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ABSTRACT. We apply the multi-level augmentation method
for solving operator equations of the first kind via the Tikhonov
regularization method. We present a new a posteriori param-
eter choice strategy which leads to optimal convergence rates.
Numerical experiments illustrate the efficiency of the method.

1. Introduction. In this paper we consider the problem of solving
the first kind operator equation

(1.1) Kx = y,

where K is a linear compact operator from a Hilbert space X to
another Hilbert space Y. Assume that y ∈ D(K†) := R(K) + R(K)⊥,
where R(K) is the range of the operator K, and K† the Moore-Penrose
generalized inverse of K. It is known that the minimum norm least
squares solution x∗ = K†y of the equation (1.1) exists. In the following,
for simplicity, we assume y ∈ R(K), cf. [6].

In practice, only approximate righthand side yδ ∈ Y with ‖y−yδ‖ ≤ δ
is available, where δ > 0 is an error level. Thus we need to solve the
perturbed operator equation

(1.2) Kxδ = yδ.
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It is well known that the above problem is ill-posed when the range
R(K) of the operator K is not closed in Y. Regularization methods
are normally used to obtain a stable approximate solution [5, 6, 11,
15]. The idea of the regularization methods is to determine an approx-
imation xδ ∈ X to the solution x∗ that depends continuously on the
perturbation error δ of the righthand side. There are many regular-
ization methods, such as the Tikhonov regularization, the Lavrentiev
regularization and the Landweber iteration.

Regularized projection methods with a priori and a posteriori choices
of regularization parameters were studied by many authors (see, for
example, [7, 10, 12, 13]). Recently, multi-scale and wavelet meth-
ods were applied to solve ill-posed problems, see [3, 8, 9]. Multi-scale
schemes are becoming efficient numerical methods for solving ill-posed
problems. The multi-level augmentation method was developed in [1]
for solving well-posed operator equations. The method is based on the
multi-scale decomposition of the range space of the operator and the
solution space of the equation and a matrix splitting strategy. The
method was applied to solving ill-posed operator equations in [2]. It
was combined with the Lavrentiev regularization method and led to fast
solutions of discrete regularization methods for the equations. Theo-
retical analysis and numerical experiments show the accuracy and ef-
ficiency of the method. Tikhonov regularization method is a more
general method and has been used widely. The choice of the regular-
ization parameter is a key issue in Tikhonov regularization methods [4,
6]. So we apply the augmentation method to Tikhonov regularization
method, and extend the idea of a posteriori choices of regularization
parameters in [2]. The purpose of this paper is to develop a new a
posteriori regularization parameter choice strategy for the multi-level
augmentation method for solving ill-posed operator equations of the
first kind, by using the Tikhonov regularization method. We will show
that the method provides an optimal convergence order with great ad-
vantages in computation.

We organize this paper as follows. In Section 2, we describe the
multi-level augmentation method for numerical solutions of ill-posed
operator equations of the first kind. We present in Section 3 an
a posteriori regularization parameter choice strategy. In Section 4,
we establish an optimal order of convergence for the approximate
solution obtained from the multi-level augmentation method using the a
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posteriori regularization parameter. In Section 5, we present numerical
examples which illustrate the efficiency of the method and confirm the
theoretical results obtained in Sections 3 and 4.

2. The multi-level augmentation method. The multi-level
augmentation method had been applied to Lavrentive regularization
method in [2]. In this section we describe the multi-level augmentation
method for numerically solving ill-posed operator equations of the
first kind stabilized by Tikhonov regularization. Similarly, cf. [2], we
also show some error estimations due to the multi-level augmentation
method.

The Tikhonov regularization method for solving (1.2) is: For some
α > 0, finding an approximation solution xδ(α) such that

(2.1) (αI + A)xδ(α) = K∗yδ,

where A = K∗K and K∗ is the adjoint operator of K. We denote x(α)
the solution of the equation

(2.2) (αI + A)x(α) = K∗y.

In order to solve (2.1) numerically, let {Xn : n ∈ N0}, where
N0 := {0, 1, 2, . . .}, be a sequence of finite-dimensional subspaces of
X satisfying ∪n∈N0Xn = X, and let {Pn : n ∈ N0} be a sequence
of orthogonal projections from X to Xn. Denote An := PnAPn,
zδ

n := PnK∗yδ. The approximation problem for solving (2.1) is to
find xδ

n(α) in Xn such that

(2.3) (αI + An)xδ
n(α) = zδ

n.

It is clear that equations (2.1) and (2.3) have a unique solution
respectively. Moveover, the following hold

‖(A + αI)−1‖ ≤ 1/α, ‖(An + αI)−1‖ ≤ 1/α,(2.4)
‖(A + αI)−1A‖ ≤ 1, ‖(An + αI)−1An‖ ≤ 1,(2.5)

and

(2.6) ‖(A+αI)−1K∗‖ ≤ 1/(2
√
α), ‖(An+αI)−1PnK∗‖ ≤ 1/(2

√
α).
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In the following discussion, we impose two hypotheses, cf. [2, 12].

(H1) For some ν ∈ (0, 1], x∗ = K†y ∈ R(Aν), i.e., there is an ω ∈ X
such that x∗ = Aνω.

(H2) There is a sequence of positive real numbers {εn : n ∈ N0}
satisfying

1
σ
εn < εn+1 < εn, and εn −→ 0, (n→ +∞),

for some σ > 1, such that

(2.7) ‖(I − Pn)Aν‖ ≤ aνε
ν
n, 0 < ν ≤ 2.

We remark that, under the condition (H1), the following estimates
hold (see, for example, [2, 14])

‖x(α) − x∗‖ ≤ cν‖ω‖αν, and(2.8)

‖x(α) − xδ(α)‖ ≤ δ

2
√
α
.(2.9)

We now apply multi-level augmentation method to solve the equation
(2.3). Assume that the subspaces Xn, n ∈ N0, are nested, i.e.,
Xn ⊂ Xn+1, n ∈ N0. Let Wn be the orthogonal complement of
Xn−1 in Xn, n ∈ N, that is, Xn = Xn−1 ⊕⊥ Wn. Thus for any k ∈ N
and m ∈ N0, we have the space decomposition

(2.10) Xk+m = Xk ⊕⊥ Wk+1 ⊕⊥ Wk+2 ⊕⊥ · · · ⊕⊥ Wk+m.

We identify the vector [x0, x1, . . . , xm]T in Xk ×Wk+1×· · ·×Wk+m

with vector x0 + x1 + · · ·+ xm in Xk ⊕⊥ Wk+1 ⊕⊥ · · · ⊕⊥ Wk+m. Let

Qn+1 := Pn+1 − Pn.

The operator Ak+m can be written as a matrix form

(2.11) Ak,m :=

⎡
⎢⎢⎣

PkAPk PkAQk+1 · · · PkAQk+m

Qk+1APk Qk+1AQk+1 · · · Qk+1AQk+m

...
...

. . .
...

Qk+mAPk Qk+mAQk+1 · · · Qk+mAQk+m

⎤
⎥⎥⎦ .



SOLVING ILL-POSED OPERATOR EQUATIONS 573

We split the operator Ak,m into the sum of two operators

(2.12) Ak,m = AL
k,m + AH

k,m,

where

AH
k,m := (Pk+m − Pk)APk+m

=

⎡
⎢⎢⎣

0 0 · · · 0
Qk+1APk Qk+1AQk+1 · · · Qk+1AQk+m

...
...

. . .
...

Qk+mAPk Qk+mAQk+1 · · · Qk+mAQk+m

⎤
⎥⎥⎦ ,

and

AL
k,m := PkAPk+m =

⎡
⎢⎢⎣
PkAPk PkAQk+1 · · · PkAQk+m

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎦ .

For a given positive parameter α, we denote Bk,m(α) := αI + AL
k,m,

Ck,m := AH
k,m. Then, the equation (2.3) with n = k +m becomes

(2.13) (Bk,m(α) + Ck,m)xδ
k+m(α) = zδ

k+m.

We recall the multi-level augmentation scheme for solving (2.3) which
can be described as follows.

Algorithm 2.1 (The multi-level augmentation scheme).

1. For a fixed k > 0, solve (2.3) with n = k to obtain xδ
k(α) ∈ Xk.

2. Set xδ
k,0(α) := xδ

k(α) and compute matrices Bk,0(α) and Ck,0.

3. For m ∈ N, assume that xδ
k,m−1(α) has been obtained and do the

following.

(a) Augment the matrices Bk,m−1(α) and Ck,m−1 to form Bk,m(α)
and Ck,m.

(b) Augment xδ
k,m−1(α) to form x̄δ

k,m(α) := [xδ
k,m−1(α)T , 0]T ∈

Xk+m.



574 Z. CHEN, Y. JIANG, L. SONG AND H. YANG

(c) Solve xδ
k,m(α) from the equation

(2.14) Bk,m(α)xδ
k,m(α) = zδ

k+m − Ck,mx̄
δ
k,m(α).

To estimate the error of the multi-level augmentation solution we
first estimate the error between the projection solution xδ

n(α) and
the solution x(α) of the equation (2.2) by modifying the proof of
Proposition 3.1 in [2]. We denote

γδ
α,n :=

δ

2
√
α

+
(2a1+ν + a1aν)‖ω‖

α
ε1+ν

n .

Lemma 2.2. Assume that hypotheses (H1) and (H2) hold. Let x(α)
and xδ

n(α) be the solutions of the equation (2.2) and the projection
method (2.3), respectively. Then there exists a positive integer N ∈ N0

such that when n ≥ N ,

(2.15) ‖xδ
n(α) − x(α)‖ ≤ γδ

α,n.

Proof. We just need to do some modification of the proof of
Proposition 3.1 in [2]. We replace ‖(αI + An)−1(f δ − f)‖ by
‖(αI + An)−1PnK∗(yδ − y)‖, replace ‖(αI + An)−1(Pn − I)f‖ by
‖(αI+An)−1(Pn−I)K∗y‖, and replace ‖[(αI+An)−1−(αI+A)−1]f‖
by ‖[(αI + An)−1 − (αI + A)−1]K∗y‖ in the proof of Proposition 3.1
of [2]. We also substitute

‖(αI + An)−1(f δ − f)‖ ≤ δ

α

by

(2.16) ‖(αI + An)−1PnK∗(yδ − y)‖ ≤ δ

2
√
α
.

Then, by going through the similar process, we get the conclusion.
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In the next theorem, we estimate the distance between xδ
k+m(α) and

xδ
k,m(α) by modifying the proof of Proposition 3.3 in [2].

Theorem 2.3. Assume that hypotheses (H1) and (H2) hold. Let
xδ

k,m(α) and xδ
k+m(α) be the solutions of the multi-level augmentation

method and the projection method (2.3) with n = k + m, respectively.
Then, there exists a positive integer N ∈ N0 such that, when k ≥ N ,
m ∈ N0 and α satisfies the conditions

(2.17) α ≥ (2σ + 3)a1εk and εk ≤ 1;

the following estimations hold

‖xδ
k+m(α) − xδ

k,m(α)‖ ≤ γδ
α,k+m, and(2.18)

‖x(α) − xδ
k,m(α)‖ ≤ 2γδ

α,k+m.(2.19)

Proof. Similar to equation (3.22) in [2], we have that

(2.20) ‖xδ
k+m(α) − xδ

k,m(α)‖ ≤ ‖Ck,m‖
α− ‖Ck,m‖‖x̄

δ
k,m(α) − xδ

k+m(α)‖.

Since xδ
k,0(α) = xδ

k(α), the estimation (2.18) holds when m = 0.
Suppose that (2.18) holds for m = r− 1. We come to prove that (2.18)
holds for m = r. According to the definition of x̄δ

k,r(α), we have

(2.21) ‖x̄δ
k,r(α) − xδ

k+r(α)‖ ≤ ‖xδ
k+r(α) − x(α)‖

+ ‖xδ
k+r−1(α) − x(α)‖ + ‖xδ

k,r−1(α) − xδ
k+r−1(α)‖.

By the hypotheses (H2), the condition (2.17) and Lemma 2.2, we
obtain

‖x̄δ
k,r(α) − xδ

k+r(α)‖ ≤ 1
2σ + 3

γδ
α,k+r +

1
2σ + 3

γδ
α,k+r−1(2.22)

+γδ
α,k+r−1.

Noting that εk+r−1 < σεk+r , σ > 1 and εk+r−1 < εk < 1, we have

(2.23) γδ
α,k+r−1 ≤ σγδ

α,k+r .
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Substituting (2.23) into (2.22), we get

(2.24) ‖x̄δ
k,r(α) − xδ

k+r(α)‖ ≤ 2σ2 + 4σ + 1
2σ + 3

γδ
α,k+r.

Since α satisfies (2.17) and ‖Ck,m‖ ≤ 2a1εk, we have

(2.25)
‖Ck,m‖

α− ‖Ck,m‖ ≤ 2
2σ + 1

.

Substituting (2.24) and (2.25) into the righthand side of (2.20) with
m = r yields

‖xδ
k+m(α) − xδ

k,m(α)‖ ≤ 2(2σ2 + 4σ + 1)
(2σ + 1)(2σ + 3)

γδ
α,k+m(2.26)

≤ γδ
α,k+m.

From Lemma 2.2 and (2.26), we obtain the inequality (2.19).

3. An a posteriori parameter choice strategy. In this section,
we present an a posteriori parameter choice strategy which leads to
the optimal convergence for the approximate solution obtained by the
multi-level augmentation method with the parameter.

To do this, we consider the equation

(3.1) (αI + A)vδ(α) = xδ
k,m(α)

and its approximate equations

(3.2) (αI + Ak+m)vδ
k+m(α) = xδ

k,m(α),

where xδ
k,m(α) ∈ Xk+m is the multi-level augmentation solution of the

equation (2.3). In order to distinguish the multi-level augmentation
solution of (3.2), we denote vδ(α) and vδ

k+m(α) the solutions of (3.1)
and (3.2), respectively, which indeed depend on k and m. We also
denote vδ

k,m(α) the multi-level augmentation solution of (3.2). The a
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posteriori regularization parameter α∗ is determined by the following
principle. To describe the strategy, we denote α1 := δ2.

Algorithm 3.1 (A posteriori parameter choice strategy). Choose α∗
as the regularization parameter as follows.

(C1) If ‖α3/2
1 vδ

k,m(α1)‖ ≥ 3δ, set α∗ := α1.

(C2) Otherwise, let α∗ be the minimum solution of the equation

(3.3) ‖α3/2vδ
k,m(α)‖ = 3δ

in [α1,+∞).

We will prove the existence of the solution of (3.3) by using the
intermediate value theorem. To this end, we first define the function
gδ

k,m(α) on (0,+∞) by

gδ
k,m(α) :=

∥∥∥α3/2vδ
k,m(α)

∥∥∥ ,
and show that it is a continuous function on (0,+∞).

Lemma 3.2. For a given k, m ∈ N0 and δ > 0, gδ
k,m(α) is a

continuous function on (0,+∞).

Proof. We first prove that xδ
k,m(α) depends continuously on α. It is

clear that when m = 0, xδ
k,m(α) depends continuously on α. Assume

that for r ∈ N, xδ
k,r−1(α) depends continuously on α. Then for

α1, α2 > 0, according to (2.14), we have that

(3.4) ‖xδ
k,r(α1) − xδ

k,r(α2)‖
≤ ‖(B−1

k,r(α1) − B−1
k,r(α2))zδ

k+r‖
+ ‖B−1

k,r(α1)Ck,rx̄
δ
k,r(α1) − B−1

k,r(α2)Ck,rx̄
δ
k,r(α2)‖

≤ ‖(B−1
k,r(α1) − B−1

k,r(α2))zδ
k+r‖

+ ‖(B−1
k,r(α1) − B−1

k,r(α2))Ck,rx̄
δ
k,r(α2)‖

+ ‖B−1
k,r(α1)Ck,r(x̄δ

k,r(α1) − x̄δ
k,r(α2))‖.
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Since

‖B−1
k,r(α1) − B−1

k,r(α2)‖ = ‖(α1 − α2)B−1
k,r(α1)B−1

k,r(α2)‖,

and xδ
k,r−1(α) depends continuously on α, we conclude that the right-

hand side of (3.4) is going to zero as α1 → α2. Thus, xδ
k,r(α) de-

pends continuously on α. Similar arguments can be used to obtain
that vδ

k,m(α) depends continuously on α. This means that gδ
k,m(α) is a

continuous function on (0,+∞).

Then, we will prove that there are two points in (0,+∞) at which the
values of gδ

k,m(α) are nonpositive and nonnegative, respectively. To do
this, we denote

φδ
k,m(α) := α2vδ

k,m(α),

ψ(α) := α2(αI + A)−2K∗y,
ψδ(α) := α2(αI + A)−2K∗yδ,

and establish some estimates. As a preparation, we first provide upper
bounds of

Ẽδ
k+m(α) := inf

{∥∥vδ(α) − v
∥∥ : v ∈ Xk+m

}
and ‖vδ

k,m(α)−vδ
k+m(α)‖.

Lemma 3.3. Assume that hypotheses (H1) and (H2) hold. Then
there exists a positive integer N ∈ N0 such that when k ≥ N , m ∈ N0,
α and εk satisfy condition (2.17), the following estimate holds:

Ẽδ
k+m(α) ≤ δ

α3/2
+

(5a1+ν + a1aν)‖ω‖
α2

ε1+ν
k+m,(3.5)

and

‖vδ
k,m(α) − vδ

k+m(α)‖ ≤ δ

α3/2
+

(5a1+ν + 2a1aν)‖ω‖
α2

ε1+ν
k+m.(3.6)

Proof. The proofs of (3.5) and (3.6) are similar to the proof of
Proposition 4.1 in [2] and the proof of Theorem 2.3, respectively.
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Lemma 3.4. Assume that hypotheses (H1) and (H2) hold. Then
there exists a positive integer N ∈ N0 such that when k ≥ N, m ∈ N0,
α and εk satisfy condition (2.17); then the following hold:

(i) ‖ψ(α)‖ ≤ ‖ω‖α1+ν,

(ii) ‖ψδ(α) − ψ(α)‖ ≤ √
αδ/2.

(iii) ‖φδ
k,m(α) − ψ(α)‖ ≤ 2

√
αδ + (10a1+ν + 5a1aν)‖ω‖ε1+ν

k+m.

Proof. (i) Since y = Kx∗ = K(K∗K)νω, we have that

(3.7) ‖ψ(α)‖ = ‖α1+ν [α(αI + A)−1]1−ν [(αI + A)−1A]1+νω‖.

By (2.4) and (2.5),∥∥[α(αI + A)−1]1−ν
∥∥ ≤ 1,

∥∥[(αI + A)−1A]1+ν
∥∥ ≤ 1;

thus, we obtain

(3.8) ‖ψ(α)‖ ≤ ‖ω‖α1+ν.

(ii) Using (2.4) and (2.6), we have

‖ψδ(α) − ψ(α)‖ = ‖α2(αI + A)−2K∗(yδ − y)‖ ≤
√
αδ

2
.

(iii) It follows from (2.2) and (3.2) that

(3.9) ‖φδ
k,m(α) − ψ(α)‖

≤ α2‖vδ
k,m(α) − vδ

k+m(α)‖ + α2‖vδ
k+m(α) − (αI + Ak,m)−1x(α)‖

+ α2‖(αI + Ak,m)−1x(α) − (αI + A)−2K∗y‖
≤ α2‖vδ

k,m(α) − vδ
k+m(α)‖ + α2‖(αI + Ak,m)−1[xδ

k,m(α) − x(α)]‖
+ α2‖[(αI + Ak,m)−1 − (αI + A)−1](αI + A)−1K∗y‖.

Noting that

[(αI + Ak,m)−1 − (αI + A)−1](αI + A)−1K∗y

= (αI + Ak,m)−1Pk+mA(I − Pk+m)(αI + A)−2A1+νω

+ (αI + Ak,m)−1(I − Pk+m)A(αI + A)−2A1+νω,
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using (2.4) and (H2), we conclude that

(3.10) ‖[(αI + Ak,m)−1 − (αI + A)−1)](αI + A)−1K∗y‖
≤ a1aν‖ω‖

α2
ε1+ν

k+m +
a1+ν‖ω‖
α2

ε1+ν
k+m.

Combining (3.9) with (3.6), (2.19) and (3.10) yields the third estimate
of this lemma.

In the next lemma we show that there is an α ∈ (0,+∞) such that
α−1/2‖ψδ(α)‖ ≥ 6δ. To do this, we denote the spectrum radius of K
by ρ and require the following additional condition.

(H3) ‖K∗yδ‖ ≥ 24‖K∗‖δ.

Lemma 3.5. Assume that hypothesis (H3) holds. If α = ρ2, then

α−1/2‖ψδ(α)‖ ≥ 6δ.

Proof. Let {βi;ui, vi : i ∈ N} be the singular system of K. Then
the singular systems of operators (αI + A) and (αI + A)−2 are
{α+ β2

i ;ui, ui : i ∈ N} and {1/(α+ β2
i )2;ui, ui : i ∈ N}, respectively.

By the singular value decomposition, we have that

α−1/2ψδ(α) = α3/2(αI + A)−2K∗yδ = α3/2
∑
i∈N

1
(α+ β2

i )2
(K∗yδ, ui)ui.

Thus,

‖α−1/2ψδ(α)‖ =
(∑

i∈N

α3

(α + β2
i )4

|(K∗yδ, ui)|2
)1/2

(3.11)

≥ α3/2

(α+ ρ2)2
‖K∗yδ‖.

By the assumption (H3), when α = ρ2,

‖α−1/2ψδ(α)‖ ≥ 6
ρ
‖K∗‖δ ≥ 6δ,

which completes the proof of this lemma.
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The following theorem shows the existence of the solution of (3.3),
which ensures that the a posteriori parameter can be determined by
the Algorithm 3.1. To do this, we set α0 := min{(δ2/4‖ω‖2), δ2}.

Theorem 3.6. Assume that hypotheses (H1) (H3) hold. Then there
exists a positive integer N such that when k ≥ N and m ∈ N0, the
equation (3.3) has a solution α ∈ [α1, ρ

2] except for gδ
k,m(α1) ≥ 3δ, in

which case (3.3) has a solution α ∈ [α0, α1].

Proof. It follows from (H2) that there exists a positive integer N such
that when k ≥ N and m ∈ N0,

εk < 1,(3.12)
(3σ + 1)a1εk ≤ α0,(3.13)

and

(3.14) εk+m ≤ ηδ
ν := min

{
δ
√
α0

2(10a1+ν + 5a1aν)‖ω‖ , 1
}
.

By the definition of φδ
k,m(α),

gδ
k,m(α) = α−1/2‖φδ

k,m(α)‖
≥ α−1/2‖ψδ(α)‖ − α−1/2‖ψδ(α) − φδ

k,m(α)‖
≥ α−1/2‖ψδ(α)‖ − α−1/2(‖ψδ(α) − ψ(α)‖ + ‖ψ(α) − φδ

k,m(α)‖).

From (2.4) and (2.6) we have that

‖ψδ(α) − ψ(α)‖ = ‖α2(αI + A)−2K∗(yδ − y)‖ ≤ δ

2
.

Therefore, by using Lemma 3.4 (iii) and Lemma 3.5, we conclude that
when α = ρ2,

gδ
k,m(α) ≥ 6δ − δ

2
− 2δ − (10a1+ν + 5a1aν)‖ω‖ε1+ν

k+m

ρ
,
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which with (3.14) yields

(3.15) gδ
k,m(ρ2) ≥ 3δ.

On the other hand, according to Lemma 3.4 we have that

(3.16)

gδ
k,m(α) = α−1/2‖φδ

k,m(α)‖
≤ α−1/2‖ψ(α)‖ + α−1/2‖φδ

k,m(α) − ψ(α)‖

≤ ‖w‖α1/2+ν + 2δ +
(10a1+ν + 5a1aν)‖ω‖ε1+ν

k+m√
α

.

Noting that

‖w‖α1/2+ν
0 ≤ δ

2
, and

(10a1+ν + 5a1aν)‖ω‖ε1+ν
k+m√

α0
≤ δ

2
,

we conclude

(3.17) gδ
k,m(α0) ≤ 3δ.

Since gδ
k,m(α) is a continuous function on the interval [α0, ρ

2], the
equation (3.3) has a solution α ∈ [α1, ρ

2] when gδ
k,m(α1) ≤ 3δ.

Otherwise, it has a solution α ∈ [α0, α1].

4. Convergence rate analysis. In this section, we establish
the optimal convergence rate for the approximate solution stabilized
by Tikhonov regularization method and obtained by the multi-level
augmentation method with the a posteriori parameter choice strategy
given in the last section.

As preparation, we show that there is a positive constant c indepen-
dent of α and δ such that cδ2/(1+2ν) ≤ α, where α ∈ [α0, ρ

2] is a solution
of (3.3). For convenience, we denote α2 := δ2/(1+2ν).

Lemma 4.1. Assume that hypotheses (H1) (H3) hold, and N is
chosen such that (3.12), (3.13) and (3.14) hold. Let α ∈ [α0, ρ

2] be a
solution of (3.3). Then there exists a positive constant c independent
of α and δ such that

cα2 ≤ α.
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Proof. Since (3.13) implies that α satisfies (2.17), it follows from
Lemma 3.4 that∥∥φδ

k,m(α)
∥∥ ≤ ‖ψ(α)‖ +

∥∥φδ
k,m(α) − ψ(α)

∥∥(4.1)

≤ ‖ω‖α1+ν + 2
√
αδ + (10a1+ν + 5a1aν)‖ω‖ε1+ν

k+m.

Noting that εk+m satisfies (3.14) and α is a solution of (3.3), we
conclude from (4.1) that

3
√
αδ =

∥∥φδ
k,m(α)

∥∥ ≤ ‖ω‖α1+ν + 2
√
αδ +

1
2
√
α0δ.

This leads to √
α

2
δ ≤ ‖ω‖α1+ν ,

which yields the result of this lemma with c := [1/(2‖w‖)]2/(1+2ν).

Let α∗ be chosen according to Algorithm 3.1. In the case (C1)
and the case (C2) with α∗ ≤ α2, it is easy to obtain the optimal
convergence rate directly, see Theorem 4.5. To deal with case (C2)
with α2 ≤ α∗, we need the following lemmas. To describe them, we
define Fβ(α) :=

∥∥xδ(α) − xδ(β)
∥∥.

Lemma 4.2. For any given β > 0, Fβ(·) is differentiable on (β,+∞).

Proof. A simple computation leads, for any α+ h, α ∈ (β,+∞), to

Fβ(α+h)−Fβ(α) =

〈
xδ(α+ h) − xδ(α), xδ(α + h) + xδ(α) − 2xδ(β)

〉
‖xδ(α+ h) − xδ(β)‖ + ‖xδ(α) − xδ(β)‖ .

Note that

xδ(α′) − xδ(α′′) = (α′′ − α′)(α′I + A)−1(α′′I + A)−1K∗yδ

and

lim
h→0

∥∥xδ(α+ h) − xδ(β)
∥∥ =

∥∥xδ(α) − xδ(β)
∥∥

= (β − α)‖(αI + A)−1(βI + A)−1K∗yδ‖ �= 0,
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we obtain

(4.2) lim
h→0

Fβ(α+ h) − Fβ(α)
h

=−
〈
(αI + A)−2K∗f δ, xδ(α)−xδ(β)

〉
‖xδ(α) − xδ(β)‖ ,

which means that F (α) is differentiable on (β,+∞).

Next we estimate the value of F ′(α) on (α2, α∗].

Lemma 4.3. Assume that hypotheses (H1) (H3) hold, and N is
chosen such that (3.13) and (3.14) hold. Let α∗ be chosen according to
(C2) of Algorithm 3.1. Then for any α, β ∈ (α2, α∗] with β < α,

(4.3) α2
∣∣F ′

β(α)
∣∣ ≤ 6

√
αδ.

Proof. It follows from (4.2) and the definition of ψδ(α) that

|F ′
β(α)| ≤

∥∥∥(αI + A)−2 K∗yδ
∥∥∥ = α−2‖ψδ(α)‖.

Thus, by using Lemma 3.4 we have

(4.4) α2|F ′
β(α)| ≤ ∥∥φδ

k,m(α) − ψ(α)
∥∥ +

∥∥ψδ(α) − ψ(α)
∥∥ +

∥∥φδ
k,m(α)

∥∥
≤ 2

√
αδ + (10a1+ν + 5a1aν)‖ω‖ε1+ν

k+m +
√
αδ

2
+

∥∥φδ
k,m(α)

∥∥ .
Since α∗ is chosen according to (C2) and α ≤ α∗,

(4.5)
∥∥φδ

k,m(α)
∥∥ = ‖α2vδ

k,m(α)‖ ≤ 3
√
αδ.

Combining (3.14), (4.4) and (4.5) yields the result of this lemma.

Lemma 4.4. Suppose that the assumptions of Lemma 4.3 hold. Then

(4.6) ‖xδ(α2) − xδ(α∗)‖ = O(δ(2ν)/(2ν+1)), as δ → 0.
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Proof. Let p > 1 and βi = pi−1α2, i ∈ N. Assume that βN ≤ α∗ ≤
βN+1. Then there exist ξi ∈ (βi, βi+1), i = 1, 2, . . . , N , such that

‖xδ(α2) − xδ(α∗)‖

≤
N−1∑
i=1

‖xδ(βi) − xδ(βi+1)‖ + ‖xδ(βN ) − xδ(α∗)‖

=
N−1∑
i=1

[Fβi(βi+1) − Fβi(βi)] + FβN (α∗) − FβN (βN )

≤
N−1∑
i=1

(βi+1 − βi)|F ′
βi

(ξi)| + (α∗ − βN )|F ′
βN

(ξN )|.

From Lemma 4.3, we have that, for any i = 1, 2, . . . , N ,

|F ′
βi

(ξi)| ≤ 6δ
ξi
√
ξi

≤ 6δ

pi−1α2

√
pi−1α2

.

Therefore,

(4.7) ‖xδ(α2) − xδ(α∗)‖ ≤ (p− 1)
N∑

i=1

6δ√
pi−1α2

≤ c
δ√
α2
,

with c := 6
√
p(
√
p+ 1).

We finally estimate the error of the multi-level augmentation solu-
tion xδ

k,m(α∗), which shows that the a posteriori parameter strategy
embodied in Algorithm 3.1 can lead to an optimal convergence rate.

Theorem 4.5. Assume that hypotheses (H1) (H3) hold, and N
is chosen such that (3.12), (3.13) and (3.14) hold. Let α∗ be chosen
according to Algorithm 3.1. Then for k ≥ N and m ∈ N0,

‖x∗ − xδ
k,m(α∗)‖ = O(δ(2ν)/(2ν+1)), δ → 0.

Proof. In the case (C1), from Theorem 3.6 we know that there is
a solution α of (3.3) in [α0, α1]. According to Lemma 4.1, we have
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cα2 ≤ α ≤ α∗ = α1 ≤ α2. In the case (C2) with α∗ ≤ α2, Lemma 4.1
also leads to cα2 ≤ α∗ ≤ α2. Noting that α2 = δ2/(1+2ν), in either case
we have

(4.8) αν
∗ ≤ δ(2ν)/(1+2ν),

δ√
α∗

≤ δ√
cα2

=
1√
c
δ(2ν)/(1+2ν),

and

(4.9)

ε1+ν
k+m

α∗
≤ δ

√
α0

2c(10a1+ν + 5a1aν)‖ω‖α2

≤ 1
2c(10a1+ν + 5a1aν)‖ω‖δ

(2ν)/(1+2ν),

in the last inequality we used (3.14). It follows from (2.8) and Theo-
rem 2.3 that

‖x∗ − xδ
k,m(α∗)‖ ≤ ‖x(α∗) − x∗‖ + ‖xδ

k,m(α∗) − x(α∗)‖

≤ cν‖w‖αν
∗ +

δ√
α∗

+
(4a1+ν + 2a1aν)‖ω‖

α∗
ε1+ν

k+m,

which with (4.8) and (4.9) yields the estimate of this theorem. In the
case (C2) with α2 ≤ α∗, we consider

(4.10) ‖x∗ − xδ
k,m(α∗)‖ ≤ ‖xδ

k,m(α∗) − xδ(α∗)‖
+ ‖xδ(α∗) − xδ(α2)‖ + ‖xδ(α2) − x∗‖.

Using (2.9), Theorem 2.3 and the fact that α2 ≤ α∗, we have that

(4.11) ‖xδ
k,m(α∗) − xδ(α∗)‖ = O(δ(2ν)/(2ν+1)), δ → 0.

By Lemma 4.4, the following holds

(4.12) ‖xδ(α2) − xδ(α∗)‖ = O(δ(2ν)/(2ν+1)), δ → 0.

From (2.8) and (2.9) we obtain

(4.13) ‖xδ(α2) − x∗‖ = O(δ(2ν)/(2ν+1)), δ → 0.

Combining (4.10) (4.13) proves the estimate of this theorem.
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5. Numerical examples. In this section, we present some numer-
ical examples to illustrate the effectiveness of the algorithm described
in preceding sections. In our two examples, we compare our parame-
ter choice strategy with a priori parameter choice strategy to show the
efficiency of our algorithm.

To this end, we consider the problem of solving the first kind integral
equation

(5.1) (Kx)(t) = y(t), t ∈ [0, 1],

where K : L2(0, 1) → L2(0, 1) is a linear compact operator defined by

(5.2) (Kx)(t) :=
∫ 1

0

k(t, s)x(s) ds, t ∈ [0, 1],

with a smooth kernel k(t, s) defined on [0, 1] × [0, 1].

Let Xn be the finite space of piecewise linear polynomials on [0, 1]
with knots at j/2n, j = 1, 2, . . . , 2n − 1. We decompose the Xn into
the direct sum of subspaces

Xn = X0 ⊕⊥ W1 ⊕⊥ · · · ⊕⊥ Wn,

where X0 is the linear polynomial space on [0, 1], and for n ∈ N, Wn

is the orthogonal complement of Xn−1 in Xn. We choose a basis for
X0

ω00(t) = 1 and ω01(t) = 2
√

3
(
t− 1

2

)
, t ∈ [0, 1],

and a basis for W1

ω10(t) = 6
(
t− 1

2

)
− 2 sgn

(
t− 1

2

)
, t ∈ [0, 1],

and

ω11(t) = 4
√

3
∣∣∣∣t− 1

2

∣∣∣∣, t ∈ [0, 1].

Then the subspace Wi = span {ωij : j = 1, 2, . . . , 2i} with the basis
recursively generated by

ωij(t) =
√

2ωi−1,j(2t), j = 1, 2, . . . , 2i−1,
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and
ωi,2i−1+j(t) =

√
2ωi−1,j(2t− 1), j = 1, 2, . . . , 2i−1.

In the following examples, we denote the errors eδ
k,m(α∗) := ‖x∗ −

xδ
k,m(α∗)‖L2 , and eδ

k+m(α2) := ‖x∗ − xδ
k+m(α2)‖L2 , where δ := ‖f −

f δ‖L2 , α2 = δ2/(2ν+1) is the a priori parameter, α∗ is the regularization
parameters chosen by Algorithm 3.1.

Example 1. Consider the problem (5.1) (5.2) with

k(t, s) = sin(s+ t),

and

y(t) =
1
8

sin
(

2t+ 9
2

)
+

5
8

sin
(

2t+ 1
2

)
+

1
2

cos
(

2t− 1
2

)

− 1
4

cos
(

2t+ 3
2

)
− 1

4
cos

(
2t− 5

2

)
− 1

4
sin

(
2t+ 5

2

)
.

In the case

x∗(t) = K†f = cos
(

2t− 1
2

)
− 1

2
sin

(
2t+ 5

2

)
+

1
2

sin
(

2t+ 1
2

)
.

Moreover, x∗(t) = K∗Kω, ω = 1, which means ν = 1. In the numerical
implementation using the multi-level augmentation scheme, we choose
k = 5 and m = 5. Numerical results listed in Table 1 confirm that the
solutions from our methods get the optimal convergence rate δ2/3.

δ δ2/3 α∗ α2 eδ
k,m(α∗) eδ

k+m(α2)
5.637 × 10−3 3.167 × 10−2 3.220 × 10−2 3.167 × 10−2 5.893 × 10−2 5.878 × 10−2

4.549 × 10−4 5.914 × 10−3 5.681 × 10−3 5.914 × 10−3 1.206 × 10−2 1.143 × 10−2

1.824 × 10−4 3.216 × 10−3 2.692 × 10−3 3.216 × 10−3 7.354 × 10−3 5.438 × 10−3

6.065 × 10−5 1.544 × 10−3 1.373 × 10−3 1.544 × 10−3 3.263 × 10−3 2.728 × 10−3

8.455 × 10−5 1.926 × 10−3 1.176 × 10−3 1.926 × 10−3 4.025 × 10−3 3.866 × 10−3

TABLE 1. Numerical Results of Example 1.
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δ δ1/2 α∗ α2 eδ
k,m(α∗) eδ

k+m(α2)
3.040 × 10−2 1.744 × 10−1 2.725 × 10−1 3.040 × 10−2 1.237 × 10−1 8.031 × 10−2

2.213 × 10−3 4.660 × 10−2 3.290 × 10−2 2.213 × 10−3 2.560 × 10−2 2.141 × 10−2

2.390 × 10−4 1.549 × 10−2 9.099 × 10−4 2.390 × 10−4 1.693 × 10−2 2.869 × 10−3

1.232 × 10−5 3.511 × 10−3 7.530 × 10−4 1.232 × 10−5 1.499 × 10−3 4.7162× 10−4

3.029 × 10−6 1.544 × 10−3 1.373 × 10−3 3.029 × 10−6 7.571 × 10−4 7.3140× 10−5

TABLE 2. Numerical Results of Example 2.

Example 2. Consider the problem (5.1) (5.2) with

k(t, s) = (1 + ts)ets,

and

y(t) =
et+1(t2 + t+ 1) − 1

(t+ 1)2
.

The unique solution of this problem is x∗ = et. At this time

∫ 1

0

(1 + ts)ets ds = et,

and the operator K : L2[0, 1] → L2[0, 1] is obviously self-adjoint. Thus
we can conclude that x∗ ∈ R((K∗K)1/2), ν = 1/2. Table 2 shows the
experiment results. In this case, the optimal convergence rate is δ1/2.
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