (0,1) is fixed, let

the integer j = j(m), the function ®; is defined as in subsection 2.2.
Then, we introduce the following operator

(2.16) Enw - [ " (k) (@) f(@)w(e) de

with k(mvy) = kw(y) = ky(x)v (ky)J = kyéj'

With u(z) = 27e=="/2 if the linear operator K satisfies the condition
(2.17) 1K fllwew <Cllfullp, reN, r>1

for 1 < p < 400 and C # C(f), then K : L? — WP(u) is bounded and
is compact as a map of L into L?, and for equation (1.1) the Fredholm
alternative is true.

In the following proposition we establish sufficient conditions on the
kernel k(x,y) which make (2.17) satisfied.

Proposition 2.5. Let 1 < p < +oo. If u(z) = e’ /2 B > 1/2,
s such that

1
(2.18) y<at+l—-—
p

and if the kernel k(z,y) verifies

q
dz < 400,

o w(zx)
2.19 / e vy ) )
(2.19) [ el 2
with (1/p) + (1/q) = 1, then (2.17) holds and also

(2-20) 1K Fllwrw < Cllfully.

Now let us define another approximating operator as follows

(2.21) (K /) () = Lina (w, (K f)jy) = Y (@) (K ) (@),

k=1
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where j = j(m), (I?f)j = (I~{f)<1>j and the interpolating operators
Ly, . (w) are as defined in subsection 2.2. The following proposition
holds.

Proposition 2.6. Let 1 < p < 400, v7(z) = z%, and assume that

w(z) = vo‘(ac)e_””g and u(z) = v"’(ac)e_””ﬁ/2 satisfy (2.5) and (2.18). If
the kernel k(x,y) verifies condition (2.19) and

e P
(2.22) | sy w0)|” < o0,

with (1/p) + (1/q) = 1, then one has

(223 I8 = Kl oz = 0 ((L22)').

with the constant in O independent of m.

3. Numerical methods. In this section we propose numerical
methods to construct sequences of polynomials which converge to the
solution f of integral equation (1.1) in some suitable weighted space
LP.

u

By defining operator K as in (1.1), we can rewrite equation (1.1) as
follows

(3.1) (I-K)f =gy,

where I denotes the identity operator.

In order to describe a numerical method, let us introduce the subspace
of P,,, defined by

m

Pm=4q P eP, : P(x)=gj_1(z)(am — ) H (x — ), gj—1 € Pj_q
i=j+1
and set

7 J

fm =3 li(m)ai, gn = li(x)bi,

o M o M
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where p; = (Ami)l/pu(a:i), Az, = wiy1 — i, a; = f(zi)p, and
bi = g(xi)pi-
Obviously fim,gm € Pm and (I — K,;,)(Pr) C Pr, with K, defined
as in (2.21).
Moreover, it is easy to verify that any polynomial g, € P,, has a
unique representation as
j ~
an(@) = 3 4 (@) (@).
i=1
Then our numerical method will consist of computing the solution
fm € Pp, of the finite dimensional equation

(32) (I - Km)fm = 9m-

Using previous results and standard arguments of functional analysis
one can prove the following theorem.

Theorem 3.1. Let u and w be such that conditions (2.5) and (2.18)
are fulfilled. Assume that g € WP (u) and k(z,y) satisfying (2.19) and
(2.22). If Ker (I — K) = {0} in LE. Then, for any sufficiently large
m, equation (3.2) has a unique solution f}, € P, and, denoting by f*
the solution of (3.1), one has

* * am "
(33) 17~ fadul <€ (Y22 ) gz
where C is independent of m, f* and f,. Moreover,

(34)  |cond (I — K) — cond (I — K,,)| = O (<M>> :

m

where the operator norm is that induced by the LP-norm and cond (T') =
\T|| - |71 if T : LE. — LE is an invertible operator.

In order to compute the approximate polynomial solution f,, we
replace in (3.2) K,,, fm and g, by their expressions, and we get the
system of j equations in the j unknowns a;

ai_ui(f(:fm)(mi):biv 7/:177]



INTEGRAL EQUATIONS ON THE REAL SEMIAXIS 569

that, after simple calculations, becomes

J

Z [6““ - ukui)\ﬂsm (w’ (kzz)g (am — )axk>:| ap = by,

(35) =~ (am — zk)

i=1,...,7j,

with pp = (Azp)Pu(zy), ke(y) = k(x,y), A\x(w) the kth Christoffel
number with respect to the weight w and Sy, (w, F') the mth Fourier
sum related to the function F' with respect to the orthonormal system

{pm (w)}.

System (3.5) is equivalent to equation (3.2) in the following sense: for
every fixed j the array (ai,...,q;) € R/ is a solution of system (3.5)
if and only if

) =" “fj) o

i=1
is a solution of (3.2).

If we denote by M; € RI*J, j = j(m), the matrix of system (3.5),
the following proposition holds.

Proposition 3.2. Under the assumptions of Theorem 1, the matriz
M; of system (3.5) satisfies

(3.6) cond (M;) <Ccond (I — K), C#C(m)

where cond (M) is the condition number of M; with respect to the
matriz norm induced by the vector p-norm.

We point out that, in order to construct an approximate solution f,,
of (3.1), we have to solve a linear system of j equations in j unknowns
rather than a system of m equations in m unknowns, neglecting in this
way [Cm?] (C < 1) terms.

Let us make a further remark. The numerical procedure described
is, essentially, a projection method based on the projection operator
Ly . (w) defined in (2.2). This Lagrange interpolation operator, we
recall, is based on the m zeros of the orthonormal polynomial p,,(w)
and on the additional node a,,. To include a,, in the set of the
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interpolation points permits us to guarantee the boundedness of the
projector itself. Moreover, for reasons of computational economy, we
really use only polynomials interpolating truncated functions.

Now let us observe that some computational efforts are necessary to
evaluate the entries of matrix M}, since

%sm (w, (k) (@m = ) = (K (1)

and, in the general case w(z) = m“e_zﬁ, B > 1/2, recurrence relations
holding for orthonormal polynomials {p,,(w)} are not available. Nev-
ertheless, for 8 = 1 (Laguerre case) and kernels of convolution type
(k(z,y) = k(Jz — y|)), one can use the recurrence relation of the La-
guerre polynomials and the elements of M; becomes more easily com-
putable. However such computational difficulties naturally appear in
the case of kernels and weights which are not standard.

Then it is useful to show that, under additional conditions on the
weights w and u and on the kernel k(z, y), we can replace system (3.5)
by the following more simple one

J

iA . .

(37) Z |:6zk: - mk(xkaxz) Vg = bia 1= ]-a ceends
b1 223

with p; = (Az;)/Pu(z;). Moreover, by using a Mathematica package
in [2] to compute the quantities A\;(w) and xj, the construction of
system (3.7) turns out simple. The following theorem holds true.

Theorem 3.3. Let w(z) = ze=2" and u(z) = z7e=="/2 be such
that

w

a 1 1 o
st —-<v<7

(3.8) 5t =

+ - —

=
Y=

and (2.18) are fulfilled. Assume g € WP(u) and k(x,y) satisfying
(2.19), (2.22) and the further condition

p
dy < +o0.

39 [ g (Bl & @)
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If Ker(I — K) = {0} in LE, then, for any sufficiently large m,
system (3.7) has a unique solution (v7,...,v;) and the corresponding
polynomial

j ~

fok = Zl—zvf € Pm

i=1 "
satisfies the estimate
* * % Am "
(3.10) 107 = £zl <€ (Y22 ) gz

where f* is the solution of (3.1) and C is independent of m, f* and
[~ Moreover, the matriz M} of system (3.7), satisfies

(3.11) cond (M;) <Ccond (I — K), C#C(m)

where cond (M) is the condition number of M} with respect to the
matriz norm induced by the vector p-norm.

Let us make two remarks.

Remark 1. Since
(3.12) Am (WP, x;) ~ (Az;) uP ()
(see [9]) with
m—1 -1
)‘m(upax) = [Z p%(u”,x)] )
k=0

the mth Christoffel function related to the weight u” and the constants
in ~ independent of m and i, alternative numerical procedures can
be obtained by replacing u; = (Az;)'/Pu(x;) everywhere by v; =
ALP (uP, z;). In this way the polynomial solution is given by

(3.13) fnl) =",
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with (A, As,..., Ap,) obtained as a solution of the following system
J
I/i)\k(w) :|
i — — S, (w0, k(4 — )ix) | A = By,
(3.14) ,;1 [ E T (am — ) o (W Fai(am = i) | A
i=1,...,7,

or, in the case of smooth kernels,

J .
(3.15) 3 [@»k - 7”’Aj(w)k(:ck,x,-)] Ay =B, i=1,...,j
k
k=1

with B; = g(z;) },{p(u”,xi).

All the previous results hold again, but the computation of the
coefficients of the new systems is more difficult because it requires
evaluating the orthonormal polynomials pg(u?,z), k =0,1,... ,m — 1.
Nevertheless, if, in particular, p = 2, and u(z) = y/w(z), i.e.,, v = a/2,
one has A, (u?, x;) = A\ (w).

Remark 2. The conditions previously assumed both on the kernel
k(z,y) and on the right-hand side function g(y) can be relaxed if we
replace the Sobolev-type spaces (that we use in order to simplify the
proofs) by Zygmund-type ones defined in subsection 2.1.

Nystrom method. A direct consequence of the last theorem is
the stability of the Nystrom method based on a truncated Gaussian
quadrature rule (see [10]). In fact, if we approximate the integral

(K F)(y) by
o)) = | Loy (w, (K y) )i ) w(e)de

k(xk,y)

J
= >\k (w) Ak,
; AP (up, )

with Ay = )\,ln/p(up, zk) f(zr), we have to solve the following equation

Fule) = 3" wla) 02 ¥)

2N ) I
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By multiplying the last equation, on both sides, by the Christoffel
function AMp(up,y) and collocating in the points zi,...,z;, we get
the system (3.15) which is, as we have said before, well conditioned.
Then, we can construct the approximating solution of integral equation
(3.1) by means of the Nystrom interpolation formula

r l‘kay) 1

(3.16) fm( E Ak (W) —7—— Ay,
1/P(up l'k)
corresponding to the solution (4i,...,4;) of (3.15).

By virtue of (3.12), we can obtain the Nystrom interpolating function
also by applying the formula

J
_ k(xk,, y) _
(3.17) fm(y) = 9(y) + ) Me(w) ——F-——ay.
; (D)7 ulw)
with (@y,...,a;) asolution of system (3.7). The sequence f,,, converges

to the exact solution f of (3.1) in L% as stated in the following theorem.

Theorem 3.4. Under the assumptions of Theorem 3.3, one has

3180 = Ful, < () 1T

Let us observe that the error is of the same order of best approximation
in the considered space LF for functions belonging to WP(u) (see
estimate (2.1)).

4. Numerical Examples. In this section we show some examples
of Fredholm integral equations solved by using the numerical procedure
described in the previous section.

We evaluate the solution f,,u in some points and the condition

number

condz (M) = ||M*

I ),

of the linear system (3.7). Unfortunately we are not able to compute
cond, (M) when p ¢ {1,2}.
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Finally we represent the graphic of the function f,, (z)u(z). We point
out that the zeros z1,...,Z, of p,(w) and the Christoffel numbers
A1(w), ..., Ap(w), for a generalized Laguerre weight w(z) = ze=’,
a > =1, B > 1/2, are computed by using a Mathematica package

appearing in [2].
Example 4.1. Consider the integral equation
“+oo
2
fly) - / ze P f(z)Vae ™ dr = e¥ — 3y3'
0

Let k(z,y) = zy®e™® and w(z) = z1/2e=7""* | We study the equation
in the space LP with p = 2 and the weight u(z) = z'/8¢=("")/2,
chosen according to conditions (2.5) and (2.18). We fix § = 0.6 and
construct the approximate solution f,, by solving system (3.7) and
using the Nystrom interpolation formula (3.17). Since, in this case,
the exact solution is known, f(z) = e, we report in Table 4.1.1 the
weighted error |f(y) — fm(y)|u(y) at some points. As one can note,
we get results with machine precision in double arithmetic with small
values of m. Table 4.1.2 shows that the condition number condy(M})
of the matrix M (of order j) is very small.

Table 4.1.1
I/ (y) = Fm(y)[u(y)
m J y=0.5 y=1 y=15
16 10 2.305069283359273e-004 | 1.332422784794840e-003 | 1.966468727766735¢-003
32 19 1.040700395638083¢-005 | 6.015666987924107e-005 | 8.878278834201225¢-005
64 39 5.812201830934782¢-010 | 3.359685862847073e-009 | 4.958424115741877e-009
128 | 78 0. 0. 2.220446049250313e-016
256 | 156 | 0. 0. 4.440892098500626e-016
Table 4.1.2
m |j condy (M)
16 | 10 | 1.217475911175006e4-000
32 |19 | 1.229579009747493e+000
64 |39 | 1.231447708039921e+000
128 | 78 | 1.231977147831094e+4-000
256 | 156 | 1.232305170639684e+000
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Figure 1. Graphic of fo,(z)u(z) with m = 256

Example 4.2. Let

1

+oo
) - / (22 + y)e ¥ f(z)

2

_1:2

e

7z

dr = e¥13.

In this case the kernel is k(z,y) = (1/2)(2z + y)e™*Y and the weight

w(z)
and u(z) = z

— 1.71/4671

2
1/4,—2%/2

Tables 4.2.1 and 4.2.2.

’. We study the integral equation in L? with p = 4
Fixing # = 0.7, we get the results shown in

Table 4.2.1
fm@uy)

m j y=1 y=3 y=5

16 | 10 | 7.279120049000063e+001 6.967528028552881e+000 1.705737674826722e-002
32 21 7.285489670705204e+001 6.969523666556124e+4000 1.705829339519260e-002
64 | 42 | 7.285490823172538¢+001 | 6.969524075559379¢+000 | 1.705829358921819¢-002
128 | 83 7.285490823172889%+001 | 6.969524075559513e+000 | 1.705829358921826e-002
256 | 166 | 7.285490823172943e+001 | 6.969524075559538e+000 | 1.705829358921827¢-002

Table 4.2.2
m | j condy (M)
16 10 3.310708752025420e+-000
32 21 3.360568961784741e+000
64 | 42 3.400065377210209e+-000
128 | 78 3.432531945475642e+-000
256 | 166 | 3.458917389149575e+-000
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Consider the integral equation

3 [T f(z) 2 — 3
f(y) 4/0 :L‘+y+2xe r=y
where
k(z,y) = —————— and w(z) = z%e*.
(z,9) dz+y+2) (z)

Choosing u(z) = z3/%e~*/2, satisfying conditions (2.5) and (2.18),
0 = 0.7 and p = 3 we obtain the results presented in the following

tables.
Table 4.3.1
Fuy)u(y)

m |J y=0.5 y=15 y=25

16 |7 9.709221720591000e-001 2.122158248986188¢+000 | 2.983844379765271e+000
32 |16 | 9.769379329345977e-001 | 2.129689613413718e+000 | 2.989995980426683e+000
64 |32 |9.769380556732431e-001 | 2.129689757592876e+000 | 2.989996094591342¢+000
128 | 65 | 9.769380577243929¢-001 | 2.129689759656350e+000 | 2.989996096039455¢+000
256 | 131 | 9.769380578153152¢-001 | 2.129689759748166e+000 | 2.989996096104016e+000
512 | 264 | 9.769380578193417¢-001 | 2.129689759752238e+000 | 2.989996096106883¢+000

Table 4.3.2

m |j condy (M)

16 |7 1.296060849364210e+000
32 |16 | 1.296261865762703e+000
64 | 32 | 1.295775625957592e+000
128 | 65 | 1.295257961055335¢+000
256 | 131 | 1.294825106535888e+000
512 | 264 | 1.294491673546656e+000

5. Proofs of the main results.

Proof of Proposition 2.5. We have to estimate both ||(K f)u||, and
(K f)M ¢ ull,. By applying the Minkowski and Hélder inequalities
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Figure 2. Graphic of fr,(x)u(z) with m = 512

and taking into account (2.19), we have

1/p

1 Fyull, < / @) () ( / N k(x,y)u(yn”dy) da
= w@) o e
< [ 1@t 5 ol d

q 1/q
dw) < ¢|lful,

<ty ([ Ik, 22

and

k]
p

<f " @) () / N ‘ o E ) Wuly)

P 1/p
dy> dx

< [ @l 2 K] do
o5} q 1/q
<ty ([ |Jrreral, 28 a) < elpul

Then (2.17) holds. The proof of (2.20) is similar. O
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Now we establish a lemma which we will use later. Let 6 € (0,1) be
fixed, and let m be a positive sufficiently large integer. Let j and the
corresponding function ®; be as defined in Section 2, and let

EE

Then one can prove (see [14]) the following result.

M =

Lemma 5.1. Let1 <p < oo and f € LY. Then, for any sufficiently
large m, we have

(5.1) I = fiullp < € [Ext(Hup+e 4™ fullp]

with the constants C and A positive and independent of m and f.

Proof of Proposition 2.6. We have
(K = Eo) flully < 1K = K) flully + 11K f = Ly, (w, (K 1);)]ullp-

Let us estimate ||[(K — I?)f]qu To this end we apply at first (5.1)
and later (2.1) to the function &, (x) and obtain

—Am w
SC |:EM(ky)(w/u)7q+e 4 HkyZHq]

<c (V ) 1yl (-
m

Then we can write, by Holder’s inequality,

MK &) flull,
- o
:( L1 b)) @) eut)deut dy>/
< pall ([ ||t - G0 2] o) de>1/p

< (2 gty ([ bzt )
)

<c () s,

by the assumptions.
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It remains to estimate ||[Kf — Ly, 1 (w, (I?f)j)]qu. Taking into
account (2.20) and using (2.10) applied to K f, we obtain

RS = s (ANl <€ (Y2 ) R pyal,

< (22) s,

m

Then, the assertion follows. ]

Proof of Theorem 3.1. Let us observe that, under our assumptions,
(2.23) holds and, by applying (2.10) to the function g, we also have

am \"
o gmbully <€ (V) allwea

By standard arguments (see [6], Theorem 2.1), the assertion follows. O

To prove Proposition 3.2 we shall use the following result proved in
[15].

Lemma 5.2. Let 0 < § < 0y <1, and let 1 < p < +o00. Then, for
an arbitrary polynomial P € Py, (with | a fized integer), we have

(5.2) <zj:Aa:kPu|p(a:k)>l/p < c</:”’" PulP (z) dm)””

k=1 1

where Az = xp11 — z and C is a positive constant independent of m
and P.

Proof of Proposition 3.2. In the sequel let us denote by |[c||;, =
(324 _, lex|P)Y/P the l,-norm of a vector ¢ = (ci1,cz,... ,c;) € RI.

Let a = (a1, a2,... ,a;) € RI be an arbitrary vector and let b =
(b1,b2,...,b;) be given by b = Mja. If we define

J
l
(5.3) Fro= Fae, = (Da)" u(ae),
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then F, satisfies the equation (I — K,,)Fy, = Gy, if and only if

J
(5.4) Gm::E:fﬁm.

k=1 Mk

Let us note that, for ¥ = 1,...,7, we have ar = Fp,(zk)ur and
b = Gm(zk)uk. Then, by applying at first (5.2) and later (2.6) we
have

j 1/p
[M;all, = [bll, = (Z Az IGm(wk)U(wk)|p>

k=0

Ora,, 1/p
<c ( / G () ()| dm)

<c < /0 o |G (z)u() P dw) v

SCI = K|l [|[Emullp

j 1/p
<CI - Knl| (Z Azy, Fm(xk)u(mk)|p>

k=0
=CI = Kl llalls,,

where ||I — Kp|| = [[I = Kp[pz_,r» and C # C(m). Then it follows
(5.5) M| < CIIT = K|

with [|M; | = [|Mjl]1,-1,-

Now let b = (b1,ba,...,b;) be an arbitrary vector in R/, a =
(a1,a2,...,a;) defined by a = M;lb and G,, as in (5.4). Then
(I - K,)F,, = Gy, if and only if F,, is as in (5.3). By (5.2) and
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(2.6) again, we get

j 1/p
34,5, =, - (z Ay |Fm<xk>u<xk>p)

k=0

Oram 1/p
gc(/ WM@M@FM>

too 1/p
gc(A |EA@M®VM>
<CII = Kn) | IGmullp

j 1/p
<C|-Km)! <Z Azy, |Gm($k)u($k)p>
k=0

=C||(I - Ku) || IIb]|s,,

where H(I— Km)_lH = H(I_Km)_lHLﬁ—wﬁ and C # C(m). There-
fore, set ||M]T1|| = ||M]T1||lpﬁlp,
(5.6) M7 < el — Km) -

Combining (5.5) and (5.6) and, moreover, taking into account (3.4), we
have

cond (M;) < Ccond (I — K,,) = Ccond (I — K)+O ((T)) . O

Proof of Theorem 3.3. Denote by M;a = b the system (3.5) and by
M7 o = b the system (3.7), respectively. Since, for sufficiently large m

say m > mg) M ! exists, the identity
y J

Mj = M;lI; + M1 (M — M;)]
holds true, with I; the identity matrix of dimension j. If we set

Mj _ M]T = Ej = (Eik)i,kzl,...,

7
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we have
(5.7)
2\
T i (am — i)
X [Sm(w, (kz,)j(@m — )i Tk) — Ly i1 (w, (kz,)j(@m — -); )]

where, we recall, u; = (Az;)Y/Pu(z;).

mi-o (L)),

then, by applying the Neumann series argument, we can deduce that
(M;)~" also exists and

If we proved

cond (M)

im — - < 1.
m cond (M;) ~

On the other hand, using the identity
M; = M;[L; + (M) (M — M)

one can obtain, in the same way,

. cond (M;)
lim ——— 72 <1
lv}zncond(M;) -
and consequently,
cond (M)
5.8 lim ———2 = 1.
(5.8) m cond (Mj)

Combining (5.8) and (3.6), we get (3.11).

Moreover, as a consequence, if a* = (aj, ... ,a}) is the unique solution
of system (3.5) and v* = (v, ... ,v}) is the unique solution of system
(3.7), then it results

la* — v*, 145112251

(5.9) e, - ;1B © <(\/T(:L_m>>
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since (see the proof of Proposition 3.2)
M H < CINT = K) ™M < CIT = K) 71,
for sufficiently large m. To prove (3.10) we use the following inequality

1" = fadully < NC(F = fr)ulle + 1 (Fr = £ wllps

since )
i o~
l.
* T %
fm - E —a;.

k=1 M

To estimate the first addendum we use (3.3). For the second one, taking
into account (2.6) and (5.9), we can write

(= foully = ‘

*_

E3
ap — Vg

P>1/P
* * am " *
—cla’ vl < ¢ (Y2 ) ac,.

On the other hand, by (5.2), we have

J 1/p
la*ll, = (ZAwk|f;<wk>u<xk>|P)
k=1

<e( m (e

< Cllfmullp

S CICT = fo)ully + 11 ullp]
< C||f*qu,

for sufficiently large m. Therefore,
* *k am "
107 55l <€ (Y2 ) e,

The following proposition completes the proof of the theorem. |
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Proposition 5.3. Under the assumptions of Theorem 3.3 we have
(5.10) Bl <e (Vo)

where the matriz norm is that induced by the vector l,-norm and the
constant C is independent of m.

To prove Proposition 5.3 we use the following result.

Let L,,(w, F) denote the Lagrange polynomial interpolating F on the
ZETOS T1,T2, ... , T

Lemma 5.4. Let 1 < g < +oo and 0 € (0,1). If the weights

w(z) = 2% and u(z) = zve=="/2 satisfy the conditions (2.13),
then for f € L;‘f’/u one has
w 1/q w
Ln(w. 1)y < (anm?)" " logm 17
H (w f)u Le([0,0am)) (a m) ogm fu oo

with C' independent of f and m.

Proof. By applying a Remez-type inequality (see [14, (2.5)]) we can
w()

write
Am q 1/‘1
<e(/ )
L9([0,0am)) o u(z)

w 0 - . w(z) u(zk)
quooze[wll?am}; bl )u(:v) w(zy) |

Lo (w, f; )

HLm(wa )

"

u

<y

Then we go to estimate

k=1

w(z) u(zk)

() @) wlan)

where x4, d € {1,... ,m} denotes the knot closest to z. Since

la(@)y/ol@)

w(zq)
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(see [8]) implies @) 1)
w(x) u(zq
@) wea) "

and since the following inequalities hold (see [8])

1 Tk 1

~ 4 e T
‘ VamxrAzg, /1 am+m2/3’

(5.11) (W, Tk) /W (T )

k=1,...,m,

with constants involved in ~ independent of m and k, Az, = g1 —zk
and

C
5.12 m(w, z)yw(z)| < ’
( ) ‘P ( ) ( )‘ 4me{‘/|1 — (#/am)| + (1/m2/3)

with C(a,,/m?) <z < Cam(1+m=2/3), C # C(m, ), we can write, for
z € [21,am],

- w(z u(:vk)
PIC o
k=1 (z) w(@s
<cf14 plerm-a/m— Z Az /1 = (zx/am) + (1/m?/3)
- a/Z) (1/4)— Yz — ]
<cli (@l —(1/H)—r+(1/9) Z Az
- (Dt/2 (1/4)—"/+(1/Q)|l. — 2
1/q
S <W> logm
(see, also, [11]) from which the assertion follows. O

Proof of Proposition 5.3. By definition, applying Hoélder’s inequality,
we have

p/a\ /P

i
> learl?

k=1

J
1B = sup [Ejaly, < (>

la Ip= =1 i=1
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where (1/p)+ (1/q) =1 and €4, as in (5.7), from which we can deduce

(iuf ; 2k(w>

. [, (w, (ki) (0 — )i 22)

Pk (@m — k)
p/q> 1/p

S~ a2 5, ) )
- . p/‘l) 1/p

125l

IN

- L:n+1(wa (kxi)j(am - '); xk)]

J

%(Zuf

i=1

IN

= Ly ya (w, (ke,)j(am — s z1)]

C J , 1/p
= P AP
am<Zuz )

i=1

I_mving used the following relations: =, < z; < éam, for a suitable
6 € (0,1) and Ag(w) ~ Azpw(zk) (see [9]). Then let us estimate A;
for a fixed i € {1,...,5}.

To this end, we define the integer M = [(/6 +1)’m] ~ m and
introduce the polynomial Q(z) = Pp—1(x)(am —x) with Ppr—y € Py

the best approximation polynomial of the function &, in LZ) Ju We can
write
T L R E ORI HS e
i — k m y Rz )j\Om — ) — @ Tk
k=1 u(k) !

1/q
- L:’Hrl(w’ (kzi)j(am —) = Q?f’f'k)|q>

1/q
|Sm (w, (kz,);(am —-) — Q;wk)q>

1/q

T (Z Ay [w(“)] [ L (w, (b, )@ =) = @; :vk>|">

u(zy,)

o T R —L

La((0,01am))

| Lt (w0, () (am =)~ @)

= Aj1+ A2
L4((0,61am))
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having used inequality (5.2). Now, since

(kz:)j(@)(am — z) — Q(z)
= (kz.)j(@)(am — @) = (Pr-1)j(2) (@m — @)
+ (1= ®;(2))Prr 1 (2)(am — )

with ®; the characteristic function of the interval [0, z;], we get

Ain < H,S'm(w, (ka; — PM—l)j (am — ))%)

La((0,61am))

ot 8Puen

La((0,01am))

and, analogously,

w
Aiz < || Lipan (w0, (ke, = Pag1), (am =)~ |

La((0,01am))

w
|| L (0, (1 = @) Par-a(am = )%

L9((0,01am))

By applying estimate (2.12) we deduce

| St o~ Pra-)ytam ) 7

La((0,01am))

<C H(kz — Prr1) (am — )%‘

La((0,25))
<Cam H(kzl - PM—I)%

q

=CanEpn—1 (sz)(w/u)ﬂ

Vam \"
<Cam (T) 1K [lwg (/)

while, by applying (2.11) and the following inequality ([14])

oo 1/p
(5.13) ( /(W) |Pm(ac)u(ac)|pda:>

< Ce—Am ( /0 C Pa@)u) da:) v
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that holds for all polynomials P,,, with A,C positive constants inde-
pendent of m and p and A depending on ¢ > 0, we can deduce

St (@ @) Prs-s(an )T

La((0,61am))

< [sute - o9,

<Ccm'/3 H(l —®;) Py 1(am — )%Hq

_Cm!/3 (/Oo ‘le(m)(am I

; u(x)

q 1/q
da:)

Now since, for an arbitrary polynomial P, it also holds [14]

(5.14) < /0 b Pm(a:)u(a:)pdac>1/p <c ( /0 " Pm(a:)u(a:)pdac>1/p

we obtain

|8t (1= @) Pas-s (e = )%

< Cm!/3e—Am HPM,l(am — )%

q

L3((0,01am))

< Cmt/3e=Am HPM,l(am — )%‘

La((0,am))

_ w
< Capm!'/3e=Am HPM,l—H
Ullq

< Ca,,m'/3e 4™ ‘ kgh.E .
U llg
Then we can conclude
am \ "
(5.15) Ai = Can (V28 ) o

Now we want to estimate A; 2. We can write

L (w, (ki) (@m =) = (Pr—1)(@m = ); 2)

(ke (z1) — Prr—1(zk)] (am — 1)1k (2)

k

= (am — ) Y _ [ka, (z1) — Par—1 ()] Li(x)

k=1
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and, then,

w

|Eea(wn (s =) = (Puaca)sfan =)

= </001am(am —x)?
i wlz

Oram
<am (/0 D ke, (@k) = Pru—i(zi)] k(@)

k=1 e
= a, HLm (w, (kz; — Prr-1);) %Hq

La((0,01am))

> Tha(2n) = Par—1(2i)] ()

= u(z)

~

where we denoted by L,,(w, F') the Lagrange polynomial interpolating
F on the nodes x1,%2,... ,Zm.

By using estimates proved in [14] (see Theorem 5.6 and Lemma 5.7)
and by proceeding as in [7] (see the proof of Theorem 4.2), it follows

Liyir(w, (e, = Paga); (am — ) >
| :

La((0,01am))

1 am/m QT
\/am> /q/\/i/ Qcp (kwivt)(w/u),q d);|
0

< Cam o (/)

Env— (kEz)(w/u),q+ (

C B Vam T‘
= a’m|: M-1 ( z)(w/u),q ( m

Vam \"
<Cap <T> (L2 ng(w/u) :

It remains to estimate the second addendum of A; 5. We have

w
ki?so’”—H ]
U llg

Lo i1 (w; (1 = @) Prr—1(am — +); @)
m—+1

> Pyoi(zk)(am — z)li(z)

k=j+1

m+1

= (apm — ) Z Prr—1(zp)lk(2).

k=j+1
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Then one has

w
HLan(wa (1—2;)Pyv-1(anm —)

U I1L3((0,01am))

e mtl q\ 1/q
- /lm(a S Py (on)li(@) Y e
0 k=jt+1 u(z)
q\ 1/4q
<a /alam mf Par (o)l () 2
B 0 Pt u(z)
= ap, HLm(w, (1— ®;)Par—1(am — e

By using Lemma 5.4, estimate (5.1) and also, by applying the Nikolski
inequality (see [14])

fon2] <e ()" fan
holding for @, € P, and C # C(m,q,Qm), we can write

7

w
| Einsa (0= @) Pass (@ = )2

U l1Le((0,01am))

< Capm(amm?)Y9(logm) H(l —®;)Py— 1—H

< Cam(ame)l/q(log m)e_Am HPM,l—H
U llco

m 21
< Cam(ame)l/q(log m)e_Am (\/T_m> Py 1—H
< Camm*(logm)e™ EH
From the previous results we can deduce
vam\"
(5.16) Aip < Cam (T) ki (W (w)u)

and combining (5.15) and (5.16)
am \"
s = o (Y2 ) e
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Therefore, since for F' € WP(u) (see [14])
Q(F, t)up < CUIIF " ullp,  o(z) = v,

by using (2.8), we can obtain

c ; 1/p
1Bl < — < Ap)

1/p
( <Z Al‘l|u Z; |p||kzz“W‘1 w/u))

)
> ( ‘Hk 73 (aw ) ()‘pdy>1/p

( > ( ‘ ”k s w/u)) "(y)u(y)
gc( C ) ,

taking into account the assumptions. u]

I /\

| /\

P 1/p
dy) ]

Proof of Theorem 3.4. Taking into account relation (4.1.33) in [1], it
is sufficient to estimate ||[(K — K ) f]ul|,. We have

P 1/p
dy) .

u(y) / k(2 F(@) — Loy (w, (ky )33 2)] wi(a)de

0 B
<m> mi| ~m, P]_E]P)[M/Q}

be the best approximation polynomial of f in L%, Pp, € P[pz/9 the
best approximation polynomial of k, in L Ju with 1/p+1/¢ =1, and
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Qy = PP, . Then, we can write
| @)0) = L, ()50)] (o) o
/000 [ky (@) f(2) — Qy(x)] w(z) dx

[ 1000 - Ll (0] wle) de
= A1(y) + A2(y).
In order to estimate A;(y) and As(y), let us use the following formula
(5.17) k(z,y)f(x) = Qy(z) = [f (2)u(x) (k(z,y) — P2y())
+ Poy(2) (f(z) — Pi(@)) u(z)]u™(2).

We obtain, by Hoélder’s inequality,

M= | [ f@uto) (o)~ Payle)) ) d
/0 @) = Pu(@)]u(o) Py (0) 5

<l ([ o) = Pagte 2 qu>”q

s = poul, ([ [P 2 qdm>1/"

< ¢ (Y22) | fulhwrio by lhwsior

taking into account that, under the assumptions, one has f € WP (u)
since both K f € WP(u) and g € WP(u), and estimate (2.10) holds.

Let us estimate, now, As(y). By applying the Gaussian quadrature
rule with respect to the weight function w(z), we have

Aaly) = / T Lt (0,Qy — (ky )i 2) wle) da

= Z)\k [Qy (k) Z (W) Qy (zk)

k=j+1
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By using relation (5.17), with ¢ such that (1/p)+ (1/¢) = 1, we get for
Az.1(y)

7P (w) (w) A (w) - w(a)

A21 Z lp(mk (xk)wl/q(mk)[P27y(xk) k(wkay)] u(xk)
J 1/p 1/q

( ) Ak (w) w(évk)

+; o) Pae0) S @) uen) Lt S Pay ) 5

Now, if we apply Holder’s inequality and use equivalence (3.12), we get

j 1/p
|A2,1(y)| < <Z A (w) |f(a:k)u(:ck)|p>

i wen)

; 1/p
c (Z Ao lIPr(ex) — )] el

k=1

J
k=1
From (5.2), (2.2) and (2.10) it follows

am \ "
4201 <€ (V22 Wl o1 lws oo

w
Py y () »
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It remains to estimate A 2(y). To this end we recall that ([14])

from which we get
Azy, < C—'am\/kal/?’, k>j+1.
m

Set Ty k = C(\/@m/m)/T); with the constant C such that xg + 7 1 <
Try1, and it also holds (see [13]) that w(x) ~ w(t) and \/z ~ +/t for
x,t € [Xg, Tk + Tm,k]- Then, from the identity

Tk+Tm,k Tk+Tm,k
Tk Qy (T) = / Qy(t)dt — / (@ + T — t) Q’y(t) dt

k Tk

we get, for k > j,
Ak(w) |Qy(@r)] < Cm P11 |Qy (1) ()|

Tht1
<ent ([ @uouiolar+ L [ oy viuo] ar).
LTk
By summing for k = j +1,...,m, one has

nato) < e ([~ 1@utofar+ X2 [~ g,

)‘ dt>

Since Q, € Ppr, M = [(0/1+60)Pm] and z;41 > Oan, 6 € (0,1) fixed
we can apply to both integrals inequality (5.13) to get, with ¢ (t) = /¢,
the estimate

|[A22(y)] < Cm/Pe A (IQwaI1 + % ||Q;sow||1) :

By applying the Bernstein inequality at first, and the Holder inequality
later ([13]), we get

|Az2(y)| < Cm'/2e= 4™ ||Quul,
< 2em e fuly [k, |

< (L22) hral 2]
<c (%) 1 Fllw o Ty vy
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Using the estimates proved before for |A;(y)| and |A2(y)|, and taking
into account the hypotheses (2.22) on the kernel k(z,y), we obtain

I[(5~Km) f]uf,

<([ mwmora)”

([ 1awwra)”
SC(@)MW@ ( / °°|v|ky||wg(w/u)u(y)|pdy> o
<0 (Y2 g,

m
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