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ABSTRACT. Closed-form algebraic formulae are derived
for the local error incurred in the numerical solution of in-
tegral equations by iterated collocation methods, the analysis
being illustrated by application to Fredholm integral equations
of the second kind. The novel error analysis uses an asymp-
totic approach, in the small parameter of the numerical mesh
size, applied to a finite-rank degenerate-kernel orthogonal-
polynomial approximation of the exact kernel. It is proved
that, under suitable conditions, the discrepancy between our
theoretically predicted error and the actual numerical error
tends to zero at the rate ‖K − KM‖, where M is the rank of
the degenerate-kernel approximation. A leading-order error
analysis is validated on three increasingly accurate projection
methods applied to both smooth and sharply peaked kernels,
our error predictions being demonstrated to be exponentially
convergent to experimentally obtained global numerical er-
rors. The new method is demonstrated to be cost-effective
relative to standard extrapolation.

1. Introduction. This paper is concerned with obtaining explicit,
closed-form, algebraic expressions for the error incurred in the numer-
ical solution of the Fredholm integral equation of the second kind,

(1) φ(x) = f(x) + λ

∫ b

a

K(x, s)φ(s) ds ,

for a variety of approximating projection methods. Although degenerate-
kernel (and orthogonal-polynomial) techniques do indeed constitute an
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element of our overall perturbation analysis, it is to be stressed at the
outset that we do not specifically analyze degenerate-kernel methods, in
which there is a substantial and well-established literature (e.g., Atkin-
son (1997, Ch.2), Baker (1997, §4.7), Dellwo (1995), Hackbush (1995,
§4.2.1), Heinrich (1985), Kress (1989, Ch.11), Sloan et al. (1975), Sloan
(1976a) and Sloan (1976b)). Rather, the present work is a novel error
analysis of practical projection methods commonly employed in deter-
mining approximate solutions of (1), in which f : [a, b] → R and the
kernel K : [a, b] × [a, b] → R are prescribed functions, and λ, a, b ∈ R

are constants. We rewrite (1) in symbolic form as

(2) φ = f + λKφ,

in which φ, f ∈ C[a, b], the Banach space with supremum norm
‖ • ‖ on which K is a compact linear operator; it is assumed here,
and throughout the rest of the paper, that λ is not a characteristic
value of (2). We correspondingly denote by φ(n) the solution of the
iterated collocation approximation of (2) associated with the nth-degree
piecewise-polynomial interpolatory projection operator P(n)

h on a mesh
of size h, i.e.

(3) φ(n) = f + λKP(n)
h φ(n).

In this paper we consider interpolation with n = 0, 1 and 2, using
mid-, end- and end-point rules respectively. If the kernel K(x, s) can
be approximated by the finite-rank degenerate kernel

(4) KM(x, s) =
M∑
m=1

ζm(x)σm(s) (M ≥ 1) ,

then we denote by φM the exact solution of the corresponding degenerate-
kernel approximation of (2),

(5) φM = f + λKMφM ,

and by φ
(n)
M the solution of the approximation of (5) associated with

the projection operator P(n)
h ,

(6) φ
(n)
M = f + λKMP(n)

h φ
(n)
M .
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It is to be understood throughout that φ(n) and φ(n)
M are also dependent

upon h despite the absence of such indication in the notation.

In the present paper, we estimate the actual numerical error E(n) ≡
φ− φ(n) in the iterated projection method (3) via the intermediate
evaluation of a theoretical error E(n)

M ≡ φM − φ
(n)
M for which explicit,

closed-form formulae are determined. This explains the apparently un-
usual step of considering the projected equation (6), of the degenerate-
kernel equation (5), whose projection we never actually undertake in
a computational sense. The idea is summarized in the commutative
diagram (7).

(7)

φ �

E(n) ≡ φ− φ(n)

�

φ(n)

φM �

E(n)
M ≡ φM − φ

(n)
M φ

(n)
M

�

The actual numerical error E(n) is approximated by the theoretical
error E(n)

M using the path from φ to φ(n) via φM and (the virtual)
φ

(n)
M . As such, we prove that E(n)

M converges to E(n) as M → ∞,
and we demonstrate that in practical calculations, this convergence
can be achieved economically, i.e. for low values of M . Note that here
E(n)

M (x) is determined as a function of x throughout the interval [a, b].
Numerical estimates of ‖E(n)‖ are difficult to evaluate in applications
(Kress, 1989, p.158), often requiring convergence estimates obtained
from mesh refinement and extrapolation. Even if direct error estimates
can be obtained, there may be a disparity in magnitude between the
true and predicted errors (Atkinson, 1997, p.33). The estimates herein
are novel because they are obtained as leading-order terms in an explicit
perturbation analysis, rather than via more conservative estimates of
condition numbers (Linz, 1991; Whitley, 1986) based upon operator
representations of (2) and (3). The estimates are furthermore practical
and useful because of the above-mentioned convergence for low values
of M and the known difficulty in determining accurate estimates of
E(n) = φ− φ(n).

The rest of the paper is structured as follows. The basic elements
of our perturbation theory are introduced in §2 by considering the
simplest possible degeneracy, with M = 1. This error analysis is
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extended in §3 to the case M > 1, with the aim of applying our
analysis to non-degenerate kernels approximated by degenerate ones
of adequately high rank. In §4 a formal error analysis is presented for
non-degenerate kernels in order to provide a theoretical framework for
our new method, the implementational details of which are summarized
in §5. In §6, the accuracy of our new approach is demonstrated via
application to two examples of integral equations incorporating smooth
and sharply peaked kernels. The paper concludes in §7 with a discussion
of the utility of the new method by performing cost comparisons with
standard extrapolation techniques.

2. Error analysis for M = 1. It is instructive to begin with the
case of a trivially separable kernel (M ≡ 1) in (4), when we define

(K1F )(x) ≡
∫ b

a

ζ1(x)σ1(s)F (s) ds and 〈F,G〉 ≡
∫ b

a

F (x)G(x) dx ,

where F and G are suitable functions F,G : R → R : . It is straightfor-
ward to show that (5),

(8) φ1 = f + λK1 φ1 ,

has solution

(9) φ1 = f +
〈σ1, f〉

1 − 〈σ1, ξ1〉ξ1 ,

where ξ1(x) = λζ1(x). Note that (9) is valid because λ is not a
characteristic value of (8), i.e.

(10) λ 
= 1
〈σ1, ζ1〉 .

Similarly, (6),

(11) φ
(n)
1 = f + λK1 P(n)

h φ
(n)
1 ,

has solution

(12) φ
(n)
1 = f +

〈σ1,P(n)
h f〉

1 − 〈σ1,P(n)
h ξ1〉

ξ1 ,
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where the projection operator P(n)
h φ, as yet unspecified, dictates the

piecewise-polynomial interpolation (of degree n) at the finite set of node
points (xi, φi), i = 1, 2, . . . , N+ n

2 (3 − n) that lie on a regular mesh of
size h = (b−a)/N , the node locations being mid-interval for n = 0 and
interval endpoints for n = 1 and n = 2. Now define

(13) δ(n)(σ1, • ) ≡ 〈σ1, • 〉 − 〈σ1,P(n)
h

• 〉 = 〈σ1, (I − P(n)
h ) • 〉 .

Via the Cauchy-Schwarz inequality and standard results on piecewise
constant, linear and quadratic (respectively n = 0, 1 and 2) polynomial
interpolation, (13) gives (cf. Atkinson (1997, (2.3.48) and (3.4.107)))

|δ(n)(σ1, g)| = |〈σ1, g − P(n)
h g〉| ≤ ‖σ1‖ ‖g − P(n)

h g‖(14)

≤ Ω(n) ‖σ1‖
∥∥∥dn+1g

dxn+1

∥∥∥hn+1 ,

in which Ω(n) = 1
2 ,

1
8 and

√
3

27 for n = 0, 1 and 2. Hence, via (9) and
(12), the estimate (14) predicts

(15) φ1 − φ
(n)
1 = O(hn+1)

provided both σ1, g ∈ Cn+1[a, b]. Direct calculation, however, yields

(16) δ(n)(σ1, g) = χ(n)
0 (σ1, g)hνn + O(hνn+2)

where we find νn = n2 − n+ 2 for n = 0, 1, 2, and2

(17) χ(n)
0 (σ1, g)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
24

∫ b

a

(
2σ′

1g
′ + σ1g

′′) dx , n = 0 (νn = 2),

− 1
12

∫ b

a

σ1g
′′ dx , n = 1 (νn = 2),

− 1
180

∫ b

a

(
4σ′

1g
′′′+σ1g

(iv)
)
dx , n = 2 (νn = 4).

2 The integral forms of the coefficients in (17) are a result of midpoint-rule

integration over [a, b] of all local truncation errors. As such, the Ξ
(n)
0 themselves

have truncation errors that are series in h2. Hence the asymptotic approximation
(16) is consistent as presented.
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Hence when σ1 is a polynomial, (16) holds provided g ∈ Cνn [a, b].
Under these conditions, and for sufficiently small h, δ(n)(σ1, • ) as
defined in (13) can be used as an expansion parameter. Accordingly,
from (9), (12) and (16), we obtain the explicit leading-order error
estimate

(18) φ1 −φ
(n)
1 = α ξ1

(
δ(n)(σ1, f) + α〈σ1, f〉δ(n)(σ1, ξ1)

)
+O(hνn+2) ,

where α = 1/(1 − 〈σ1, ξ1〉) and both δ(n)(σ1, f) and δ(n)(σ1, ξ1) are
calculated via (13). Note that the integrated coefficients implicit in (18)
yield a tighter error bound than (15) when n = 0 or 2. Although the
truncated terms of order O(hνn+2) and higher in (16) may be obtained
by similar evaluation of integral coefficients χ(n)

j (σ1, g) for j ≥ 1, these
rapidly become algebraically expensive with increasing j and n. More
importantly, as we demonstrate below, adherence to the leading-order
expression (16) admits a linearized theory that is both asymptotically
consistent to order O(hνn) and, as evidenced by the results in §6, yields
error discrepancies that are exponentially convergent with M until the
truncation plateau, due to the omission of terms of order O(hνn+2) in
(18), is reached. The analysis for M = 1 complete, we now progress to
the caseM > 1 in order to analyze the approximation of non-degenerate
kernels.

3. Error analysis for M > 1. Equation (5) may be written in
the expanded form

(19) φM (x) = f(x) +
M∑
m=1

ξm(x)
∫ b

a

σm(s)φM (s) ds ,

its approximation (6) being

(20) φ
(n)
M (x) = f(x) +

M∑
m=1

ξm(x)
∫ b

a

σm(s)P(n)
h φ

(n)
M (s) ds .

Explicit solutions of (19) and (20) are given by

(21) φM(x)=f(x)+
M∑
m=1

cm ξm(x) and φ
(n)
M (x)=f(x)+

M∑
m=1

c(n)
m ξm(x)
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respectively, for some constants cm, c
(n)
m ∈ R, m = 1, . . . ,M , so that

(21) gives the error in φ(n)
M (x) explicitly as

(22) E(n)
M = φM (x) − φ

(n)
M (x) =

M∑
m=1

δc(n)
m ξm(x) ,

where δc(n)
m ≡ cm − c

(n)
m , m = 1, . . . ,M . The coefficients cm and c

(n)
m

are (e.g., Hildebrand (1952, §4.6)) respectively solutions of the linear
simultaneous systems

M∑
j=1

(δij − 〈σi, ξj〉) cj = 〈σi, f〉 ,(23)

M∑
j=1

(
δij − 〈σi,P(n)

h ξj〉
)
c
(n)
j = 〈σi,P(n)

h f〉 ,(24)

where i = 1 . . .M and δij is the Kronecker delta. Using (13), (24) may
be rewritten as

(25)
M∑
j=1

(
δij − 〈σi, ξj〉 + δ(n)(σi, ξj)

)
c
(n)
j = 〈σi, f〉 − δ(n)(σi, f) .

Rewriting (23) and (25) in an obvious notation, we have

(I− X)C = F ,(26)

(27) (I − X + δX)C(n) = (I− X + δX)
(
C− δC(n)

)
= F− δF .

Subtracting equation (27) from (26) yields

(28) (I − X + δX) δC(n) = δF + δXC ,

and hence

(29) δC(n) = (I − X + δX)−1(δF + δXC) ,
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in which the parameter λ in (2) is incorporated in the matrices X
and δX through the functions ξj(x) = λζj(x), j = 1, . . . ,M . By
hypothesis, λ is not a characteristic value of (5), equivalently (19),
hence the matrix I− X in (26) is invertible, and so (Golub and Van
Loan, 1989, Theorem 2.3.4) (I − X + δX) is also invertible provided

(30) κ ≡ ‖(I − X)−1
δX‖ < 1 .

By construction, the elements of the M ×M matrix δX are of order
O(hνn). If, in the absence of any other information, we make the näıve
assumption that the elements of the M ×M matrix (I − X)−1 are of
order O(1), (30) holds provided that O(M2hνn) < 1, equivalently

(31) M < O(Nνn/2) .

However, as the results and discussion in §6 will reveal, although it is
indeed the case that |[δX]ij | is of order O(hνn) for 1 ≤ i, j ≤ M , it is
actually the case that |[(I − X)−1]ij | is of order O(1) when i = j = 1
and decreases exponentially with increasing i and j, so that (I− X)−1

is in practice a perturbed identity matrix. This has two implications.
First, (30) then yields κ ≈ ‖δX‖ ≈ M hνn , in which case the näıve
bound (31) is relaxed considerably to

(32) M < O(Nνn),

which will in practice always be met since the aim of the method is
to produce useful error estimates for low values of M . Second, it
results in the elements of δC(n) being of order O(hνn), in which event
it is instructive to examine the effect of linearizing (28) by omitting
the quadratic term. By so doing, δC(n) may be determined more
economically in terms of the single inverse (I − X)−1 in (29). To this
end, let δC(n)

L satisfy the linearized version of (29),

(33) δC(n)
L

= (I − X)−1(δF + δXC) .

Note that

(I− X + δX)−1 =
{
(I − X)

[
I + (I − X)−1δX

]}−1

=
[
I + (I − X)−1δX

]−1
(I − X)

−1
.
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Since (31) guarantees that (30) will be met, we have (Golub and Van
Loan, 1989, Lemma 2.3.3)

[
I + (I − X)−1δX

]−1
=

∞∑
k=0

(−1)k
[
(I − X)−1δX

]k
.

Hence when (31) is satisfied, (29) yields

(34) δC(n) =

{ ∞∑
k=0

(−1)k[Y δX]k
}

Y (δF + δXC) ,

in which the existence of Y ≡ (I − X)−1 is ensured by hypothesis.
Based upon (16), substitution of

δX = hνnδX0 + hνn+2δX1 + O(hνn+4) and
δF = hνnδF0 + hνn+2δF1 + O(hνn+4)

into (34) gives, when n = 0 and n = 1,

(35) δC(n) = h2 Y (δF0 + δX0 C)
+h4 [Y(δF1+δX1 C)−Y δX0 Y (δF0+δX0 C)]+O(h6)

= Y (δF + δXC) + O(h4) = δC(n)
L

+ O(h2νn) .

Similarly, when n = 2 we have

(36) δC(n) = h4 Y (δF0 + δX0 C) + h6 Y (δF1 + δX1 C) + O(h8)

= Y (δF + δXC) + O(h8) = δC(n)
L + O(h2νn)

Hence for all n = 0, 1, 2, the linearized δC(n)
L

has the correct leading-
order behavior of δC(n) and a first-order relative error of order O(hνn),
at which order the coefficient is itself of order O(1) by virtue of the
constraint (31). Numerical corroboration of this assertion is given in
§6, to which further discussion of this matter is deferred.

Accordingly, in §§5 and 6, we implement the full, non-linear (29) that
requires no a priori assumptions about the magnitude of ‖δC(n)‖. In
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(29), δX and δF are, by (13) and (25), given by (δX)ij = δ(n)(σi, ξj)
and (δF)i = δ(n)(σi, f), each of which may be determined using (13)
and (17). With δC(n) thus determined via (29), (22) in the form

(37) E(n)
M ≈

M∑
i=1

δC(n)
i ξi

provides the explicit leading-order behavior of the error E(n)
M in the

degenerate-kernel approximation.

4. Error analysis for non-degenerate kernels. In order to
establish the theoretical framework in which our method works, we
rewrite (2) to (6) as

Aφ ≡ (I − λK)φ = f(38)

BφM ≡ (I − λKM

)
φM = f(39)

Cφ(n) ≡ (I − λKP(n)
h

)
φ(n) = f(40)

Dφ(n)
M ≡ (I − λKMP(n)

h

)
φ

(n)
M = f .(41)

All unattributed external references within the remainder of this
section are to Atkinson (1997). It is assumed that 0 < ‖f‖ < ∞, K
is compact on C[a, b] with the supremum norm, and A has a bounded
inverse. By Theorem 2.1.1 B is invertible because, by construction,

(42) ‖K − KM‖ ≡ max
x∈[a,b]

∫ b

a

|K(x, s) −KM(x, s)| ds

satisfies

(43) lim
M→∞

‖K − KM‖ = 0 .

Equations (40) and (41) give

D = C + λ(K −KM )P(n)
h = C

(
I + λC−1(K −KM)P(n)

h

)
,
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and so ‖D−1‖ exists and is bounded if, via the geometric series theorem
(Baker, 1977, p.51),

‖K − KM‖ ≤ 1

|λ| ‖C−1‖ ‖P(n)
h ‖

.

By (2.1.11), this bound can be met for sufficiently large M provided
‖C−1‖ is bounded. For the piecewise-polynomial projections presently
used, standard results on polynomial approximation give

‖K − P(n)
h K‖ ≤ Ω(n) hn+1

∫ b

a

max
x∈[a,b]

∣∣∣∣ ∂n+1

∂xn+1
K(x, s)

∣∣∣∣ ds

where Ω(n) = 1
2 ,

1
8 and

√
3

27 for n = 0, 1 and 2. Hence if K(x, s) is
(n+ 1) times continuously differentiable with respect to x, we have 3

lim
h→0

‖K − P(n)
h K‖ = 0 ,

and so condition (3.1.28) of Theorem 3.1.1 is met. Hence
(I −

λP(n)
h K)−1 exists and is uniformly bounded for sufficiently small h so

that, by lemma 3.4.1,
(I −λKP(n)

h

)−1 = C−1 exists and is bounded for
sufficiently small h. The error discrepancy, the difference between the
true numerical error and predicted numerical error, is

(44) ΔE(n)
M ≡ E(n) − E(n)

M

=
(
φ− φ(n)

)− (φM − φ
(n)
M

)
=
(
φ− φM

)
+
(
φ

(n)
M − φ(n)

)
≡ ΔM + Δ(n)

M .

From (44) and inversions of (38) and (39),

(45) ΔM = A−1f−B−1f = B−1(B−A)A−1f = λB−1(K−KM )A−1f .

3 Within the general framework of bounded projections on compact operators
in Banach spaces, this result follows directly from lemma 3.1.2 which, of course,
cannot reveal the above condition on differentiability off K(x, s).
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Similarly, from (44) and inversions of (40) and (41),

(46) Δ(n)
M = −λD−1(K −KM)P(n)

h C−1f .

Alternatively from (44) and the existing forms of (38) and (39),

ΔM = λ(Kφ −KMφM )(47)
= λ

(Kφ + (K −KM)φM −KφM

)
= λ

(KΔM + (K −KM)φM

)
⇒ AΔM = λ(K −KM )φM

⇒ ΔM = λA−1(K −KM)B−1f .

Similarly, (44), (40) and (41) give

(48) Δ(n)
M = −λC−1(K −KM )P(n)

h D−1f .

Using either form of ΔM and Δ(n)
M , the error discrepancy is bounded

according to

‖ΔE(n)
M ‖ ≤ ‖ΔM‖ + ‖Δ(n)

M ‖
≤ |λ| ‖K − KM‖ ‖f‖

(
‖A−1‖ ‖B−1‖ + ‖C−1‖ ‖D−1‖ ‖P(n)

h ‖
)

(49)

≡ ω
(n)
h ‖K − KM‖ ,

in which ω
(n)
h is bounded and independent of the differentiability of

φ or its numerical/degenerate counterparts. Hence, by (43) and (49),
the theoretically predicted error tends to the true numerical error as
M → ∞. Moreover, from (45) (or (47)) and (46) (or (48)), both ΔM

and Δ(n)
M independently converge to zero at the same rate, ‖K −KM‖,

irrespective of the degree of piecewise-polynomial interpolation or the
numerical mesh size. How readily K(x, s) admits a degenerate-kernel
approximation is therefore the controlling factor in the rate at which
the error discrepancy decreases. Note that we do not require h → 0
in (49), the effect of which is to make each sub-term within the norm
tend independently to zero.
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5. Implementation. The finite-rank degenerate-kernel approxi-
mation

(50) KM(x, s) =
M∑
m=1

θm(x)ψm(s)

is constructed, in which the functions {ψm}Mm=1 comprise an orthonor-
mal polynomial basis Bψ on C[a, b] and the Fourier coefficients θm are
given by

(51) θm(x) =

b∫
a

K(x, s)ψm(s) ds .

A polynomial basis is used so that Weierstrass’ approximation theorem
may, for sufficiently large M , be applied with respect to the supremum
norm on C[a, b]. Solution of (5) in the form

φM = f + λ

M∑
m=1

cm θm .

using the finite-rank orthogonal expansion (50) proceeds along the lines
of, e.g., § 2.4 in Atkinson, (1997), the linear system (I − λA)C = F
having (A)ij = 〈ψi, θj〉 and (F)i = 〈ψi, f〉 for i, j = 1, . . . ,M . All
integrals in (51) and in the elements of A and F were evaluated using
Gaussian quadrature, all calculations being performed in the C language
on a standard laptop PC. Thus exact expressions for the integrations
in (51) are not required, making the method widely applicable to all
suitably behaved kernels K(x, s) and bases Bψ. For the numerical
experiments in §6 the orthonormal polynomial basis Bψ ⊆ C[a, b] was
constructed using a three-term recurrence relation as in Press et al.
(1992, p.142) or Gautschi (2004, p.10). Here Bψ has to be modified in
a non-standard way (the details are omitted) because it can be shown
that numerical instabilities swamp the calculations when b − a > 4
and rounding errors pollute the calculations when b − a < 4. Hence,
irrespective of the interval [a, b], all calculations in the generation of
Bψ and (51) were mapped onto the interval [−2, 2]; symmetry about
x = 0 simplifies the computational construction of Bψ. The leading-
order (asymptotically consistent to order O(hνn)) approximation of the
numerical error incurred by projection of (2)—with non-degenerate
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kernel—onto a mesh of size h is finally calculated using (29) and (37)
in the form

(52) E(n)
M = λ

(
(I − λA + λ δA)−1

(
δF + λ δA (I − λA)−1 F

))T
θ ,

in which (A)ij = 〈ψi, θj〉, (F)i = 〈ψi, f〉, (θ)i = θi, and (13) and (17)
give

(53)
(δA)ij = δ(n)(ψi, θj) ≈ χ(n)

0 (ψi, θj)hνn

(δF)i = δ(n)(ψi, f) ≈ χ(n)
0 (ψi, f)hνn

}
,

for i, j = 1, . . . ,M and n = 0, 1, 2. In implementing (29), it is to
be noted that the elements of the matrices and vectors in (52) are cal-
culated using high-order Gaussian quadrature rules that are adapted
interactively to guarantee an absolute error, in double-precision arith-
metic, that is overwhelmingly dominated by the magnitude of E(n)

M in
any of our experiments. Hence our predictions based on (29) are not
affected by using the approximation (52).

6. Results and discussion. We validate the result (52) on two
test problems. The first example (Kress, 1989, Example 11.4),

(54) φ(x) = e−x +
1
2
(
e−(x+1) − 1

)
+

1
2

1∫
0

(x+ 1) e−xs φ(s) ds ,

has a smooth kernel and solution φ(x) = e−x. The second example,

φ (x) =
1

2 − x
+ arctan

(
4√

2 + 16 x2

)
(55)

−
1∫

−1

(2 − s)
√

2 + 16 x2

1 + 8 x2 + 8 s2
φ(s) ds

has a sharply peaked kernel and solution φ(x) = (2 − x)−1.

With h = (b − a)/N and n = 0, 1, 2, each projection has N (n) =
N + n

2 (3−n) regularly spaced collocation nodes xi, i = 1, 2, . . . , N (n).
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For both examples (54) and (55), a value of N = 128 was used in
piecewise-constant (n = 0), linear (n = 1) and quadratic (n = 2)
projections to obtain φ(n) in the discrete problem (3). Since φ is known
for these test problems, E(n) ≡ φ− φ(n) can be calculated directly and
compared with our new estimate E(n)

M in (52).

We first examine the invertibility condition (30) and the assertion
that the bound (31) could be relaxed to (32) on the basis that, in
practice, κ ≈ ‖δX‖ ≈ M hνn . This assertion is clearly evidenced in
figure 1, which shows that κ/hνn increases linearly with M for all n,
with the welcome observation that the coefficient of proportionality is
of order O(1) in both the smooth- and peaked-kernel problems. Hence
(32) may be relaxed even further to

M < O(Nνn/cn), cn > O(1) ,

which all but guarantees the applicability of our method in practice. A
notable feature of figure 1(a) is that the error prediction when n = 1
should be far superior to that when n = 0, despite the fact that both
methods are of the same order, O(h2).

0

0.05

0.1

0.15

0.2

2 3 4 5 6 7

κ/hνn

M

(a)

0

1

2

3

2 4 6 8 10

κ/hνn

M

(b)

Figure 1. Linear variation of κ/hνn with M for (a) the smooth-kernel problem, (54),
and (b) the peaked-kernel problem, (55), for n = 0 (�), n = 1 (◦) and n = 2 ( ).
Note the different vertical scales in each figure. The straight lines are least-squares
fits to the data generated by calculating κ using (30) for increasingly large linear
systems. Because of the order O(1) coefficients on the vertical axes, the invertibility
criterion κ < 1 is easily met even for moderate values of N . The greater gradient of
the n = 2 line in (b) is tempered by the fact that its data are coefficients of h4 � 1
in the bound (32).
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To quantify the error estimate globally on the interval [a, b], we calcu-
late the root-mean-square of the error discrepancy in (44) as

(56)
〈
ΔE(n)

M

〉
=

√
h
∑
i

(
ΔE(n)

M

)2

i
,

where the summation occurs over all collocation nodes xi. Similarly,
the root-mean-square numerical error is

(57)
〈E(n)

〉
=
√
h
∑
i

(E(n)
)2
i
.

We calculate the global root-mean-square relative discrepancy using

(58) ρ
(n)
M ≡

〈
ΔE(n)

M

〉〈E(n)
〉

rather than via the local-based measure√√√√h
∑
i

(
1 − E(n)

M

E(n)

)2

i

,

in anticipation of examples in which the exact and numerical solutions
(almost) coincide at one or more collocation points.

For each polynomial interpolatory projection (n = 0, 1, 2) and
example problem (54) or (55), figures 2, 4 and 6 show plots of the
error distributions E(n)

M (x) throughout [a, b], and figures figures 3, 5
and 7 show the convergence (with M) of error discrepancies

〈
ΔE(n)

M

〉
.

Also shown as a continuous line on the error-discrepancy plots 3, 5 and
7 is the root-mean-square numerical error

〈E(n)
〉

given by (57).

The error-distribution plots 2, 4 and 6 reveal the uniform convergence
with M throughout the interval [a, b] of the theoretically predicted
(continuous) error (52) to the computed numerical (discrete) error for
n = 0, 1, 2 with N =128. As expected, the convergence for the
peaked-kernel problem (55) (figures (2) and (6)) is less rapid than for
the smooth-kernel problem (54) (figure (4)).
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The error-discrepancy plots 3, 5 and 7 clearly show that the initial
convergence rate with M is exponential, in each case leading to a
relative-discrepancy (58) plateau of approximately O(10−5). This
initial exponential convergence towards the plateau occurs for all values
of n and h (the same behavior occurs for other values of N), thereby
corroborating the form of the error bound predicted in (49). Expressing
the exponential convergence rates in the form Ae−BM , for the smooth-
kernel problem (54) we find through least-squares fitting (the dashed
lines on figures 3, 5 and 7) that B ≈ 2.735, 3.882, 2.806 for n = 0, 1, 2,
showing that the actual rate of convergence does not vary dramatically
with n. By contrast, for the peaked-kernel problem (55), we obtain
B ≈ 0.316, 1.231, 0.313 for n = 0, 1, 2, so that our method is
considerably faster when n = 1 than it is when n = 0, 2; this
discovery is quantified in §7. It is possible that this unexpected rapid
convergence is a result of the coefficients χ(n)

0 in (17) enjoying their
simplest form when n = 1, a form that explicitly avoids differentiation
of the orthonormal polynomial basis in the implementation.

Note that the values to which
〈
ΔE(n)

M

〉
converge in each of figures

3, 5 and 7 are not roundoff plateaux, but rather O(hνn+2) truncation
plateaux resulting from the use of only the leading-order term in (13);
these plateaux descend with increasing N .
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Figure 2. Plot showing the rapid convergence with M of the piecewise-constant

predicted error E(0)
M (different lines for different M) to the actual piecewise-constant

numerical error E(0) (circles) for the solution of (55) with N = 128. For clarity,

E(0) has been plotted at regularly spaced collocation points.
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Figure 3. Logarithmic plot showing the rapid convergence with M of the piecewise-

constant root-mean-square discrepancy
〈
ΔE(0)

M

〉
of (56) between the predicted and

actual numerical errors for the piecewise-constant projection method applied to (54)

with N = 128 nodes. The root-mean-square numerical error
〈
E(0)
〉

of (57) over

all nodes is shown by a continuous line. The dashed line is the least-squares fit
ΔE ≈ 4.346×10−5 exp(−2.735M) to the exponentially convergent data, which here
converge to the O(h4) truncation plateau, and not the roundoff plateau, since our
analysis predicts the coefficient of the O(h2) term in the numerical error.
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Figure 4. Plot showing the rapid convergence with M of the piecewise-linear

predicted error E(1)
M (different lines for different M) to the actual piecewise-linear

numerical error E(1) (circles) for the solution of (54) with N = 128. For clarity,

E(1) has been plotted at regularly spaced collocation points.
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Figure 5. Logarithmic plot showing the rapid convergence with M of the piecewise-

linear root-mean-square discrepancy
〈
ΔE(1)

M

〉
of (56) between the predicted and

actual numerical errors for the piecewise-linear projection method applied to (55)

with N = 128 nodes. The root-mean-square numerical error
〈
E(1)
〉

of (57) over

all nodes is shown by a continuous line. The dashed line is the least-squares fit
ΔE ≈ 1.569×10−5 exp(−1.231M) to the exponentially convergent data, which here
converge to the O(h4) truncation plateau, and not the roundoff plateau, since our
analysis predicts the coefficient of the O(h2) term in the numerical error.
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Figure 6. Plot showing the rapid convergence with M of the predicted error E(2)
M

(different lines for different M) to the actual piecewise-quadratic numerical error

E(2) (circles) for the solution of (55) with N = 128. For clarity, E(2) has been
plotted at regularly spaced collocation points. Note the scaling on the vertical axis,
showing O(h4) behaviour in contrast to the O(h2) behaviour in figures 2 and 4.
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Figure 7. Logarithmic plot showing the rapid convergence with M of the root-mean-

square discrepancy
〈
ΔE(2)

M

〉
of (56) between the predicted and actual numerical

errors for the piecewise-quadratic projection method applied to (54) with N = 128

nodes. The root-mean-square numerical error
〈
E(2)
〉

of (57) over all nodes is

shown by a continuous line. The dashed line is the least-squares fit ΔE ≈
8.045 × 10−10 exp(−2.806M) to the exponentially convergent data, which here
converge to the O(h6) truncation plateau, and not the roundoff plateau, since our
analysis predicts the coefficient of the O(h4) term in the numerical error.

Finally, we reconsider the effect of linearizing (29). The plots in
figure 8 provide clear a posteriori evidence to support the use of the
linearization (33), which is to be preferred since it requires that only
oneM×M linear system has to undergo a single LU decomposition and
two backward and forward substitutions. Analogous to the behavior
displayed by κ/hνn in figure 1, both ‖δC(n)‖/hνn and ‖δC(n)

L ‖/hνn

increase linearly with M . Note that the linear increase of ‖δC(n)‖ with
M does not lead to unbounded estimates of |E(n)

M | since, by writing (52)
in the form

E(n)
M (x) ≈ λ δC(n) · θ(x) ,

it is clear that the exponentially decreasing magnitude of the norms
of the components of the Fourier-coefficient vector θ is the restraining
factor. Specifically, for the smooth-kernel test problem (54), the mth
such component decays approximately according to the least-squares
quadratic-exponential fit ‖θm‖ ≈ e1.94−1.54m−0.143m2

in which the
small negative quadratic coefficient indicates super-exponential con-
vergence for small m. For the peaked-kernel problem (55), the double
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pole in the kernel gives the two quadratic-exponential fits ‖θm‖ odd ≈
e1.16−0.443m+0.00361m2

and ‖θm‖even ≈ e1.33−0.578m+0.0111m2
in which

the very small positive quadratic coefficients indicate marginally sub-
exponential convergence for small m. Evident in figure 8 is the now-
familiar observation that there is minimal linear growth when n = 1;
this, we suggest, is associated with the absence of differentiated poly-
nomial basis functions in the expression for χ(1)

0 in (17).
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Figure 8. Linear variation of ‖δC(n)‖/hνn with M for (a) the smooth-kernel
problem, (54), and (b) the peaked-kernel problem, (55), for n = 0 (�), n = 1

(◦) and n = 2 ( ). For each n, the filled symbols are the values of δC(n) from the

non-linear (29) and the hollow symbols are the values of ‖δC(n)
L ‖/hνn computed

using the linearization (33). The straight lines are least-squares fits to the filled
symbols. The agreement between the non-linear and linearized theory provides a
posteriori justification for the latter, even in the peaked-kernel case. The negligible
gradient of the n = 1 line in (b) accounts for the rapid descent to the truncation
plateau in figure 5 in the peaked-kernel case. The greatest discrepancy between
linear and non-linear results, for n = 2 in (b), is tempered by the fact that the data
are coefficients of h4 � 1. Note the similar vertical scales in each figure.

Table 1 on the next page provides further evidence to justify the lin-
earisation by showing the actual the error discrepancy ΔE(n)

M predicted
by using δC(n) and δC(n)

L in (37). All calculations were undertaken in
the C language on an 866Mhz Pentium 3 PC with 512Mb RAM.

7. Efficiency relative to extrapolation. The complexity of the
new algorithm precludes a meaningful explicit analysis of its cost rel-



502 C.M. GROH AND M. A. KELMANSON

ΔE(n)
M for smooth-kernel problem (54) with M = 10 and N = 128

n = 0 n = 1 n = 2

δC(n) in (37) 2.066e−11 1.617e−11 1.310e−15

δC(n)
L in (37) 8.912e−12 2.728e−11 1.320e−15

ΔE(n)
M for peaked-kernel problem (55) with M = 30 and N = 128

n = 0 n = 1 n = 2

δC(n) in (37) 1.103e−09 1.221e−10 5.603e−13

δC(n)
L in (37) 8.430e−10 1.436e−10 5.603e−13

Table 1. Comparison of error discrepancies ΔE(n)
M obtained using δC(n) and its

linearized counterpart δC
(n)
L . Note the minimized relative differences when n = 2,

in keeping with expressions (35) and (36), only the latter of which has a linear error
form at order O(hνn+2). Computation times for each of the smooth-kernel results
were 0.199 and 0.013 seconds when using 96 and 10 Gauss points respectively for
evaluating the system-matrix elements.

ative to Richardson extrapolation. Instead, we examine the efficiency
ratio R

(n)
h of actual CPU times on the same computational platform

required by both the present method and Richardson extrapolation
to obtain relative error discrepancies (58) comparable to those at the
truncation plateau. Based upon the evidence in figure 8 and table
1, we use the linearized inversion (33). We assume that νn is known
to both methods so that Richardson extrapolation requires only two,
rather than three, independent numerical solutions. Efficiency ratios
for n = 0, 1, 2 and N = 64, 128, 256 are given in tables 2 and 3, in
each of which an efficiency ratio greater than unity indicates the fac-
tor by which the new method is faster than Richardson extrapolation,
which is here based on solutions with N and 2N intervals on [a, b].

Table 2 provides convincing evidence for the motivation of the new
method. For the smooth-kernel problem, the efficiency factors are im-
pressive for low values of N , and improve dramatically with increasing
N . As expected, the efficiency factors decrease in the case of the peaked
kernel, as demonstrated in table 3. Of note, however, is the manifesta-
tion of our discovery in §6 regarding the case n = 1 when, even for low
N , the new method is considerably more efficient than Richardson ex-
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trapolation; as N increases, the advantage of the new method spreads
to all values of n. When the full non-linear inversion (29) was used, the
efficiency ratios in tables 2 and 3 decreased by an average (over each
set of nine values) of only 0.515% and 0.255% respectively.

R
(n)
h for smooth-kernel problem (54)

n = 0 n = 1 n = 2

N = 64 232.79 390.76 208.33

N = 128 2195.21 1052.32 632.33

N = 256 13607.98 3141.16 2104.14

Table 2. Speed-up factors of the linearized method relative to Richardson extrapola-
tion for the iterated collocation solution of the smooth-kernel problem (54). Results
from the new method for n = 0, 1, 2 were obtained using M = 6, 4, 5 respectively.
Global integrals were evaluated using 10-point Gaussian quadrature.

R
(n)
h for peaked-kernel problem (55)

n = 0 n = 1 n = 2

N = 64 3.65 77.16 1.06

N = 128 48.64 210.35 4.75

N = 256 362.59 389.69 23.16

Table 3. Speed-up factors of the linearized method relative to Richardson extrapola-
tion for the iterated collocation solution of the peaked-kernel problem (55). Results
from the new method for n = 0, 1, 2 were obtained using M = 34, 11, 34 respec-
tively. For n = 0, 2, the truncation plateaux were not reached and the comparison
was based upon a relative error discrepancy of order O(10−4). Global integrals were
evaluated using 64-point Gaussian quadrature.

We also note that the new method provides the error discrepancy
E(n)

M as an explicit function of x over [a, b] whereas E(n) is known
at only the collocation nodes. Moreover, in the context of practical
applications, given an error tolerance ε > 0, the new method is useful
for obtaining cheap a priori estimates of the value of N that would
guarantee E(n) ≤ ε.
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Finally, we remark that the present method does not accurately
predict the errors incurred in integral equations for which the kernel
is highly oscillatory on [a, b]: it obtains the correct order, but not the
right distribution with x ∈ [a, b]. Via (49), this is due to the fact that
‖K − KM‖ exhibits slow convergence with M when K is oscillatory.
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