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A REGULARITY THEOREM FOR A
VOLTERRA INTEGRAL EQUATION

OF THE THIRD KIND
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ABSTRACT. An existence and smoothness theorem is
given for a Volterra integral equation of the form

f(x)v(x) = φ(x) −
∫ x

0

K(x, ξ)v(ξ) dξ,

where f(x) has a zero at x = 0, and the kernel K(x, ξ) has a
kind of square root behavior at the diagonal x = ξ.

1. Introduction. In this paper we will consider a special class of
third kind linear Volterra integral equation, i.e.

(1) f(x)v(x) = φ(x) −
∫ x

0

K(x, ξ)v(ξ) dξ.

It is easy to see that this type of equation can be written as an equation
of the second kind (f(x) ≡ 1), which, in general, has a singular kernel,
if the function f(x) has zeroes. Seminal works dealing with this type of
equations are [5] and [6]. The idea of [6] is to split up the kernel K(x, ξ)
into a constant part, w.l.o.g. one can take 1, and a function Γ(x, ξ).
Evans constructed then an approximating series for the solution. Each
term of this series is constructed in two steps (for more details see
the proof of Proposition 2.1 below) : First one has to solve a singular
differential equation, stemming from the constant part of the kernel;
in the second step one has to evaluate an integral in order to get the
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inhomogeneity of the next ODE. In Evans’ paper the function Γ(x, ξ)
is basically assumed to be C1, see [6 condition 1b) on p. 431. This is
convenient in order to see the integral equation as a perturbation of
the underlying singular ODE.

In our paper we are interested in the consequences of the appearance
of a certain “non-smoothness” in the function Γ(x, ξ), i.e. we shall
assume that it has the structure

(2) Γ(x, ξ) = Γ1(x, ξ) +

√
1 − ξ

x
Γ2(x, ξ),

for smooth Γ1, Γ2. As in [6], we will assume that f(x) has only one
zero at x = 0, but in contrast to Evans - who derived existence and
continuity results for the dependent variable u(x) = f(x)v(x) - we
are interested in the smoothness of v(x), which has obviously worse
smoothness properties than u(x).

The aim of the paper is to investigate the impact of the square-root
in the kernel on the regularity of the solution. In order to see the effect
more clearly, we will assume smooth “coefficient functions” f, Γ1 and
Γ2. We will state sufficient conditions for the regularity of the solution,
and we will see that this regularity depends crucially on the numerical
value of Γ2 (and its derivatives) at the point (x, ξ) = (0, 0), and on the
order of decrease to zero of the function φ(x) for x → 0.

Let us briefly comment on the motivation to consider such an equa-
tion. The origin is a so called singular optimal control problem (see e.g.
[7]) over an infinite time interval, which appears in Mathematical Eco-
nomics (see [8]). In this type of problems the value function is often the
solution of a free boundary value problem. The free boundary, say b(t),
is fixed by the so called “smooth fitting conditions ”, which guarantee
that the value function is smooth enough, even over the boundary. It
turns out that b(t) is described as the solution of a nonlinear integral
equation, involving a Greens function

G(r, x, x′) =
1√
4πr

θ(r)e−
(x−x′)2

4r

of the heat operator (θ denotes the Heaviside function).

One possibility to approach such an equation is, to linearize the
problem, and to apply some kind of Newton scheme. One observes
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that the Fréchet derivative of the nonlinear integral operator is exactly
of the form

f(x)v(x) +
∫ x

0

(1 + Γ(x, ξ)) v(ξ) dξ.

Here the zero of the function f(x) at x = 0 stems from the transfor-
mation of the infinite time interval to a finite one, and the origin of
the square root in Γ is the factor 1√

r
in the Greens function G of the

heat operator. However, a glance at our main theorem 2.1, inequality
(10) reveals that we face a so called “loss of derivatives” in the linear
problem. Therefore a straightforward application of Newtons scheme
is not possible, and one is forced to use more sophisticated methods
as the Nash-Moser technique (see e.g. [12] for an introduction to this
subject).

Let us remark that we confine here to the case, where the function
f(x) has positive sign in a neighborhood of zero. Beside the non-
uniqueness of the solution, which appears for the negative sign, at least
in the case Evans is considering, one observes that the behavior with
respect to smoothness is also different (see the remark after the proof
of Corollary 2.1). So we postpone this case to future research.

Let us also mention that standard theory, as it is formulated in [9],
chapter 9, for the existence of solutions in certain Lp-spaces is, in
general, not applicable, since the kernel of our equation (viewing it
as an equation for u = fv) is, in general, not a kernel of type LP (see
the definition 9.2.2 in [9]). In order to apply this theory one would
have to assume a function f(x), tending very slowly to zero for x → 0.
(One would have to check, e.g., the sufficient conditions of Proposition
2.7, [9] for the kernel to be of Lp-type and then apply their Theorem
3.6 for existence of a solution.)

Finally we want to cite some more papers and a monograph, dealing
with singular Volterra equations, respectively with the smoothness of
their solutions: [2, 3, 4, 10, & 11].

2. The Result. In order to formulate our main result in a concise
way, we summarize the regularity assumption we will use in the rest of
the paper (if not stated otherwise) for the coefficient functions and the
inhomogeneity of our integral equation in the following
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Standing assumption: The functions f(x), φ(x), Γ1(x, ξ), Γ2(x, ξ)
fulfill the following regularity assumptions:

f(x) ∈ C∞([0, 1]), f(0) = 0,(3)
f(x) > 0 for x ∈ (0, ε] and for some ε > 0.

Let x0 := min{inf{x > 0|f(x) = 0}, 1} and 0 < b < x0. Assume that

φ(x) ∈ Cs+1([0, b]), φ(0) = 0,(4)

r∗ := min{inf{k|φ(k+1)(0) �= 0}, s},

with s ∈ IN0.

For the kernel functions we impose

(5) Γ1(x, ξ), Γ2(x, ξ) ∈ C∞(G),

where G = {(x, ξ)|0 ≤ x ≤ b, 0 ≤ ξ ≤ x}, and C∞ means here existence
and continuity of all partial derivatives.

Finally we assume

(6) Γ1(0, 0) = 0, Γ2(0, 0) �= 0.

Note that by convention r∗ := s in (4), if φ(k+1)(0) = 0 for k =
0, 1, 2, ..., s, and that the assumption (6) on Γ2(0, 0) is made, because
without this assumptions the kernel would have a different kind of
non-smoothness than the one we want to consider here. Moreover, it
was already observed in [6] that there is no continuous solution of the
equation, if φ(0) �= 0. Now we formulate and prove our main result,
namely

Theorem 2.1. Under the standing assumptions above consider the
following integral equation

(7) f(x)v(x) = φ(x) −
∫ x

0

(
1 + Γ1(x, ξ) +

√
1 − ξ

x
Γ2(x, ξ)

)
v(ξ) dξ.
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There exist γr∗,n ∈ R+, s ≥ n ≥ r∗, (for γr∗,r∗ we have

(8) γr∗,r∗ =
2 · 4 · · · (2r∗ + 2)
3 · 5 · · · (2r∗ + 3)

), such that, under the assumption

(9)
∣∣∣∣ ∂i

∂xi

∂j

∂ξj
Γ2(0, 0)

∣∣∣∣ < 1
γr∗,n

, i + j ≤ n − r∗,

we have a unique solution v ∈ Cn([0, b]), and

(10) ||v||Cn([0,b]) ≤ C ||φ||Cn+1([0,b]),

for some positive constant C, which depends on n (and of course on
the coefficient functions f and Γ1, Γ2).

Proof. As usual we take the norm

||v||Cs([0,b]) = max
0≤i≤s

{ sup
x∈[0,b]

|f (i)(x)|}.

The proof of the theorem uses mainly the following local result, whose
proof we will give as soon as we have finished the proof of the theorem.

Proposition 2.1. Under the assumption of Theorem 2.1, the equa-
tion

f(x)v(x) = φ(x) −
∫ x

0

(
1 + Γ1(x, ξ) +

√
1 − ξ

x
Γ2(x, ξ)

)
v(ξ) dξ

has a unique solution v ∈ Cn([0, x̄]), for x sufficiently small, and we
have

‖v||Cn([0,x̄]) ≤ C |φ||Cn+1([0,x])

for some positive constant C.
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The aim is now to continue the local solution provided by the proposi-
tion to a solution on the interval [0, b]. In order to do this, we rewrite
the integral equation

f(x)v(x) = φ(x) −
∫ x

0

(1 + Γ(x, ξ)) v(ξ) dξ −
∫ x

x

(1 + Γ(x, ξ)) v(ξ) dξ.

Putting the known local solution into the inhomogeneity, we arrive at

(11) f(x)v(x) = ρ(x) −
∫ x

x

(1 + Γ(x, ξ)) v(ξ) dξ.

Clearly ρ(x) ∈ Cn+1([x, b]), and we consider now the equation on the
interval [x, b]. We first show that (11) has a solution in C([x, b]).
Transformation to the dependent variable u(x) = v(x)f(x) gives

u(x) = ρ(x) −
∫ x

x

(1 + Γ1(x, ξ))
u(ξ)
f(ξ)

dξ(12)

−
∫ x

x

Γ2(x, ξ)

√
1 − ξ

x

u(ξ)
f(ξ)

dξ.

Further transforming the independent variables via t = x−x, s = ξ−x,
respectively using u(t) = u(x + t), f(t) = f(x + t) etc., yields

u(t) = ρ(t) −
∫ t

0

(
1 + Γ1(t, s)

) u(s)
f(s)

ds −
∫ t

0

Γ2(t, s)
√

t − s√
x + t

u(s)
f(s)

ds.

We can now apply, e.g. Theorem 1.3.1 of [3], to get u ∈ C([x, b]). Next
we show that the solution u fulfills u ∈ C1(]x, b]). This will follow, if
we show that the r.h.s. of (12) is in C1(]x, b]), if u ∈ C([x, b]). Since
for the first two terms this is clear, we remain with the last integral.
We show in the subsequent lemma in general that this second integral
is Cm+1(]x, b]), if u ∈ Cm([x, b]).

Lemma 2.1. Let u ∈ Cm([x, b]) and Γ̃(x, ξ) ∈ C∞({(x, ξ)|x ≤ x ≤
b, x ≤ ξ ≤ x}), where C∞ means here again continuity of all partial
derivatives. Then∫ x

x

Γ̃(x, ξ)

√
1 − ξ

x
u(ξ) dξ ∈ Cm+1(]x, b]), x > 0.



REGULARITY FOR A VOLTERRA INTEGRAL EQUATION 513

Proof. Since x �= 0, it suffices to show the assertion for

∫ x

x

√
x − ξu(ξ) dξ =

∫ x−x

0

√
zu(x − z) dz.

m-times differentiation yields

m−1∑
k=0

δk(x − x)
3
2+k−mu(k)(x) +

∫ x−x

0

√
zu(m)(x − z) dz,

or
m−1∑
k=0

δk(x − x)
3
2+k−mu(k)(x) +

∫ x

x

√
x − ξu(m)(ξ) dξ,

for some constants δk. Differentiation once again gives

m−1∑
k=0

(
3
2

+ k − m)δk(x − x)
1
2+k−mu(k)(x) +

∫ x

x

1
2
√

x − ξ
u(m)(ξ) dξ,

which is clearly in C(]x, b]).

Applying the Lemma for m = 0, gives u ∈ C1(]x, b]). But since the
point x can be chosen arbitrarily - as long as it is near enough to 0 -
and the solutions v and therefore u are unique on the intervals [0, x]
and [x, b], we get u ∈ C1([0, b]).

By induction we finally arrive at u ∈ Cn([0, b]), and therefore, using
Proposition 2.1, v ∈ Cn([0, b]). We note that actually φ ∈ Cn+1([0, b])
is sufficient for all our arguments, and apply the closed graph theorem
in order to get the asserted inequality of the theorem. Indeed, we have
to show that, if φk(x) → φ(x) in Cn+1([0, b]) for k → ∞, and the same
holds true for v(φk) in Cn([0, b]), where v(φk) denotes the solution of
the equation with inhomogeneity φk(x), then v fulfills the equation with
φ(x) as inhomogeneity. But this is clearly true.

In the following corollary we formulate a C∞-result for an inhomo-
geneity tending to zero faster than any power function (for x → 0).
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Corollary 2.1. Assume, in addition to the Standing Assumptions
on f and Γ, φ ∈ C∞([0, b]) and φ(n)(0) = 0 for all n ∈ IN0.

Then we have for the solution v of equation (7)

||v||Cn ≤ Cn||φ||Cn+1 , for all n ∈ IN,

and some positive constants Cn. Moreover v ∈ C∞([0, b]).

Proof. We simply choose r∗ = n = s sufficiently large, s.t. we have
Γ2(0, 0) < 1

γn,n
(this is always possible since limn→∞ γn,n = 0. To see

this, observe that ln( 1
γn,n

) =
∑n+1

k=1 ln(2k+1
2k ) > 1

2

∑n+1
k=1

1
2k , which tends

to infinity for n → ∞.) and apply Theorem 2.1.

Remark: Note that, if we replace the first 1 by −1 in our integral
equation (7)(this is the Case (32”) in Evans’ paper [6]), one gets in
general - besides the non-uniqueness of the solution - a completely
different behavior with respect to smoothness of the solution. E.g., if
we set in our equation Γ2 ≡ 0 it is easy to see that our method gives
a C∞ solution for the + sign, if the inhomogeneity is C∞. This is not
the case for the other sign, since we have the following example.

Example: (xv)′ = x + 2v, which has the solution v(x) = Dx + x ln(x)
for some constant D. We postpone this case to future research.

We start now with the proof of the central tool in the proof of our
main theorem, namely

Proof of Proposition 2.1. Similarly as in [6], we construct an
approximating sequence for the solution. Let

v(x) = v(0)(x) + v(1)(x),

with
f(x)v(0)(x) = φ(x) −

∫ x

0

v(0)(ξ) dξ.

Hence

f(x)v(1)(x) = φ(1)(x) −
∫ x

0

(1 + Γ(x, ξ)) v(1)(ξ) dξ,
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with φ(1)(x) = − ∫ x

0
Γ(x, ξ)v(0)(ξ) dξ.

In the same way
v(1)(x) = v(1)(x) + v(2)(x),

with
f(x)v(1)(x) = φ(1)(x) −

∫ x

0

v(1)(ξ) dξ,

and
f(x)v(2)(x) = φ(2)(x) −

∫ x

0

(1 + Γ(x, ξ)) v(2)(ξ) dξ,

where φ(2)(x) = − ∫ x

0
Γ(x, ξ)v(1)(ξ) dξ.

Continuing in this way one gets

(13) v(m)(x) = v(m)(x) + v(m+1)(x),

with

(14) f(x)v(m)(x) = φ(m)(x) −
∫ x

0

v(m)(ξ) dξ,

and

(15) f(x)v(m+1)(x) = φ(m+1)(x) −
∫ x

0

(1 + Γ(x, ξ)) v(m+1)(ξ) dξ,

where

(16) φ(m+1)(x) = −
∫ x

0

Γ(x, ξ)v(m)(ξ) dξ.

The solution of (14) is unique and given by the formula (see [6], eq.
(29))

(17) v(m)(x) =
1

f(x)
e

∫
b

x

dξ
f(ξ)

∫ x

0

φ′
(m)(ξ)e

−
∫

b

ξ

dz
f(z) dξ.

From (16) we infer

φ′
(m+1)(x) = − d

dx

(∫ x

0

Γ(x, ξ)v(m)(ξ) dξ

)
.
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Using the definition Ψ(m)(x) = φ′
(m)(x), we arrive at

(18) v(m)(x) =
1

f(x)
e

∫ b

x

dξ
f(ξ)

∫ x

0

Ψ(m)(ξ)e
−
∫ b

ξ

dz
f(z) dξ,

and

(19) Ψ(m+1)(x) = − d

dx

(∫ x

0

Γ(x, ξ)v(m)(ξ) dξ

)
.

So the procedure works as follows

Ψ(0) = φ′
(0) = φ′ → v(0) → Ψ(1) → v(1)...,

where the arrows mean mappings given by equation (18) and (19),
respectively. We will need some asymptotic properties of the operators,
defined by equation (18) and (19). These will be provided by the
following two lemmata, the proof of which we postpone to the next
section.

Lemma 2.2. Consider

f(x)v(x) = φ(x) −
∫ x

0

v(ξ) dξ.

Assume that

φ(x) ∈ Cs+1([0, b]), φ(0) = 0, r := min{inf{k|φ(k+1)(0) �= 0}, s},

and f as in the Standing assumptions at the beginning of section 2.
We then have for 0 ≤ x ≤ b

sup
0≤s≤x

|v(n)(s)| ≤
{

Fnn(x) sup0≤s≤x |Ψ(n)(s)| if 0 ≤ n ≤ r∑n
i=r Fni(x) sup0≤s≤x |Ψ(i)(s)| if r < n ≤ s,

where the Fni are nonnegative continuous functions (depending only on
f) on [0, b] and

Fnn(0) =
1

1 + (n + 1)f1
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holds with f1 = f ′(0). We also have

v(x) ∈ Cs([0, b]).

Lemma 2.3. Consider

Ψ(x) := − d

dx

∫ x

0

Γ(x, ξ)v(ξ) dξ.

Let Γ(x, ξ) be as in the Standing Assumptions, and let

v ∈ Cs([0, b]), r := min{inf{k|v(k)(0) �= 0}, s}.

Then we have for 0 ≤ x ≤ b:

sup
0≤s≤x

|Ψ(n)(s)| ≤
{

Gnn(x) sup0≤s≤x |v(n)(s)| if 0 ≤ n ≤ r∑n
l=r Gnl(x) sup0≤s≤x |v(l)(s)| if r < n ≤ s,

for some nonnegative continuous functions Gnl (depending only on
Γ) on [0, b]. Moreover Gnl(x) can be made arbitrarily small if

max
i+j≤n−l

sup
0≤s≤x,0≤ξ≤s

∣∣∣∣ ∂i

∂ξi

∂j

∂sj
Γ1(s, ξ)

∣∣∣∣
+ max

i+j≤n−l
sup

0≤s≤x,0≤ξ≤s

∣∣∣∣ ∂i

∂ξi

∂j

∂sj
Γ2(s, ξ)

∣∣∣∣
is small enough, and if x is small enough. In addition Gnn(0) =
γn,nΓ2(0, 0) holds, where γn,n is defined in Theorem 2.1.

Finally we also have
Ψ(x) ∈ Cs([0, b]).

We continue with the proof of Proposition 2.1 and apply now Lemma
2.2 resp. 2.3 on the mappings Ψ(m) → v(m) respectively v(m) →
Ψ(m+1). Note first that “the r” of Ψ(m) and v(m) always fulfill r ≥ r∗

during the iteration. To get an estimate for ||v(m)||Cn in terms of the
norm of the inhomogeneity ||Ψ(m)||Cn we use Lemma 2.2. It allows to
find for all ε > 0 an x1(ε), s.t.
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(21) ||v(m)||Cn([0,x1(ε)])

≤
{

(1 + ε)||Ψ(m)||Cn([0,x1(ε)]) if n = r∗

Kn||Ψ(m)||Cn([0,x1(ε)]) if r∗ < n ≤ s, Kn > 0.

In a similar way one gets, by considering now the operator mapping
v(m) to Ψ(m+1) via equation (19), and using Lemma 2.3

(22) ||Ψ(m+1)||Cn([0,x2(ε)])

≤
{

(ε + Γ2(0, 0)γr∗,r∗)||v(m)||Cn([0,x2(ε)]) if n = r∗

q̃||v(m)||Cn([0,x2(ε)]) if r∗ < n ≤ s,

where q̃ < 1 holds if γr∗,n in assumption (9) is chosen large enough.
Combining (21) and (22), we arrive at

||v(m)||Cn([0,x3(q)]) ≤ q||v(m−1)||Cn([0,x3(q)])⎧⎨
⎩

if n = r∗ and Γ2(0, 0)γr∗,r∗ < 1

if r∗ < n ≤ s and supi+j≤n−r∗

∣∣∣ ∂i

∂xi
∂j

∂ξj Γ2(0, 0)
∣∣∣ < 1

γr∗,n

for a q < 1. We define now

v =
∞∑

k=0

v(k).

Obviously this gives

||v||Cn([0,x3]) ≤ C||Ψ||Cn([0,x3]),

or
||v||Cn([0,x3]) ≤ C||φ||Cn+1([0,x3]),

for some positive constant C.

The fact that v fulfills the integral equation is shown analogously to
the argument given by Evans. For convenience of the reader we repeat
it. Let

v = v(0) + v(1) + v(2) + · · · + v(k) + V(k+1),



REGULARITY FOR A VOLTERRA INTEGRAL EQUATION 519

and plug in the expression

L(x) := f(x)v(x) − φ(x) +
∫ x

0

(1 + Γ(x, ξ)) v(ξ) dξ.

The result is

L(x) = f(x)V(k+1)(x) − φ(x) +
∫ x

0

(1 + Γ(x, ξ)) V(k+1)(ξ) dξ

+ f(x)v(0)(x) +
∫ x

0

Γ(x, ξ)v(0)(ξ) dξ +
∫ x

0

v(0)(ξ) dξ

+ · · ·
+ f(x)v(k)(x) +

∫ x

0

Γ(x, ξ)v(k)(ξ) dξ +
∫ x

0

v(k)(ξ) dξ,

or

L(x) = f(x)V(k+1)(x) − φ(k+1)(x) +
∫ x

0

(1 + Γ(x, ξ)) V(k+1)(ξ) dξ

+ f(x)v(0)(x) − φ(x) +
∫ x

0

v(0)(ξ) dξ

+ f(x)v(1)(x) − φ(1)(x) +
∫ x

0

v(1)(ξ) dξ

+ · · ·
+ f(x)v(k)(x) − φ(k)(x) +

∫ x

0

v(k)(ξ) dξ,

or

L(x) = f(x)V(k+1)(x) − φ(k+1)(x) +
∫ x

0

(1 + Γ(x, ξ)) V(k+1)(ξ) dξ.

Clearly this tends to zero w.r.t. || · ||C([0,x3]) for k → ∞.

3. Asymptotics. In this section we prove the asymptotic properties
of the two operators, used in the proof of Proposition 2.1. We start
with
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Proof of Lemma 2.2. From the discussion in [6], p. 432f, it follows
that the continuous solution of our equation and the continuous solution
of the ODE

(23) (f(x)v(x))′ = Ψ(x) − v(x)

coincide. Cs+1(]0, b])-property of this solution is clear from the solution
formula (17). So it remains to determine its asymptotic behavior for
x → 0. Applying Lemma 4.1 gives immediately the assertion for n = 0.
Differentiating (23) yields

(f(x)v(x))′′ + v′(x) = Ψ′(x),

or with m(x) := v′(x),

f(x)m′(x) + (1 + 2f ′(x))m(x) = Ψ′(x) − f ′′(x)v(x).

Lemma 4.1 gives

sup
0≤s≤x

|m(s)| ≤ F1(x)
(

sup
0≤s≤x

|Ψ′(s)| + sup
0≤s≤x

|f ′′(s)v(s)|
)

≤ F1(x)
(

sup
0≤s≤x

|Ψ′(s)|+ sup
0≤s≤x

|f ′′(s)| sup
0≤s≤x

|Ψ(s)|F0(x)
)

= F1(x) sup
0≤s≤x

|Ψ′(s)|

+ F1(x)F0(x) sup
0≤s≤x

|f ′′(s)| sup
0≤s≤x

|Ψ(s)|,

We now distinguish two cases:

Case a: r = 0 In this case we simply rewrite the last right hand side as

F11(x) sup
0≤s≤x

|Ψ′(s)| + F10(x) sup
0≤s≤x

|Ψ(s)|.

Case b: r ≥ 1 In this case we get the following estimate

sup
0≤s≤x

|m(s)| ≤ F1(x) sup
0≤s≤x

|Ψ′(s)| + F10(x) sup
0≤s≤x

|Ψ(s)|

≤ F1(x) sup
0≤s≤x

|Ψ′(s)| + F10(x) sup
0≤s≤x

∫ s

0

|Ψ′(t)| dt

= F1(x) sup
0≤s≤x

|Ψ′(s)| + F10(x)
∫ x

0

|Ψ′(t)| dt

≤ F1(x) sup
0≤s≤x

|Ψ′(s)| + xF10(x) sup
0≤s≤x

|Ψ′(s)|
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Defining now F11(x) := F1(x) + xF10(x) gives, since F10 is continuous,

lim
x→0

F11(x) =
1

1 + 2f1

yielding the assertion of the lemma for n = 1. Further differentiation
and induction completes the proof.

Proof of Lemma 2.3. In the following Gl will denote generic
nonnegative continuous functions on [0, b], which may vary from place
to place. These functions depend on Γ1 and Γ2 and their derivatives.
Moreover Gl(x) can be made arbitrarily small if

max
i+j≤n−l

sup
0≤s≤x,0≤ξ≤s

∣∣∣∣ ∂i

∂ξi

∂j

∂sj
Γ1(s, ξ)

∣∣∣∣
+ max

i+j≤n−l
sup

0≤s≤x,0≤ξ≤s

∣∣∣∣ ∂i

∂ξi

∂j

∂sj
Γ2(s, ξ)

∣∣∣∣
is small enough, and if x is small enough.

We first consider d
dx

∫ x

0
Γ1(x, ξ)v(ξ) dξ. Cs-property is clear and so we

estimate now dn+1

dxn+1

∫ x

0
Γ1(x, ξ)v(ξ) dξ.

This last expression can be written as

Γ1(x, x)v(n)(x) +
n−1∑
l=0

clgl(Γ1)v(l)(x) +
∫ x

0

(
∂n+1

∂xn+1
Γ1(x, ξ)

)
v(ξ) dξ,

where the gl depend linearly on the partial derivatives of Γ1 w.r.t. x
and ξ of total order n − l evaluated at (x, x), and cl are constants.
Hence

(24) sup
0≤s≤x

∣∣∣∣ dn+1

dsn+1

∫ s

0

Γ1(s, ξ)v(ξ) dξ

∣∣∣∣ ≤ sup
0≤s≤x

|Γ1(s, s)| sup
0≤s≤x

∣∣∣v(n)(s)
∣∣∣

+
n−1∑
l=0

Gl(x) sup
0≤s≤x

∣∣∣v(l)(s)
∣∣∣

= Gn(x) sup
0≤s≤x

∣∣∣v(n)(s)
∣∣∣+ n−1∑

l=0

Gl(x) sup
0≤s≤x

∣∣∣v(l)(s)
∣∣∣
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with Gn(0) = 0, since Γ1(0, 0) = 0.

The integral part with Γ2 needs some rearrangement. Assume first
n ≤ r. By n-times integration by parts we find

∫ x

0

√
1 − ξ

x
Γ2(x, ξ)v(ξ) dξ =

1√
x

γ̃n

∫ x

0

(x − ξ)n+ 1
2 R̃(x, ξ) dξ.

Here we used the notation

R̃(x, ξ) =
∂n

∂ξn
R(x, ξ) =

∂n

∂ξn
(Γ2(x, ξ)v(ξ)) ,

and
γ̃n =

2n

3 · 5 · · · (2n + 1)
.

For r < n ≤ s, we get the additional term

S(x) = δr+1x
r+1 ∂r

∂ξr
R(x, 0) + ... + δnxn ∂n−1

∂ξn−1
R(x, 0).

for some constants δi, r + 1 ≤ i ≤ n. We differentiate this additional
term (n + 1)-times, which gives after some calculations

(25) sup
0≤s≤x

|S(n+1)(s)| ≤
n−1∑
l=r

|vl|Gl(x).

with vl = v(l)(0). It remains to differentiate the integral term: The
expression

dn+1

dxn+1

(
1√
x

γ̃n

∫ x

0

(x − ξ)n+ 1
2 R̃(x, ξ) dξ

)

consists of terms of the form

const.x− 1
2−l1

∫ x

0

(x − ξ)n+ 1
2−l2

∂l3

∂xl3
R̃(x, ξ) dξ l1 + l2 + l3 = n + 1.
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If l3 ≥ 1, and therefore l1 + l2 ≤ n, we can find the following upper
estimate of the absolute value of this term

const.x− 1
2−l1

∫ x

0

(x − ξ)n+ 1
2−l2 dξ

n∑
l=0

sup
0≤s≤x

|v(l)(s)|Hl(x)(26)

≤ const.
n∑

l=0

sup
0≤s≤x

|v(l)(s)|Hl(x)x− 1
2−l1

∫ x

0

(x − ξ)n+ 1
2−l2 dξ

≤ const.
n∑

l=0

xHl(x) sup
0≤s≤x

|v(l)(s)| = const.
n∑

l=0

Gl(x) sup
0≤s≤x

|v(l)(s)|,

where the Hl are some generic nonnegative continuous functions, de-
pending on Γ2 and its derivatives, and where Gl(0) = 0 holds for
l = 0, 1, 2, ..., n.

On the other hand, for l3 = 0, we find

(27)
n+1∑
l1=0

(
n + 1

l1

)(
−1

2

)
l1

x− 1
2−l1 γ̃n

∫ x

0

(
n +

1
2

)
l2

(x − ξ)n+ 1
2−l2

n∑
l=0

cl

(
∂n−l

∂ξn−l
Γ2(x, ξ)

)
v(l)(ξ) dξ

≤
n∑

l=0

Gl(x) sup
0≤s≤x

|v(l)(s)|
n+1∑
l1=0

(
n + 1

l1

)(
−1

2

)
l1

x− 1
2−l1 γ̃n

∫ x

0

(
n +

1
2

)
l2

(x − ξ)n+ 1
2−l2 dξ

=
n∑

l=0

Gl(x) sup
0≤s≤x

|v(l)(s)| dn+1

dxn+1

(
x− 1

2 γ̃n

∫ x

0

(x − ξ)n+ 1
2 dξ

)

=
n∑

l=0

Gl(x) sup
0≤s≤x

|v(l)(s)|γ̃n
(n + 1)!
n + 3/2

=
n∑

l=0

Gl(x) sup
0≤s≤x

|v(l)(s)|,

where (a)l denotes Pochhammer symbols, cl are natural numbers with
cn = 1 and where the version of Gn(0) in the last line of (27) fulfills
Gn(0) = γn,nΓ2(0, 0).
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Combining (24),(25), (26) and (27) we get

sup
0≤s≤x

|Ψ(n)(s)| ≤
n∑

l=0

Gl(x) sup
0≤s≤x

|v(l)(s)|

with Gn(0) = γn,nΓ2(0, 0).

Finally, since v0 = v1 = ... = vr−1 = 0, we arrive at

sup
0≤s≤x

|Ψ(n)(s)| ≤
{

Gn(x) sup0≤s≤x |v(n)(s)| if 0 ≤ n ≤ r∑n
l=r Gl(x) sup0≤s≤x |v(l)(s)| if r < n ≤ s,

with Gn(0) = γn,nΓ2(0, 0). Since we considered in this proof only fixed
n, we switch now in the notation from Gl to Gnl, which concludes the
proof.

4. Appendix .

Lemma 4.1. All continuous solutions on [0, b] of

f(x)m′(x) + (1 + nf ′(x))m(x) = ρ(x), n ∈ IN

fulfill
sup

0≤s≤x
|m(s)| ≤ sup

0≤s≤x
|ρ(s)|Fn−1(x).

Here ρ(x) is assumed to be continuous on [0, b], and f is as in the
Standing Assumptions of section 2. Moreover Fn−1(x) is a continuous
nonnegative function on [0, b] with

Fn−1(0) =
1

1 + nf ′(0)

Proof. The unique continuous solution m(x) is given by

m(s) =
1

f(s)n
e

∫ b

s

dξ
f(ξ)

∫ s

0

ρ(ξ)fn−1(ξ)e
−
∫

b

ξ

dz
f(z) dξ.
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Since f is nonnegative on [0, b] this gives the estimate

|m(s)| ≤ sup
0≤ξ≤s

|ρ(ξ)| 1
fn(s)

e

∫
b

s

dξ
f(ξ)

∫ s

0

fn−1(ξ)e
−
∫

b

ξ

dz
f(z) dξ

or

sup
0≤s≤x

|m(s)| ≤ sup
0≤ξ≤x

|ρ(ξ)| sup
0≤s≤x

1
fn(s)

e

∫
b

s

dξ
f(ξ)

∫ s

0

fn−1(ξ)e
−
∫

b

ξ

dz
f(z) dξ.

The last right hand side can be written as

sup
0≤ξ≤x

|ρ(ξ)|Fn−1(x),

if we define Fn−1(x) := sup0≤s≤x F̃n−1(s) and

F̃n−1(s) :=
1

fn(s)
e

∫
b

s

dξ
f(ξ)

∫ s

0

fn−1(ξ)e
−
∫

b

ξ

dz
f(z) dξ

A simple application of de l’Hospitals rule shows

lim
x→0

F̃n−1(x) =
1

1 + nf ′(0)
.

Clearly the same holds true for Fn−1(x), which proves the lemma.
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