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ABSTRACT. We consider the scattering of time harmonic
electromagnetic plane waves by a bounded, inhomogeneous,
anisotropic dielectric medium and show that under certain as-
sumptions a lower bound on the norm of the (matrix) index of
refraction can be obtained from a knowledge of the smallest
transmission eigenvalue corresponding to the medium. Nu-
merical examples are given showing the efficaciousness of our
estimates.

1. Introduction. Anisotropic material play a special role in
electromagnetic inverse scattering theory. This is due to the fact that
from far field data only the support D of the scatterer is uniquely
determined [3], [15] and little can be said about the material properties
of the scatterer [13]. This remains true even if multifrequency data
is used. Although specific information about the material properties
may be unavailable, there remains the possibility of obtaining upper
or lower bounds on certain norms of the (matrix) index of refraction
and it is to this task that this paper is directed. In particular, are
there certain inequalities that the index of refraction must satisfy for a
given measured far field pattern? For the case of a dielectric isotropic

2000 AMS Mathematics subject classification. Primary 35R30, 35Q60, 35J40,
78A25.

Keywords and phrases. Anisotropic media, direct and inverse scattering, far
field data, trans- mission eigenvalues, Maxwell’s equations.

The research of F. Cakoni and D. Colton was supported in part by the U.S. Air
Force Office of Scientific Research under Grant FA9550-05-1-0127

Received by the editors on April 2, 2007, and in revised form on December 18,
2007.

DOI:10.1216/JIE-2009-21-2-203 Copyright c©2009 Rocky Mountain Mathematics Consortium

203



204 F. CAKONI, D. COLTON AND H. HADDAR

scatterer, this question was considered in [5] and [11] where it was
shown that if the (scalar) index of refraction is greater than one then
it is bounded below by λ(D)/k2

1 where λ(D) is the first Dirichlet
eigenvalue for the Laplacian in D of the scattering obstacle and k1 is
the first transmission eigenvalue [4]. Since D and k1 can be determined
from the far field data [5], this then provides a lower bound for the index
of refraction. In this paper we will show that a similar inequality is valid
in the case of a dielectric anisotropic media where the supremum of the
(scalar) index of refraction is replaced by the Euclidean norm of the
(matrix) index of refraction.

The plan of our paper is as follows. In the following section we
formulate the inverse scattering problem for Maxwell’s equations in the
frequency domain for an anisotropic media. In Section 3 we consider
the special case when the scattering object is an infinite cylinder
and the medium is orthotropic. In this case the three dimensional
vector problem reduces to the simpler case of a two dimensional scalar
problem. Following the ideas of [7], we will then show in this case that
we can obtain bounds on the Euclidian norm of the index of refraction
both in the case when the norm is greater than one as well as when the
norm is less than one. In Section 4 we extend these results for the scalar
case to the case of Maxwell”s equations in three dimensions. Finally, in
Section 5, we give numerical examples showing the practicality of our
estimates. Although the estimates that are obtained for the refractive
index are crude, we believe that these estimates can be significantly
improved and this is a topic of current research.

It gives each of the authors particular pleasure in dedicating this
paper to Professor Rainer Kress on the occasion of his sixty fifth
birthday. Each of us has written papers with Rainer and had the
pleasure of visiting him in Göttingen. In particular, the second author
has been a close friend of Rainer’s for over thirty years, has written
two books with him [8], [9] and has visited Göttingen more times than
he can remember! This combination of friendship and mathematical
collaboration has played a unique role in the second author’s life and
so on behalf of all of us, but particularly from David Colton, happy
birthday Rainer!

2. Formulation of the problem. Let D ⊂ R
3 be a bounded

open set having a picewise smooth boundary ∂D such that the exterior
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domain De := R3 \ D is connected. The unit normal vector to ∂D
directed into the exterior of D is denoted by ν. We assume that
the domain D is the support of an anisotropic (possibly disconnected)
object and the incident field is a time-harmonic electromagnetic plane
wave with frequency ω. The exterior electric and magnetic fields Ẽext,
H̃ext and the interior electric and magnetic fields Ẽint, H̃int, satisfy

∇× Ẽext − iωμ0H̃
ext = 0(1)

∇× H̃ext + iωε0Ẽ
ext = 0 in De

∇× Ẽint − iωμ0H̃
int = 0(2)

∇× H̃int + (iωε(x) − σ(x))Ẽint = 0 in D

and on the boundary ∂D we assume the continuity of the tangential
component of both fields, i.e.

Ẽext × ν − Ẽint × ν = 0 on ∂D(3)

H̃ext × ν − H̃int × ν = 0 on ∂D(4)

The electric permittivity ε0 and magnetic permeability μ0 of the exte-
rior dielectric medium are positive constants whereas the dielectric scat-
terer has the same magnetic permeability μ0 as the exterior medium but
the electric permittivity ε is a real 3×3 symmetric matrix valued func-
tion. If we define Ẽ(ext,int) = 1√

ε0
E(ext,int), H̃(ext,int) = 1√

μ0
H(ext,int),

k2 = ε0μ0ω
2 and N(x) = ε(x)/ε0, the direct scattering problem for an

anisotropic medium reads

∇× Eext − ikHext = 0 and(5)
∇× Hext + ikEext = 0 in De

∇× Eint − ikHint = 0 and(6)
∇× Hint + ikN(x)Eint = 0 in D

Eext × ν − Eint × ν = 0 on ∂D(7)
Hext × ν − Hint × ν = 0 on ∂D(8)

where
Eext = Es + Ei and Hext = Hs + Hi,
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the scattered electric and magnetic fields Es and Hs satisfy the Silver-
Müller radiation condition

(9) lim
r→∞(Hs × x − rEs) = 0

uniformly in x̂ = x/|x|, r = |x|, and the incident electric field Ei and
incident magnetic field Hi are time harmonic plane waves given by

(10) Ei(x) :=
i

k
∇×∇× p eikx·d and Hi(x) :=

1
k2

∇× p eikx·d

where d is a unit vector giving the direction of propagation and p is the
polarization vector.

3. The scalar case. Now we assume the scatterer is an infinitely
long dielectric cylinder with axis in the z-direction and assume that
the incident electromagnetic field is a plane wave propagating in the
direction perpendicular to the cylinder. Let the bounded domain
D ⊂ R2 with piecewise smooth boundary ∂D be the cross section of the
cylinder such that the exterior domain De := R2 \ D is connected. We
denote by ν the outward unit normal to ∂D defined almost everywhere
and assume that the dielectric cylinder is orthotropic, i.e. the matrix
N is of the form

N =

⎛
⎝ n11 n12 0

n21 n22 0
0 0 n33

⎞
⎠

If we consider incident waves such that the electric field is polarized
perpendicular to the z axis, then the magnetic fields have only a
component in the z direction, i.e.

Hi = (0, 0, ui), H0 = (0, 0, w), Hs = (0, 0, us).

Assuming that N−1 exists and expressing the electric fields in terms
of magnetic fields the equations (5 – 8) now lead to the following
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transmission problem for v and u:

∇ · A∇w + k2 w = 0 in D(11)
Δu + k2 u = 0 in De(12)

w − u = 0 on ∂D(13)
∂w

∂νA
− ∂u

∂ν
= 0 on ∂D(14)

u = us + ui(15)

(16) lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,

where us is the scattered field and ui is the given incident field. In
the case of plane waves the incident field is given by ui := eikx·d,
d ∈ Ω := {x : |x| = 1}. Moreover

∂w

∂νA
(x) := ν(x) · A(x)∇w(x), x ∈ ∂D,

A =
1

n11n22 − n12n21

(
n11 n21

n12 n22

)

and the radiation condition (16) holds uniformly with respect to x̂ =
x/|x|. In the following we assume that A is a real valued 2× 2 matrix-
valued function whose entries are piecewise continuously differentiable
functions in D with (possible) jumps along piecewise smooth curves
such that A is symmetric and ξ̄ · Aξ ≥ γ|ξ|2 for all ξ ∈ C2 and x ∈ D
where γ is a positive constant. The existence of a unique solution to
(11 – 16) can be established by variational methods [4, 15]. Note
that (11 – 16) is also well posed for complex matrices A provided that
Im

(
ξ̄ · Aξ

) ≤ 0 (Theorem 5.24 in [4]).

It can then be shown [4, 9] that the scattered field us has the
asymptotic behavior

(17) us(x) =
eikr

√
r

u∞(x̂, d) + O
(
r−3/2

)

as r → ∞ uniformly in x̂ where u∞ is the far field pattern.

In this paper we are concerned with the inverse scattering problem
of determining D and A from a knowledge of u∞(x̂, d) for all x̂, d ∈ Ω
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(for the case of limited aperture data see [2]). In [15] (see also [4]) it is
shown that D is uniquely determined by u∞(x̂, d) for all x̂, d ∈ Ω and
fixed k. However it is known [13] that u∞(x̂, d) for all x̂, d ∈ Ω does
not uniquely determine the matrix A even if it is known for an interval
of values of k. Our aim is to first determine D from the above data and
then provide inequalities that are satisfied by all dielectric anisotropic
media that give raise to the same far field data. To this end, we note
that D can be determined by using the linear sampling method to solve
the far field equation

(18)
∫
Ω

u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z)

where Φ∞ is the far field pattern of the radiating fundamental solution

(19) Φ(x, y) :=
i

4
H

(1)
0 (k|x − z|)

and H
(1)
0 denotes a Hankel function of the first kind of order zero. In

particular, from [4] we have that the far field operator F : L2(Ω) →
L2(Ω) defined by

(20) (Fg) (x̂) :=
∫
Ω

u∞(x̂, d)g(d)ds(d)

is injective with dense range provided k is not a transmission eigen-
value, i.e. a value of k for which the (homogeneous) interior transmis-
sion problem

∇ · A∇w + k2 w = 0 in D(21)
Δv + k2 v = 0 in D(22)

w − v = 0 on ∂D(23)
∂w

∂νA
− ∂v

∂ν
= 0 on ∂D(24)

has a nontrivial solution w, v ∈ H1(D). (It follows from Theorem
6.4 of [4] that transmission eigenvalues can only exist if A is real, i.e.
the scatterer is a dielectric). In [1] and [6] it is shown that provided
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that k is not a transmission eigenvalue and under the assumptions that
ξ̄ · Aξ ≥ δ|ξ|2 or ξ̄ · A−1 ξ ≥ δ|ξ|2 for some constant δ > 1, then
∂D can be characterized from the behavior of ‖g‖L2(Ω), where g is
an approximate solution of (18). Having determined D, we now want
to recover information about A. Following [5] we will make use of
transmission eigenvalues (which we avoided when determining D) to
obtain a lower bound for the Euclidian norm of A. Due to the lack of
injectivity and the denseness of the range of the far field operator F ,
when k is a transmission eigenvalue the L2-norm of the (regularized)
solution to

(Fg)(x̂) = Φ∞(x̂, z0), for a fixed z0 ∈ D

can be expected to be large for such values of k. (This expectation will
be numerically verified for several examples in Section 5 of this paper).
This provides a method for determining the smallest transmission
eigenvalue. In the following subsection we establish a relationship
between the smallest transmission eigenvalue and the Euclidian norm
of A.

3.1. A lower bound for ‖A‖2. The interior transmission problem for
an anisotropic inhomogeneous scattering problem has been studied in
[1, 6, 10 and 12] (see also [19]). However the approach used in these
papers does not include the eigenvalue problem (21 – 24). The main
idea to study (21 – 24) is to observe that by making an appropriate
substitution one can rewriting (21 – 24) as an eigenvalue problem for
a fourth order differential equation.

Let w ∈ H1(D) and v ∈ H1(D) satisfy (21 – 24) and make the
substitution

w = A∇w ∈ L2(D)2, and v = ∇v ∈ L2(D)2.

Assuming that A−1 exists and is bounded, we have that

∇w = A−1w.

Taking the gradient of (21) and (22), we obtain that w and v satisfy

(25) ∇(∇ · w) + k2A−1w = 0
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and

(26) ∇(∇ · v) + k2v = 0,

respectively, in D. Obviously (24) implies that

(27) ν ·w = ν · v on ∂D.

Furthermore, from (21) and (22) we have that

−k2w = ∇ · w and − k2v = ∇ · v

and the transmission condition (23) yields

(28) ∇ ·w = ∇ · v on ∂D.

We now formulate the interior transmission eigenvalue problem in terms
of w and v. In addition to the usual energy spaces

H1(D) : =
{
u ∈ L2(D) : ∇u ∈ L2(D)2

}
H1

0 (D) : =
{
u ∈ H1(D) : u = 0 on ∂D

}

we introduce the Sobolev spaces

H(div , D) : =
{
u ∈ L2(D)2 : ∇ · u ∈ L2(D)

}
H0(div , D) : = {u ∈ H(div , D) : ν · u = 0 on ∂D}

and

H(D) : =
{
u ∈ H(div , D) : ∇ · u ∈ H1(D)

}
H0(D) : =

{
u ∈ H0(div , D) : ∇ · u ∈ H1

0 (D)
}

equipped with the scalar product

(u,v)H(D) := (u,v)L2(D) + (∇ · u,∇ · v)H1(D) .

Note that

(29)
∫

D

ϕ divψ dx +
∫

D

∇ϕ ·ψ dx =
∫

∂D

ϕψ · ν ds
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for (ϕ,ψ) ∈ H1(D) × H(div , D).
The interior transmission eigenvalue problem in terms of w and v now
becomes the following: Find w ∈ L2(D) and v ∈ L2(D) such that
w − v ∈ H0(D) satisfies

∇(∇ ·w) + k2A−1w = 0 in D(30)
∇(∇ · v) + k2v = 0 in D.(31)

Note that the boundary conditions (27) and (28) are incorporated in
the fact that w − v ∈ H0(D).
From the above analysis we have the following result:

Lemma 3.1. If k is a transmission eigenvalue, i.e. if w ∈ H1(D)
and v ∈ H1(D) satisfy (21 – 24), then w = A∇w ∈ L2(D)2 and
v = ∇v ∈ L2(D)2 satisfy w − v ∈ H0(D) and (30 – 31).

We now formulate (30 – 31) as an eigenvalue problem for a fourth
order differential equation. To this end, we have that u = w − v ∈
H0(D) satisfies

(32) ∇(∇ · u) + k2u = k2
(
I − A−1

)
w in D.

Assuming that (A−1−I)−1 exists and is bounded, from (32) using (30)
we obtain the fourth order differential equation

(33)
(∇∇ · +k2A−1

)
(A−1 − I)−1

(∇∇ · u + k2u
)

= 0 in D.

Note that in addition u ∈ H0(D) implies that

(34) ν · u = 0 and ∇ · u = 0 on ∂D

and if k is a transmission eigenvalue than k is an eigenvalue of (33 –
34).

To study the eigenvalue problem for (33 – 34) we write it in variational
form. To this end multiplying (33) by a function ψ ∈ H0(D), using
(29), the zero boundary values ν · ψ = 0 and ∇ · ψ|∂D = 0 and the
symmetry of A we obtain

(35)
∫
D

(A−1 − I)−1
(∇∇ · u + k2u

) · (∇∇ · ψ + k2A−1ψ
)

dx = 0.
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Using the denseness in H0(D) of C∞ functions with compact support
on D one can easily see that u ∈ H0(D) satisfies (33) if and only if
u ∈ H0(D) satisfies (35) for every ψ ∈ H0(D). Since A−1(A−1−I)−1 =
I + (A−1 − I)−1, we can write (35) in the following equivalent forms

(36) Bk(u,ψ) − k2C(u,ψ) = 0 for all ψ ∈ H0(D)

or

(37) B̃k(u,ψ) − k2C(u,ψ) = 0 for all ψ ∈ H0(D)

where

Bk(u,ψ) : =
(
(A−1 − I)−1

(∇∇ · u + k2u
)
,
(∇∇ ·ψ + k2ψ

))
L2(D)

+ k4 (u,ψ)L2(D)

B̃k(u,ψ) : =
(
(I−A−1)−1

(∇∇ · u+k2A−1u
)
,
(∇∇·ψ+k2A−1ψ

))
L2(D)

+ k4
(
A−1u,ψ

)
L2(D)

and
C(u,ψ) := (∇ · u,∇ ·ψ)L2(D) .

Obviously, Bk(· , ·), B̃k(· , ·) and C(· , ·) are continuous sesquilinear
forms in H0(D) × H0(D). Let us denote by Bk, B̃k and C the
bounded linear operators from H0(D) to H0(D) defined using the Riesz
representation theorem by

(Bku, ψ)H0(D) = Bk(u,ψ),(
B̃ku, ψ

)
H0(D)

= B̃k(u,ψ), and

(Cu, ψ)H0(D) = C(u,ψ)

for all ψ ∈ H0(D).

Lemma 3.2. C : H0(D) → H0(D) is a compact operator.

Proof. Let un be a bounded sequence in H0(D). Hence there exists
a subsequence, denoted again by un, which converges weakly to u0
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in H0(D). Since ∇ · un is also bounded in H1(D), from the Rellich
compactness theorem we have that ∇ · un converges strongly to ∇ · u0

in L2(D). But

‖C(un − u0)‖H0(D) ≤ ‖∇ · (un − u0)‖L2(D)

which proves that Cun converges strongly to Cu0.

Theorem 3.1. Assume that ξ̄ · (A−1 − I)−1 ξ ≥ α|ξ|2 in D and for
all ξ ∈ C2 where α > 0 is a constant. Then

1. The set of transmission eigenvalues is discrete and does not
accumulate at 0.

2. All transmission eigenvalues (if they exist) are such that k2 ≥
α

1 + α
λ(D) where λ(D) is the first Dirichlet eigenvalue of −Δ on D.

Proof. In order to prove the first part of the theorem we consider
the formulation (36). Using the assumption on (A−1 − I)−1 we have
that

Bk(u,u) ≥ α‖∇∇ · u + k2u‖2
L2(D) + k4‖u‖2

L2(D).

Setting X = ‖∇∇ · u‖L2(D) and Y = k2‖u‖L2(D) we have that

‖∇∇ · u + k2u‖2
L2(D) ≥ X2 − 2XY + Y 2

and therefore

(38) Bk(u,u) ≥ αX2 − 2αXY + (α + 1)Y 2

From the identity,

(39) αX2 − 2αXY + (α + 1)Y 2 = ε
(
Y − α

ε
X

)2

+
(

α − α2

ε

)
X2

+ (1 + α − ε)Y 2

for α < ε < α + 1, setting ε = α + 1/2 we now obtain that

(40) Bk(u,u) ≥ α

1 + 2α
(X2 + Y 2).
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From (29) we have

‖∇∇ ·u + k2u‖2
L2(D) = ‖∇∇ ·u‖2

L2(D) − 2k2‖∇ ·u‖2
L2(D) + k4‖u‖2

L2(D)

which implies that

2k2‖∇ · u‖2
L2(D) ≤ X2 + Y 2.

Finally combining the above estimates yields the existence of a constant
ck > 0 (independent of u and α) such that

(41) Bk(u,u) ≥ ck
α

1 + 2α
‖u‖2

H(D).

Hence the sesquilinear form Bk(· , ·) is coercive in H0(D)×H0(D) and
consequently the operator Bk : H0(D) → H0(D) is a bijection for
fixed k. To use the analytic Fredholm theory, note that, since the
sesquilinear form Bk(·, ·) is obviously analytic in k, k → Bk is weakly
analytic and hence strongly analytic. By the Lax-Milgram theorem
we can conclude that in a neighborhood of the positive real axis, B−1

k

exists and k → B−1
k is strongly analytic.

Next we need to show that the operator Bk −C : H0(D) → H0(D) is
an isomorphism for k > 0 small enough. To this end, for ∇·u ∈ H1

0 (D),
using the Poincaré inequality [16] we have that

(42) ‖∇ · u‖2
L2(D) ≤

1
λ(D)

‖∇∇ · u‖2
L2(D)

where λ(D) is the first Dirichlet eigenvalue of −Δ on D. Hence, from
(39) and (42) for α < ε < α + 1 we have that

Bk(u,u)−k2C(u,u) ≥
(

α−α2

ε

)
‖∇∇ · u‖2

L2(D)+(1 + α − ε)k2‖u‖2
L2(D)

− k2 1
λ(D)

‖∇∇ · u‖2
L2(D)

Therefore, if k2 <
(
α − α2/ε

)
λ(D) for every α < ε < α + 1, then

Bk − k2C is invertible, whence the analytic Fredholm theory implies
that the set of transmission eigenvalue is at most discrete [9]. In
particular taking ε arbitrarily close to α + 1 we have that if k2 <
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α
1+αλ(D) then k is not a transmission eigenvalue.
The second part of the theorem is merely a consequence of part 1.

Theorem 3.2. Assume that ξ̄ ·A−1(I −A−1)−1 ξ ≥ α|ξ|2 in D and
for all ξ ∈ C2, where α > 0 is a constant. Then

1. The set of transmission eigenvalues is discrete and does not
accumulate at 0.

2. All transmission eigenvalues (if they exist) are such that k2 ≥
λ(D) where λ(D) is the first Dirichlet eigenvalue of −Δ on D.

Proof. The proof is similar to the proof of Theorem 3.1. Here we
need to use the sesquilinear form B̃k(u,u) which, since A is symmetric,
can be re-written as

B̃k(u,ψ) : =
(
A−1(I − A−1)−1

(∇∇ · u + k2u
)
,
(∇∇ · ψ + k2ψ

))
L2(D)

+ (∇∇ · u,∇∇ ·ψ)L2(D) .

From the assumption that ξ̄ · A−1(I − A−1)−1 ξ ≥ α|ξ|2 we have that

B̃k(u,u) ≥ α‖∇∇ · u + k2u‖2
L2(D) + ‖∇∇ · u‖2

L2(D)

which implies that

(43) B̃k(u,u) ≥ (α + 1)X2 − 2αXY + αY

where again X = ‖∇∇ · u‖L2(D) and Y = k2‖u‖L2(D). Proceeding in
the same way as in the first part of Theorem 3.2 we conclude that

(44) B̃k(u,u) ≥ ck
α

1 + 2α
‖u‖2

H(D).

where ck > 0 is a constant independent of u and α, whence B̃k(· , ·) is
a coercive sesquilinear form in H0(D)×H0(D). Arguing exactly in the
same way as in part 1 of Theorem 3.2 we conclude that B̃k and B̃−1

k

depend analytically on k. Finally, to show that B̃k −C is invertible for
small enough k, using (39, 42 and 43) for α < ε < α + 1 we have that

B̃k(u,u)−k2C(u,u) ≥(1+α−ε)‖∇∇·u‖2
L2(D)+

(
α−α2

ε

)
k2‖u‖2

L2(D)

− k2 1
λ(D)

‖∇∇ · u‖2
L2(D)
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where λ(D) is the first Dirichlet eigenvalue of −Δ in D. In particular,
Bk(u,u) − k2C(u,u) is coercive as long as k2 < (α + 1 − ε)λ(D) for
every α < ε < α + 1. In particular, by taking ε > 0 arbitrarily close to
α we have that k such that k2 < λ(D) are not transmission eigenvalues.

The second part of the theorem is a straight forward consequence of
part 1.

We now are ready to formulate the main result of this paper which
provide estimates on the matrix index of refraction A under the as-
sumption that the anisotropic material is a dielectric. Note that in
this case the symmetric matrices A and A−1 are bounded bellow, i.e.
ξ̄ · Aξ ≥ γ|ξ|2 and ξ̄ · A−1 ξ ≥ β|ξ|2, for all ξ ∈ C2 \ {0} and all x ∈ D
for some constant γ > 0 and β > 0.

We denote by ‖A−1‖2 the Euclidian norm of A−1 which is the largest
eigenvalue of A−1 since the matrix is positive definite. We denote
by λ1(x) ≤ λ2(x) the two eigenvalues of A−1 for x ∈ D. The above
assumptions guaranty that β < λ1(x) and γ < 1/λ2(x) for x ∈ D, since
λ2 is the reciprocal of the smallest eigenvalue of A which by assumption
is bigger then γ. We recall that

‖A−1‖2 = λ2 = sup
‖ξ‖=1

(ξ̄ · A−1 ξ)

and
λ1 = inf

‖ξ‖=1
(ξ̄ · A−1 ξ).

Theorem 3.3. 1. Assume that ‖A−1(x)‖2 ≥ δ > 1 for all x ∈ D
and some constant δ. Then,

(45) sup
D

‖A−1‖2 ≥ λ(D)
k2

where k is a transmission eigenvalue and λ(D) is the first eigenvalue
of −Δ on D.

2. Assume that 0 < β ≤ ‖A−1(x)‖2 ≤ δ < 1 for all x ∈ D and some
constants β and δ. Then, if k is a transmission eigenvalue,

k2 ≥ λ(D)
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where λ(D) is the first eigenvalue of −Δ on D.

Proof. To prove the first part of the theorem, we let k be a
transmission eigenvalue. The assumptions on A−1 imply that there
exists a constant α > 0 such that ξ̄ · (A−1 − I)−1 ξ ≥ α|ξ|2. Indeed

inf
ξ∈C2

ξ̄ · (A−1 − I)−1 ξ =
1

λ2 − 1
|ξ|2 ≥ 1

1/γ − 1
|ξ|2 = α|ξ|2, x ∈ D

since 1 < λ2 ≤ 1/γ. Now, without loss of generality, we take

α = inf
|ξ|=1

ξ̄ · (A−1(x0) − I)−1 ξ, for an appropriate x0 ∈ D.

From Theorem 3.1 we have that
α

α + 1
< k2/λ(D). Using the fact that

α is the reciprocal of the largest eigenvalue of A−1(x0) − I we have

α =
1

λ2(x0) − 1
=

1
‖A−1(x0)‖2 − 1

≥ 1
supD ‖A−1(x)‖2 − 1

.

Now since supD ‖A−1‖2 > 1 by assumption we conclude that

sup
D

‖A−1‖2 ≥ 1
α

+ 1 >
λ(D)
k2

which proves the first part of the theorem.

In order to show the second part of the theorem, it suffices to show
that the assumptions on A−1 imply that there exists a constant α > 0
such that ξ̄ · A−1(I − A−1)−1 ξ ≥ α|ξ|2. Then the result follows
from the second part of Theorem 3.2. To this end, we have that
A−1(I − A−1)−1 = (I − A−1)−1 − I.

inf
ξ∈C2

(
ξ̄ · A−1(I − A−1)−1 ξ

)
= inf

ξ∈C2

(
ξ̄ · (I − A−1)−1 ξ − |ξ|2)

=
(

1
1 − λ2

− 1
)
|ξ|2

≥
(

1
1 − β

− 1
)
|ξ|2 = α|ξ|2, x ∈ D.
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This ends the proof.

4. The vector case. We now return to the three dimensional
scattering problem for Maxwell’s equations in an anisotropic medium
which in terms of electric fields become

∇×∇× Eext − k2Eext = 0 in De

∇×∇× Eint − k2N(x)Eint = 0 in D

Eext × ν − Eint × ν = 0 on ∂D

∇× Eext × ν −∇× Eint × ν = 0 on ∂D

Eext = Es + Ei

lim
r→∞(∇× Es × x − ikrEs) = 0

where Ei is given by (10). In [18] it is shown that the above problem
has a unique solution in H(curl , BR) for any ball BR of radius R.
Moreover, the scattered electric field Es has the asymptotic behavior
[9]

Es(x) =
eik|x|

|x|
{

E∞(x̂, d, p) + O

(
1
|x|

)}

as |x| → ∞, where E∞ is a tangential vector field defined on Ω and is
known as the electric far field pattern. Note that E∞(x̂, d, p) depends
linearly on the polarization p. As in the previous section, the inverse
scattering problem we are interested in is to determine D and N(x)
from a knowledge of E∞(x̂, d, p) for all x̂, d ∈ Ω and three linearly
independent polarizations p1, p2, p3 ∈ R3. In [3], it is shown that D is
uniquely determined by E∞(x̂, d, p) for all x̂, d ∈ Ω and three linearly
independent polarizations p1, p2, p3 ∈ R3. However, as in the scalar
case, it is expected that E∞(x̂, d, p) for all x̂, d ∈ Ω and three linearly
independent polarizations p1, p2, p3 ∈ R

3 does not uniquely determine
the matrix N even if it is known for an interval of values of k. Our
goal is to extend the ideas presented in the previous section for the
scalar case to the vector case. We define the electric far field operator
F : L2

t (Ω) → L2
t (Ω) by

(46) (Fg)(x̂) :=
∫
Ω

E∞(x̂, d, g(d)) ds(d), x̂ ∈ Ω,
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for g ∈ L2
t (Ω), where L2

t (Ω) is the space of square integrable tangential
vector-valued functions defined on the unit sphere Ω. Note that F
depends linearly on g. As in the scalar case, D can be determined by
the linear sampling method [14] which is based on the behavior of the
(regularized) solution to the far field equation

(47) (Fg)(x̂) = Ee,∞(x̂, z, q) x̂ ∈ Ω, and z, q ∈ R
3

where

(48) Ee,∞(x̂, z, q) =
ik

4π
(x̂ × q) × x̂ e−ikx̂·z

is the far field pattern of the electric field Ee of an electric dipole located
at z with polarization q. In particular, Ee is defined by

(49) Ee(x, z, q) :=
i

k
curl x curl x q Φ(x, z)

where Φ is the fundamental solution of Helmholtz equation in R3

defined by

Φ(x, z) :=
1
4π

eik|x−z|

|x − z| , x �= z and x, z ∈ R
3.

As in the scalar case, in order to apply the linear sampling method it is
necessary that the operator F is injective with dense range which holds
provided that k is not a transmission eigenvalue [7, 14], i.e. a value of
k for which the interior transmission problem

curl curl E − k2NE = 0 in D(50)
curl curl E0 − k2E0 = 0 in D(51)

ν × E = ν × E0 on ∂D(52)
ν × curl E = ν × curl E0 on ∂D(53)

has a nontrivial solution, E, E0, where E, E0 ∈ L2(D) and E − E0 ∈
U0(D) where

U0(D) := {u ∈ H0(curl , D) : curl u ∈ H0(curl , D)}



220 F. CAKONI, D. COLTON AND H. HADDAR

equipped with the scalar product

(u, v)U(D) = (u, v)L2(D) + (curl u, curl v)L2(D)

+ (curl curl u, curl curl v)L2(D).

The interior transmission problem (50 – 53) is studied in [7] (for
the isotropic case see [17]) where it is proven that the transmission
eigenvalues form at most a discrete set provided that either ξ̄ · (N −
I)−1 ξ ≥ α|ξ|2 or ξ̄ · N(I − N)−1 ξ ≥ α|ξ|2 in D and for all ξ ∈ C2,
where α > 0 is a constant. In the following we will assume that the
above assumption on N holds in addition to the fact that both N and
N−1 are positive definite in D.

As in the scalar case, we expect that the norm of the (regularized)
solution to

(54) (Fg) (x̂) =
ik

4π
(x̂ × q) × x̂e−ikx̂·z0 , z0 ∈ D

should be large if k is a transmission eigenvalue, thus providing us
with a method for determining transmission eigenvalues from far field
data. In [7] it is also shown that, if ξ̄ · Im(N)ξ > 0 in D and for
all ξ ∈ C

3 \ {0}, there are no transmission eigenvalues. Hence, in the
following we assume that ξ̄ · Im(N)ξ = 0 in D and for all ξ ∈ C3, i.e.
the scatterer is a dielectric. The following results are a consequence of
Theorem 3.3 of [7].

Theorem 4.1. Assume that ξ̄ · (N − I)−1 ξ ≥ α|ξ|2 in D, for
all ξ ∈ C3 and some α > 0. Than all transmission eigenvalues (if
they exist) satisfy k2 ≥ α

1 + α
λ(D) where λ(D) is the first Dirichlet

eigenvalue of −Δ on D.

Theorem 4.2. Assume that ξ̄ · N(I − N)−1 ξ ≥ α|ξ|2 in D, for
all ξ ∈ C3 and some α > 0. Than all transmission eigenvalues (if they
exist) satisfy k2 ≥ λ(D) where λ(D) is the first Dirichlet eigenvalue of
−Δ on D.

Finally, exactly in the same way as in the proofs of Theorem 3.3 where
A−1 is replaced by N , we can conclude from the above theorems the
following estimates for the index of refraction.
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Theorem 4.3. 1. If ‖N(x)‖2 ≥ δ > 1 for all x ∈ D and some δ
constant, then

(55) sup
D

‖N‖2 ≥ λ(D)
k2

where k is a transmission eigenvalue and λ(D) is the first eigenvalue
of Δ on D.

2. If 0 < β ≤ ‖N(x)‖2 ≤ δ < 1 for all x ∈ D and some β and δ
constants, then all the transmission eigenvalue satisfy k2 > λ(D) where
λ(D) is the first Dirichlet eigenvalue of −Δ on D.

5. Numerical examples. This section will present some numerical
investigations on the behavior of transmission eigenvalues with respect
to both the shape of the medium and the index of refraction. We shall
restrict ourselves to a simplified 2-D orthotropic media where

A =
1

n(x)
I

(i.e. n11 = n22 = n and n12 = n21 = 0) with n(x) > 0 being a
piecewise constant function. This numercial study is complementary
to the one presented in [5] where the isotropic case is considered.
As indicated in the third section, the transmission eigenvalues are
numerically computed using the behavior of the solution g to the far
field equation (18) in terms of the wave number k for a fixed point z
lying inside the orthotropic medium. We expect ‖g‖ to have peaks at
the transmission eigenvalues.

The set of data (i.e. {u∞(x̂, d; k), for x̂ ∈ Ω, d ∈ Ω and k ∈
[kmin, kmax]}) is generated using a forward solver based on reformu-
lating the scattering problem as an integral equation on the interface
between media with constant n. The integral equation is then solved
using a variational approach and P 1 finite elements. The discretization
step has been adapted to the frequency in order to maintain a com-
parable precision for different wave numbers and index. We have also
adapted the number of direction and observation points (x̂, d) for the
discretization of the far field operator (20) to the frequency.

The computed data is then corrupted with 1% random relative noise
and equation (18) is solved using Tikhonov regularization combined
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with the generalized Morozov principle to evaluate the regularization
parameter [4].

A validating example: We shall first consider the simple case of
a circle with a constant index of refraction where some transmission
eigenvalues can be computed explicitly. Let r0 be the radius of this
circle and assume that n is constant. Then, seeking solutions to
the interior transmission problem in the form v(x) = αJ0(k|x|) and
w(x) = βJ0(k

√
n|x|), one easily checks that the existence of a solution

is equivalent to k being a zero of the equation

(56)
1√
n

J0(kr0)J1(k
√

nr0) − J1(kr0)J0(k
√

nr0) = 0.

Notice that this equation is different from the one obtained for isotropic
inclusions. Figure 1 shows the numerical evaluation of k �−→ ‖g‖ for
r0 = 0.5, n = 4 and k ≤ 35 and compares the abscissa of the observed
peaks with the first zeros of equation (56). One clearly sees a very good
agreement between the two sets of computed values.

The example of Figure 1 can be considered as a validating example
for both the forward solver that generates the synthetic data and the
proposed numerical procedure to compute transmission eigenvalues.

We also compared the values of the first transmission eigenvalues for
different refractive indices as shown in Table 1. Again, one observes a
very good agreement between the two sets of computed values.

k

||g||

0 5 10 15 20 25 30 35
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Peaks’ abscissa Zeros of (56)

5.8 5.81

12.0 12.08

18.3 18.36

24.6 24.64

31 30.92

Figure 1: ‖g‖ in terms of the wave number k for the circle with r0 = 0.5 and n = 4..
The peaks coincide with the computed transmission eigenvalues using (56) as shown
in the table.
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n 2. 3. 4. 6. 9. 12.

k0,ex 15.97 9.38 5.81 4.45 3.54 3.04

k0 16.0 9.4 5.8 4.4 3.5 3.0

Table 1: First transmission eigenvalues for a circle of radius 0.5 and a varying index
of refraction. k0,ex: first zero of (56). k0: abscissa of the first peak of k �→ ‖g‖.

Transmission eigenvalues for other geometries: The nice struc-
ture of the transmission eigenvalues observed in the case of the circle
is less pronounced for other geometries. Figures 2-3 respectively show
k �→ ‖g‖ for a domain D respectively being a square = [−r0, r0] ×
[−r0, r0] and an L-shape = {[−r0, r0] × [−r0, r0]} \ {]0, r0]×]0, r0]},
with r0 = 0.5 and n = 4.. However, we observe in both cases a very
good localization of the first transmission eigenvalue since the first peak
is well separated from the other ones.

k

||g||

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

Figure 2: ‖g‖ in terms of the wave number k for the square with r0 = 0.5 and
n = 4..

k
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Figure 3: ‖g‖ in terms of the wave number k for the L-shape with r0 = 0.5 and
n = 4..
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Numerical estimates on the index: The following tables (Tables
2-4) illustrate the dependence of the first eigenvalues k0 in terms of the
index of refraction n and give the value of the resulting lower bound

nmin = λ(D)/k2
0

where λ(D) is the first Dirichlet eigenvalue of −Δ in D. We recall that
λ(D) = (t0/r0)2 in the case of the circle, with t0 
 2.40 . . . denoting
the first zero of J0, λ(D) = 2(π/(2r0))2 in the case of the square and
λ(D) = λ0/r2

0 in the case of the L-shape with λ0 
 9.65 . . . denoting
the Dirichlet eigenvalue for r0 = 1.

In all examples, the value of k0 is evaluated by computing the
function k �→ ‖g‖ at equidistant points with a step Δk = 0.1 for
k ∈ [kmin, kmin + k̃0] where kmin =

√
λ(D)/n and k̃0 denotes the first

eigenvalue computed with the aid of (56) for a circle having roughly
the same Dirichlet eigenvalue as the considered shape.

According to Theorem 3.3, one has some extra information on n only
in the cases where the index of refraction is greater than 1. Therefore, if
no information is available on n one can only state that supD n ≥ nmin

if nmin > 1. In our numerical examples, one then observes that no
information is obtained for n ≤ 4. For a larger index of refraction the
accuracy of obtained lower bounds increases with n. One also observes a
monotonically decreasing dependence between k0 and n which indicates
that the value of k0 could also be used as a comparative test between
the index of refraction of two unknown media (at least if we already
know that in both cases the index of refraction is greater than 1).

n 2. 3. 4. 6. 9. 12. 16.

k0 16.0 9.4 5.8 4.4 3.5 3.0 2.6

nmin 0.1 0.3 0.7 1.2 2.0 2.6 3.4

Table 2: First transmission eigenvalues (k0) and lower bounds of the index of
refraction (nmin) for the circle with r0 = 0.5.
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n 2. 3. 4. 6. 9. 12. 16.

k0 13.0 8.0 5.3 4.4 3.14 2.7 2.3

nmin 0.1 0.3 0.7 1.0 2.0 2.7 3.7

Table 3: First transmission eigenvalues (k0) and lower bounds of the index of
refraction (nmin) for the square with r0 = 0.5.

n 2. 3. 4. 6. 9. 12. 16.

k0 15.5 8.1 6.3 4.5 3.3 2.8 2.3

nmin 0.2 0.6 1. 1.9 3.5 4.9 7.2

Table 4: First transmission eigenvalues (k0) and lower bounds of the index of
refraction (nmin) for the L-shape with r0 = 0.5.

We end this section with a numerical example for a nonhomogeneous
media. More precisely we consider the case of two embedded squares
[−r0, r0]× [−r0, r0] and [−r1, r1]× [−r1, r1] with r0 = 0.5 and r1 ≤ r0

where n = 2 inside the smaller square and n = 4 in the region between
the two squares. We then vary the value of r1 between 0 and r0. The
values of the first transmission eigenvalue detected by our algorithm
are reported in the following table (Table 5). One clearly observe how
k0 increases with r1, which indeed causes the lower bound on supD n to
become worse. However, the observed dependence of k0 in terms of r1

suggests that a sharper estimate on n in terms of Lp norms with p < ∞
would be possible, but this issue definitely needs deeper numerical and
theoretical investigations.

r1 0 0.2 0.4 0.5 (=r0)

k0 5.3 7.4 10.9 13.

Table 5: First transmission eigenvalue (k0) for two concentric boxes with different
index of refraction.
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