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ON INTEGRAL EQUATIONS OF THE FIRST 
KIND WITH LOGARITHMIC KERNELS 

Y. YAN AND LH. SLOAN 

ABSTRACT. The existence-uniqueness of the solution and 
its behaviour for one-dimensional integral equations of the first 
kind with logarithmic kernels are investigated. The analysis is 
based on the transfinite diameter or logarithmic capacity and 
spaces deriving from Fourier series. The uniqueness results 
apply to any closed bounded subset of the plane. The other 
results apply to open arcs, polygons and other regions with 
piecewise-smooth boundaries. 

0. Introduction. In this paper, the integral equation of the first 
kind, 

(1) - / \og\x-y\g(y) dy = f(x), x G I \ 

will be investigated, where dy denotes the arc-length element at y G T. 
r is a curve in the plane, smooth or piecewise smooth, open or closed, 
such as an interval, circle or polygon [5]. Some discussion will also be 
given for the more general case, appearing in [24], [2], [38], 

(1*) -J[log\x-y\ + F(x,y))g(y)dy = f(x), xGT, 

where F(x1y) is a function oîx,y G T which is smoother than log \x — y\. 
We will give existence-uniqueness theorems for the solutions and show 
their smoothness and singular character. 

The integral equation of the first kind in the form (1) follows from the 
representation of a harmonic function by single-layer potentials, or by 
the direct boundary integral equation method (BIEM) for plane Dirich-
let boundary value problems, both of great importance in engineering 
[29, 4, 18, 5, 6, 7]. The classical boundary integral equations usually 
appeared in the form of second kind integral equations [34, 29],because 
of the simplicity of Fredholm theory. But in the last decade engineers 
and mathematicians have noticed that boundary integral equations of 
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the first kind with logarithmically singular kernels allow simple numer
ical solutions of practical problems. By now much attention has been 
paid to their numerical analysis. 

On the theoretical side, this kind of equation cannot fit within the 
framework of the classical Fredholm theory and is in some ways more 
difficult than the traditional integral equation of the second kind [3]. 
The reason is that the logarithmic operator has a smoothing effect and 
typically maps a function space to a smaller space. As a result, an 
analysis of equation (1) in a single function space will usually result in 
solutions failing to exist for some function / ( x ) , and hence instability. 

Another integral equation 

(2) -Jlog\x-y\g(y)dy + LJ = f(x), x e I \ jg(y)dy = 0, 

has a close relation to (1) [41]. This equation has been used frequently 
in single-layer potential theory [24, 26 , 2]. When T is a smooth 
boundary of a bounded simply connected domain Q both (1) and (2) 
have been included in the abstract theoretical framework of pseudo-
differential operators [39, 44 , 45]. This has turned out to be a 
useful tool for deriving error estimates for the Galerkin and collocation 
methods for boundary integral equations [25, 27 , 44 , 4 5 , 4 6 , 2 8 , 2, 
38]. When T is a polygonal boundary, the pseudo-differential operator 
theory is not directly applicable. The integral operator no longer has 
a convolutional principal part and the solution of the integral equation 
in general has singularities at the corners [30, 20 , 29 , 12 , 2 1 , 4 1 , 47] 
even if the right hand side of the equation is smooth. For this case, 
Mellin transforms have been used [10, 1 1 , 12 , 1 3 , 14 , 15] to analyse 
the boundary integral equation and have yielded error estimates for 
the Galerkin and collocation methods. In either case, a central idea of 
these works is the proof of strong ellipticity of the integral operator. 
One technique used in that proof is the trace theorem. This technique 
appeared first in the work of Hsiao and Wendland [25], where the 
existence and uniqueness of solutions for (1) and (2) were proved under 
the condition of a smooth boundary and with the problem scaled so that 
diameter (fì) < 1. Also, later in the works of Costabel and Stephan 
[12, 15 , 16], the existence and uniqueness of (1) were proved for a 
polygonal or Lipschitz boundary. Another technique is Fourier analysis, 
which has been used to prove the existence and uniqueness of solutions 
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for (2) with r a smooth boundary [27, 9, 33]. The existence and 
uniqueness of solutions for (1) and (2) have also been analysed without 
showing the strong ellipticity by Verchota [43] and McLean [33] in 
whose work T is a closed Lipschitz contour. For the case of a F with 
less restriction (e.g., T an open arc), the energy integral method has 
been used to generate error estimates for the Galerkin method [41, 47]. 

Whereas the trace theorem is restricted to cases in which T is the 
boundary of a bounded simply connected domain, Fourier analysis may 
be available for both open arcs and closed contours. This is the path 
we follow in this paper. We shall assume T to be a simple curve (open 
or closed) except in the general discussion in §1. 

The behaviour of the solution of (1) depends on whether T is closed 
or open. Loosely speaking, when T is smooth and closed, the smoother 
f(x) is, the smoother the solution g(x) is. If T is open, then usually 
g(x) is singular at the two end points of T, no matter how smooth f(x) 
is. Hence the structure of the solution on the different contours, closed 
or open, is quite different. For this reason we shall analyse the cases of 
closed and open contours separately, writing the contour as Tc in the 
closed case, and T0 in the open. 

In the case of the open (smooth) contour, we shall introduce a simple 
cosine change of variable (see §4), which renders the analysis similar 
to tha t for the closed contour and makes the singularities at the ends 
explicit. This novel approach to the open arc is one of this paper 's 
main contributions. 

To enhance understanding, we adopt a somewhat expository style. 
Thus in much of this paper we consider in parallel both closed curves, 
for which many of the results are known, and open arcs, for which the 
results are new. 

In §1 we collect some useful results from classical potential theory and 
prove a uniqueness theorem which plays a key role in the analysis. In §2 
and 3 we develop Fourier series representations of two special integral 
operators with logarithmic kernels. One is appropriate to smooth closed 
curves, the other (after a change of variable) to open arcs. The setting 
for the first is a standard Sobolev space Hf, for the second a slightly 
modified space H^. 

The main results are presented in §4 and 5. In §4 a theoretical 
analysis is given for both closed and open contours T and existence 
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and uniqueness theorems are proved. In §5 existence and uniqueness 
are analysed for the case of a polygonal contour T by means of a 
perturbat ion argument applied to the results for smooth closed curves. 

1. R e s u l t s from potent ia l theory. In this section the results 
apply to a very general class of contour T. Assume only tha t T is 
a closed, bounded set in R 2 . Correspondingly, the language is tha t 
of measures and charges on T. However, if T is suitably regular a 
correspondence with equation (1) may be obtained by replacing d/i or 
da below by g(y) dy. 

The methods used are those of classical potential theory, rather than 
those of partial differential equations. As in [41], an essential concept 
is tha t of the "transfinite diameter", or the equivalent concept of the 
"logarithmic capacity" Cr , as discussed by Hille [23]. 

The most important result of this section is Theorem 1.3 which 
establishes that the solution of (1) is unique, even if the equation is 
interpreted in the most general measure-theoretic sense. The only 
restrictions are tha t Cp ^ 1 (or, in the language of [29], tha t the 
contour is not a T-contour) and that the solution has "finite energy". 

Let r be a bounded closed subset of the plane and let M(T) denote 
the set of normalized measures /i, i.e., /x is a measure such tha t /JL(T) — 1 
and 0 < fi(S) < 1 for S C T. 

For fi G M ( r ) , the "energy integral" I(fi) is defined by 

(3) I(ii) = J J log \x - y\-ld^{x) dn(y). 

The energy integral always exists, but may have the value -foo. 

We now define Vp (the "Robin constant" of the set T) by 

(4) Vr= inf J M , 
neM(T) 

which satisfies Vp > — oo (see [23]). The logarithmic capacity Cp is 
then defined by 

CT=e-v-. 

(The transfinite diameter of V is defined differently, see [23], but Hille 
shows tha t the two concepts are equivalent. We shall use the phrase 
"transfinite diameter".) 
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Some useful properties of the transfinite diameter are: 

1. Cr < dr, where dr is the Euclidean diameter of T. 

2. If r = aTi, then C r = aCTl-

3. If r is the "outer boundary" [23] of a closed bounded set E, then 
Cr = CE-

4. li Ex cE2lthenCEl <CE2-

5. The transfinite diameter of an interval of length a is (1/4)a. 

6. The transfinite diameter of a circle of radius a is a. 

The following result (see [23, 31]) often allows subsets of "capacity 
zero" to be ignored in an integration. 

LEMMA 1.1. Let T, a closed bounded set with Cr > 0, have a subset 
S C r such that Cs = 0. If fi G M(T) and /(/i) < oo, then fi(S) = 0. 

Here Cs — 0 indicates, as in [31], that for any compact set E C 
5, CE = 0. 

Another important result proved by Hille follows. 

LEMMA 1.2. If Cr > 0, then there exists a unique measure \ie E M(T) 
that achieves the infimum in (4). 

The significance of the "equilibrium distribution" \ie, which satisfies 
Vr = I(ße), will De apparent from the next result. Define 

(5) U(x,fji)= / \og\x-y\~1d/i(y), x G R 2 , 

the "potential" at x arising from the measure / i o n L It is known that 
U(x, /i) is a harmonic function for x in the complement of supp (/i) 
(excluding the point at infinity). The following result [31] concerns the 
potential arising from the equilibrium distribution /xe-

LEMMA 1.3. Let T be a closed bounded set of positive transfinite 
diameter Cr- Then U(x,iie) < Vr in the whole plane,and for x G T we 
have U(x, ße) = Vr except possibly in a subset of capacity zero. 



554 Y. YAN AND I.H. SLOAN 

Thus the equilibrium distribution gives rise (except possibly on a 
subset of capacity zero) to a constant potential on I\ 

The definitions of the energy integral (3) and the potential (5) may be 
extended from measures to signed "charges" (i.e., completely additive 
set functions). Every charge a can be written (see [17]) as a = a+ — cr_, 
where a± are measures. Let S(T) be the set of charges a for which 
I(\a\) < oo, where \a\ = a+ + a-. (Thus S(T) is the set of charges 
with "finite energy".) Then 1(a) and U(x1a), obtained from (3) and 
(5) by replacing \i by <J, are well defined for a G S(T). 

Lemma 1.1 extends in an obvious way to charges. 

LEMMA 1.4. Let T, a closed bounded set with Cr > 0, have a subset 
S such that Cs = 0. If a e S(T), then \a\(S) = 0. 

Charges a with finite energy and with the property that the total 
charge cr(T) is zero lead to particularly simple results. For the following 
important result, see [17]. 

LEMMA 1.5. Let a e S(T) be such that a(T) = 0. Then 1(a) > 0, 
with equality if and only if a — 0. 

From this result follows, as in [41], the known positive-definite 
property of the bilinear form 1(a), provided Cr < 1. 

THEOREM 1.1. (positive definiteness). Let T be a closed bounded set, 
with transfinite diameter satisfying 0 < Cp < 1. Assume a G <S(r). 
Then 1(a) > 07 with equality if and only if a — 0. 

REMARK. The condition Cr < 1 is necessary, since if Cr > 1 the 
result in the theorem is contradicted by I(/ie) = ^r < 0. 

PROOF. For a G S(T) we may write a = cr(r)/xe + cr0, from which 
it follows that cro(r) = 0. A simple argument shows that a$ G S(T). 
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Then we have, from the definitions of 1(a) and /xe, 

1(a) = a(T)2VT + 2a(T) J f log \x - y\-ldße(x) da0(y) + I(a0). 

The second term vanishes, since 

/ / log\x-y\~1d/ie(x) da0(y) = / U(y, /xe) da0(y) 

= Vra0(T) = 0, 

where in the second last step we have used Lemma 1.3 and Lemma 1.4. 

Thus 

/(a)=<7(r)Vr + / M , 
and since Vr > 0 the result now follows from Lemma 1.5. D 

We have already noted tha t the equilibrium distribution \ie gives rise 
to a constant potential (except possibly on a subset of capacity zero) 
on T. The next result establishes a converse: the only charges with 
finite energy tha t can yield a constant potential on T are the constant 
multiples of \ie. 

THEOREM 1.2. Let T be a closed bounded set, and assume that 
a G S(T) is such that 

U(x, a) = c = constant, for x ç T , 

except on a set of capacity zero. Then c = a(T)Vr, and a — a(T)fie. 

PROOF. A S in the preceding theorem, write a — cr(r)//e + 0o, so that 
(7o(r) = 0 and <To G S(T). Then for x G T we have 

U(x, o-o) = U(x, a) - a(r)U(x, ne) = c- a(r)Vr, 

except on a set of capacity zero. Since the right-hand side is a constant, 
it follows tha t 

/ M = J U(x, (TO) da0(x) = (c - a ( r ) V r ) a o ( r ) = 0. 
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Lemma 1.5 now yields GQ — 0 and the result follows. D 

As a corollary to this result, we now obtain the theorem foreshadowed 
above, which effectively establishes the uniqueness of the solution of (1). 

THEOREM 1.3. {uniqueness). Let T be a closed bounded set for which 
the transfinite diameter satisfies Cr ^ 1. Assume also that a 6 S(T) 
is such that 

U(x,cr) = 0, for x e T, 

except on a set of capacity zero. Then a — 0. 

PROOF. Setting c — 0 in the preceding result, we obtain a — a{F)ße 

and a(T)Vr = 0. Since Vr ^ 0, it follows that a(T) = 0, and hence 
<7 = 0 . D 

REMARK 1. The condition Cr ^ 1 in the theorem is necessary, since 
if Cr = 1 the non-zero charge /xe yields the zero potential except on a 
set of capacity zero. 

REMARK 2. An alternative approach to a uniqueness proof is indi
cated in [41]. Use Theorem 1.1 to establish uniqueness for the case 
Cr < 1 and then use scaling arguments to establish the result for arbi
trary Cr T1 1. The present approach is more direct. 

REMARK 3. The uniqueness result of [19] requires V to be a rectifiable 
and simple closed Jordan curve. Theorem 1.3, however, extends the 
result to any closed bounded set, including open arcs, boundaries of 
multiply connected regions and curves which intersect themselves (i.e., 
have multiple points). 

REMARK 4. If r is a piecewise smooth contour with a finite length, 
and if for g G Lp(T) with p > 1 we let 

^ 0 ) = / 9(r)dr, 
JXQ 
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where J\ denotes an integration along T from x<j to x, so that 
dcr(x) = g(x)dx, then we automatically have a G S(T). Thus we 
obtain, 

COROLLARY 1.1. Let T be a piecewise smooth contour with a finite 
length and transfinite diameter Cr ^ 1. Assume that g G LP(T) with 
p > 1 is such thai 

/ log \x - y\~1g{y) dy = 0, for x G T. 

Then g = 0. 

2. Sobolev spaces H* and H*. The subsequent analysis is 
performed in Sobolev spaces Hf and Hf

e defined by Fourier series. Our 
concern in this section is to introduce these Sobolev spaces and establish 
some useful properties. The Sobolev spaces in the first subsection are 
the standard ones used for a circular contour. In the second subsection 
we introduce closely related spaces which will prove useful for a new 
analysis of open arcs. 

2.1. The periodic case. We consider the space of r-times continuously 
differentiable periodic functions on R, 

Cr(27r) = {feCr(R):f(x + 27r) = f(x)1 x G R} , r = 0 , l , . . . , 

withC°°(27r) = nrC
r(27r). 

For each v G C°°(27r), its Fourier expansion has the form 

1 oo 

v(s) = —= y £(m) exp(zms), 
/2TT 

with 

i r 
v(m) — I v(s)exp(—ims)ds, m = 0, ±1 , ± 2 , . . . . 

V27T J-7T 

We define a norm | \t on C°°(27r) for each real number t G R by 

(6) \v\2
t = ^2\mnv(m)\2 + \v(0)\2. 

ra^O 
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Now the Sobolev space Hf{2ir) is defined to be the completion of 
COC(2TÏ) with respect to the norm | \t. Some useful standard properties 
are collected in the following theorems and propositions. 

T H E O R E M 2.1. 

(i) Hl is a Hilbert space with inner product 

(u,v)t= 2 . \m\2tû(m)v(m) + û(0)v(0); 

(ii) If s < t, then Hs D Hf and the inclusion is a compact map; 

(iii) The dual of Hf+a, with respect to the inner product (, ) t , is 

Ht~a
? i.e., the functional u —* (u,v)t is bounded on Ht+a if and only 

if ve H1'", and 

H t - a = sup{(u,v)t/\u\t+a : u G Ht+a} 

(iv) Interpolation inequality: if t = (1 — 6)t\ + 0̂ 2? 0 < 6 < 1, then 

\u\t<\u\]-°\uft2. 

These results can be found in [32, 9, 2]. Obviously H°(2TT) = L2(2ir) 

and (u,v)o — J_ u(t)v(t) dt. More generally, for r a positive integer 

Hr is equivalent to a Sobolev space Wr:2 defined, as in [1], as the space 

of functions whose generalized derivatives of orders 0 , 1 , . . . , r belong to 

L2. 

PROPOSITION 2.1. When r is a positive integer, Hr(27r) is equivalent 
to W r '2(27r) = {u G Wr<2(-7T,7r) : Dlu(-n) = Dlu(ir), for I = 
0 , . . . , r - l } . 

The proof can be found, for example, in [33]. 

Now let "— > " designate the imbedding map [1]. Then the following 

imbedding theorems hold: 

PROPOSITION 2.2. For t > | , #*(27r) - > C 0 ( 2 T T ) . Thus any 

u e Ht(27r) with t > \ is a continuous 2TT-periodic function. Moreover 

the imbedding is a compact map. 
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This result follows, for example, from [33] and (ii) in Theorem 2.1. 

P R O P O S I T I O N 2.3. ( H A R D Y AND L I T T L E W O O D T H E O R E M ) 

(i) H1^-1^(2TT)->LP(27T), for 2 < / > < + o c ; 

(ii) L p ( 2 7 r ) - > i / 1 / 2 - i / p ( 2 7 r ) 7 forl<p<2; 

and the converses of (i) and (ii) are not true [48, 22]. 

2.2. The periodic and even case. In particular, we consider the even 
periodic function spaces, 

Cr
e(27r) = {fe Cr(27r) : f(x) = f(-x), x G R } , r = 0 , 1 , . . . , 

with C£°(27r) = n rCJ(27r), which are subspaces of the corresponding 
spaces in the preceding subsection. 

For each v G C£°(2ir), its Fourier expansion becomes 

v(s) = y 2 J IT I 2_^ v(m) cos ms -\—#(0)1, 
l 

where v(m) = \/2pK J^ v(a) cos mo~ da, m = 0 , 1 , . . . . 

For simplicity we adopt the same norm symbol | \t as before for our 
new norm 

(7) M?=2]Tm 2 <| t>(m) | 2 + K;(0)|2. 
ra=l 

Actually, for v G C£°(27r) the norms defined by (7) and (6) are equal. 

The Sobolev space Hl(2ir) is defined to be the completion of C^(2TT) 

with respect to norm | \f. Similarly to #* (2TT) , #*(2TT) has all of the 

properties in Theorem 2.1 if the inner product is defined in the obvious 

way, and satisfies 

PROPOSITION 2.1*. When r is a positive integer, H^(2TT) is equivalent 
to W T 2 ( 2 T T ) = {ue Wr<2(2ir) : u(x) = u{-x), for x G R } . 

PROPOSITION 2.2*. Fort > ±,i / | (27r) ->C®(2TT), and the imbedding 
is a compact map. 
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In fact HI(27T) is a closed subspace of Ht(27r) which consists of even 
functions. Therefore the results above follow in a straightforward way 
from Propositions 2.1 and 2.2. 

3. Isometry operators from H* to H t + 1 ,H* to #* + 1 . Here we 
study particular integral operators with logarithmic kernels and show 
that they are isometries from Hl to H1^1 or from Hi to H^1. The 
first case is to some extent known, but the closely related second case 
seems to be new. It will lead, in the next section, to a novel treatment 
of open arcs. 

3.1 The periodic case. Since to any v G H°(27T) we have (for example, 
see [9]) 

i r 
log 

^ . S — (T 

2sm via) da — . > -—-exp(zras), 

it follows that 

\v(a) da / log \2e 2 sin 
TT J - 7 T I 2 

(8) = 1 ( ^ ^ e x p ( i m 5 ) + o(0)). 

We let A ( s - a ) = - £ log |2e~* sin ^ | , and Av(s) = « ) , A ( s - . ) ) 0 . 
Then (8) shows that 

(9) Av(s) = - ^ ( 2 ¥ r exP(*TOS) + *(0)) • 
^ ^ |m|>0 ' ' 

Thus by a simple calculation, we find for v G H° that Av G i /1 , 
\Av\i — \v\o and (J4I;,I/)O = {v,u)-i/2- Use (9) to extend the domain 
of definition of A to Hl, where t is real number. Then we find 

\Av\t+x = |v|t, 

(Av, u)o = (v, n)_i/2, if w G i î "* - 1 , v G ff*. 

file:///Av/i
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At the same time, 

A lv = —=[ 2_] \m\v(m)exp(ims) + v(0)J, v £ Hf 

Therefore the operator A is an isometry operator from Hf to HfJrl for 
any real number t. 

Now consider A~l : Ht+l —» Hl. When t > 0, we find by a simple 
calculation 

A~lv = -D2Av + Jv = -DADv + Jv, v e Ht+\ 

where Jv = ( l / v ^ M O ) and Dv(s) = v'{s). Let H = DA. Then 

(10) A'1 = -DH + J = -#L> + J 

and iif is the well-known Hilbert singular integral operator [34, 36, 
40], 

Hv(s) = p.v. / cot V{(J) da, 
2 7 r J-7T 2 

with the property H2 — —I + J and |iJ|o = ||#||L2(27r) — 1-

3.2 jf/ie periodic and even case. In parallel we consider the case of 
Hl

e. To any v G H®(27T), we find, for example from [37], that 

1 T i i . / x i fïfx^H™) l o S 2 - , n ^ / log coss — coscrbfcrjacr = W — > cos ras H — vii)) . 
7T J 0 V TT V ^ ^ 772 2 / 

Thus 

1 /'7r 

(11) / log(2e -1 | cos s — cos a\)v(a) da 
* Jo 

[2 ( v^ v(m) 1 A/rtX\ 
m = l 

Let A6(s,cr) = — Mog(2e_1 | coss—coscr|), Af,v(s) = J^ Ae(s,a)v(a)da. 
Then (11) shows that 

/2~/ ^ v(m) 1 Ä/„N\ 

m = l 
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Similarly to A, Ae is an isometry operator from Hf
e to H^1 for any real 

number t, and 

l^e^U+i = \v\u 

A useful and easily verified fact is tha t 

Av = Aev, v e iï°(2?r). 

4. Theoret ica l analys i s for s m o o t h T (c losed or o p e n ) . 
Now consider the theoretical analysis of equation (1), and set up the 
existence-uniqueness theorems of the solutions for a smooth closed 
contour Tc and smooth open contour T0. The result on the closed 
contour case is known, but the same simple approach will lead to a 
natural treatment for the open contour case. 

4.1. The closed contour case. Let Tc be a closed and smooth simple 
curve. Thus there exists a smooth function v : R/27rZ —•» Tc C R 2 , 
with | i / ( s ) | > p > 0. In this way, we obtain a transformed form of 
equation (1) on [—7T,7T], 

- - / \og\v{s) - v(a)\\v'(o-)\g(v((j)) da = -f{v(s)), 

S G [ —7T, 7 T ] . 

Let w(s) = \v'{s)\g{v(s)) and J(s) = ^f(v(s)). Then w(s) and J(s) 
are 27r-periodic functions and 

i r -
(12*) / log \v(s) - v(a)\w(a) da = f(s), s e [ - 7 r , 7 r ] . 

^ J-TT 

In this equation the kernel function is k(s,a) — —(1/ir) log \v(s) — v(a)\. 
Let 

Kw(s) = (w(.), h(s, .))o = / k(s,a)w(a) da. 
J —7T 

Then this equation can be written in the form of an operator equation, 

(13) #w = J. 
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Making use of the isometry operator in §3, we have 

Aw + (K - A)w = 7, 

or 

(13*) 

where 

Aw + Bw — f, 

Bw(S) = (w(.),b(S,.))o, 

b(s,a) = 

Mog|e*f"(<)-"(<T) 

i l o g e^v'(s) 

s — a £ 27TZ, 

s - a G 2TTZ. 

The function b(s,cr) is better behaved than k(sJa). This can be given 
as a proposition. 

PROPOSITION 4.1. b(s, a) is a smooth function of (s,a) on R 2 and 

is 2TT-periodic with respect to each variable. 

Since the kernel function ò(s, a) is smooth and 27r-periodic, then for 
any w G Hf, with t G R , Bw(s) exists and has derivatives of all orders. 
By a simple argument, 

DrBw(s) = (w(.), ^b(s, . ) ) o , r = 0 , 1 , 2 , . . . . 

Hence B : Hl -+ Ht+r is bounded for any t G R, r G Z+, so that 
B : H* —> Ht+1 is compact. Thus we have: 

PROPOSITION 4.2. B : Hl -* Ht+r is bounded for any t G R , r G Z+? 

and B : Hf -^ Hf+l is compact for any t G R . 

Let M = T 4 - 1 Z ? . Then M is a compact operator on H\ and 

(14) K = A + B = A(I + M). 
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THEOREM 4.1. If Tc is smooth and simple with CYC ^ 1, then 
K : Hl —> if *+ 1 zs 1-1 and onto for any t G R . 

PROOF. Suppose w G if * is such that Kit; = 0. Then from (14) we 
have (f + M)w = 0 and w = —Mw. According to Proposition 4.2, 
w = -Mw = -A~lBw is a C°°(27r) function, so tha t K ^ ( s ) = 0. In 
the light of the relation between (1) and (13), we now have 

- - / \og\x-y\w{v~\y))\(v~l)\y)\dy = ^ x G Tc , 

where (v1)' denotes the tangential derivative of v~l. Since w(s) is 
smooth, g(x) — w(v~l(x))^-1)'(x)\ G Z,2(rc). By use of Corollary 
1.1 we have ^ = 0 in Z,2(rc), so that K;(S) = 0. This means tha t 
AT:/f* ^Hf+\ is 1-1 for t G R . 

It follows that the operator I + M : Hf —> if* is 1-1 and according 
to the standard Fredholm theory is onto. This implies tha t K : H* —> 
HtJrl is onto. Since K is both 1-1 and onto, the proof is now complete. 
D 

4.2. The open contour case. Now we discuss equation (1) for the 
case of an open and smooth simple curve T0. In this case we adopt a 
different parametric representation of the curve. 

Let v(s) be a smooth parametrization of the form, v : [—1,1] —> T0 C 
R 2 , with \v'(s)\ > p > 0. Then define a : [0, ir] -+ T0 by a(t) = v(cost), 
so that r o is now considered to be parametrized by t = c o s - 1 s. In this 
way, we have a transformed form of equation (1) on [0,7r], 

i r 
/ log \a(t) — a(r)\ \V'(COST)\ sinrg(a(r) dr 

* h 
= - / ( a ( t ) ) , * € [ 0 , T T ] . 

7T 

Let w(t) = \v'(cost)\ \sint\g(a(t))J(t) = ^f{a(t)). Then w(t) and 

f(t) are even 27r-periodic functions on R . The integral equation, which 

we now write as 

/ log|a 
* Jo 

(15*) - - / \og\a{t)-a(r)\w(r)dr = f(t), * € [ - 7 T , 7 T ] , 

file:///og/x-
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can be thought of as mapping one even 27r-periodic function into an
other. In this equation the kernel function is ke(t, r) — —(1/ir) log \a(t)-
a(r) | . Letting 

(t) = / ke(t,r)w(r)dT, £e[-7r,7r], 
Jo 

Kew 

it then can be written as an operator equation 

(16) Kew = J. 

Making use of the isometry operator in §3, we have 

Aew + (Ke - Ae)w = 7, 

M * , r ) = < 

(16*) Aew + Bew = f, 

where Bew(t) — fQ öe(t,r)iü(r) dr and 

• i l o g U a ( * ) - ^ ) I t - r a n d H r e 2 i Z , 
7T ö 2 cos t — cos r ' ' ' 

-£log|ft/(cOSt)L t-T OTt + T e 2TTZ. 

The function be(t,r) is better behaved than ke(t,r). 

PROPOSITION 4.3. be(t,r) is a smooth function of (t,r) on R2 and 
is 2iT-periodic and even with respect to each variable. 

Similar to the discussion for Tc, we can easily find that: 

PROPOSITION 4.4. Be : Hj: —> Hf
(
+r is bounded for any teK, re 

Z + and Be : H\ —• Hf
(
+1 is compact for any t G R. 

Now let Me — (Ae)~
lBe. Then Me is a compact operator on Hl

e and 

(17) Ke = Ae(I + Me). 
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THEOREM 4.2. If F0 is smooth and simple with Cr0 r1 1? then 
Ke : Hi —» Hl

e
+l is 1-1 and onto for any t G R. 

PROOF. Suppose w G Hl such that Kew = 0. Then from (17) 
(/ + Me)w = 0, so that w = —Mew. According to Proposition 4.2, 
w = —Mew is a C^°(27r) function, so Kew(s) = 0. In the light of the 
relation between (1) and (16), we have 

- - l\og\x-y\w{a-\y)) ^ ^ dy = 0, x G T0. 
* JT0

 s m ( a (2/)) 

By a simple calculation 

1 _ 1 
sin(a-i(x)) ~ ^ i - ^ - i ^ ' 

which is an integrable function on T0, having the singularity \x — xi\ ' 
at the end points Xi(i = 1,2) of T0, where x\ ~ o(0), X2 = a(7r). Since 
iu(s) is smooth, we have 

9(x)= V } / m
u ' V n eLp(T0 , w i t h l < p < 2 . 

sin(a_1(x)) 

By use of Corollary 1.1 we find that g = 0 in L p ( r o ) , from which follows 
w(s) = 0. This means that Ke : H\ - • #* + 1 is 1-1. Similarly to the 
proof of Theorem 4.1, we have that Ke : Hl

e —+ Hl
e
+l is onto as well. 

As a result Ke is 1-1 and onto. D 

4.3 Discussion. As a byproduct of the analysis above, the different 
character of the solution of (1) on closed and open contours can now 
be understood. For a smooth closed contour Tc, when f(x) is r + 1 
times differentiable (r an integer) along the boundary Tc, the solution 
g(x) = \(v~ly (x)\w(v~l (x)) will be r times different iable; with f(x) 
smooth, the solution g(x) will be smooth. But for a smooth open 
contour T0, when f(x) is smooth along T0 we have 

y/l-iv-^x))* ' 



ON THE FIRST KIND INTEGRAL EQUATIONS 567 

in which (since w(t) is a smooth even function) the factor w(a~1(x)) is 
well behaved. Thus g possesses the singular factor (1 — ( v _ 1 ( x ) ) 2 ) " 1 / / 2 , 
unless w(a~1(x)) vanishes at the appropriate end point of T0. 

Examples: 

(i) r c a circle of radius a, a ^ 1: the solution of — j r log \x — y\ 

•g(y) dy — 1 is the constant function 

g(x) = — (a log a 2 7 T ) - 1 ; 

(ii) r o an interval [—a, a], a ^ 2: the solution of — J_ log \x — y\ 
g(y) dy — 1 is the singular function 

( \ l l 

7rlog(o/2) ^a2-x2' 

4.4. Extension to the equation (1*). To some extent, the analysis of 
equation (1) can be extended to equation (1*). We assume tha t F(x,y) 
is smooth along T x T. By appropriate changes of variables, we obtain 
the transformed forms of equation (1*) corresponding to (13) and (16) 
respectively: 

(18) (tf + i > = 7, f o r r r ; 

(19) (Ke + Fe)w = J, for lV, 

where 

S G I — 7T, TT , Fw(s) = / F(V(S), v(a) )w(a) da, 

Few(t) = - - F(a(t),a(T)\w{T)dT, t e [ - 7 r , 7 r ] . 

Obviously F : H1 -> H^1 and Fe : Hj_-^ Hf
(
+l are compact for 

any t G R . Let M = A~l{B + F),Me = A~l(Be + F e ) , then 
M : Hf -^ H\Me : E\ -> H\ are compact, and (18) and (19) are 
equivalent to (18*) and (19*) respectively, 

(18*) {I + ~M)w = A~1J, 

(19*) (I + Me)w = A;1Jì 
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which are second kind Fredholm equations. Let N^Q) and N*(Q) 
denote the null space of operator Q on Hf and H\ respectively, and 
N°°(Q) = ntN

t(Q)iN^°(Q) = ntNÌ;(Q). Then according to the 
standard Fredholm theory, we obtain 

THEOREM 4.3. Suppose that a smooth simple T is parametrized as 
a smooth function v(s) as before, with |^7(^)| > p > 0. If F(x,y) is 
smooth along T x T, then 

(i) For any t e K.N^K + F) = N°°(K + F) , and dimN°°(K + 
F) < -hoc). Moreover K + F: Hf —» i/*+1 zs 1-1 and on£o ?j(f 
dim N°°(K + F) = 0 . 

(ii) For any t e R,Nf
e(Ke + Fe) = N™{Ke + Fe) and dim7Ve°°(Ke + 

Fe) < +00. Moreover Ke + Fe \ Hi —> H^1 is 1-1 and onto iff 
dimN™(Ke + Fe) = 0. 

With less restriction on T, we have the following weaker results, which 
will be discussed in the last section. 

THEOREM 4.4. 

(i) For Tc, suppose that v'(s) is continuous with \vf(s)\ > p > 0 and 
T^F(v(s))V(a)) is continuous on [—7T,7T] X [—7T,7T]. Then dimN°(K + 
F) < +oo. Moreover K + F : iJ° —» i / 1 zs 1-1 and onto iff 
dimN°(K + F) = 0; 

(ii) ForT0? suppose that a'(t) is continuous with \a'(t)\ > p\ sin£|, p > 
0 and J^F(a(t), a(r)) continuous on [—7T,7T] X [0,7T]. T/ien dimN®(Ke + 
Fe) < +oo. Moreover Ke + Fe : i7^ —> if* is 1-1 and on£o zjff 
dimN°(Ke + Fe) = 0. 

5. Analysis for polygonal rc. When Tc is a polygon, the 
discussion of equation (1) is complicated by the fact that the solution 
of equation (1) in general has singularities at the corners [30, 20, 29, 
12, 21, 41 , 47]. As in §4.1, we parametrize the curve by a function 
v : R/27TZ —• r c , but now v is only piecewise smooth and satisfies 
lv/(s)| > p > 0 only away from the corners. Thus the integral equation 
is again (12*) or (13), but because of the lack of smoothness of the 
kernel we must now restrict the operator K in (13) to the space H°, 
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rather than to the more general space Hl. We can no longer expect 
to decompose the operator K : H° —* H1 into a sum of an isometry 
operator and a compact operator as in (13*). Thus some new techniques 
have to be introduced. 

As we know from (13*), K = A + B. (Note that Bw(s) is well defined 
even if s is a corner point of the polygon.) Now we are concerned with 
DB, which we will show in the next theorem can be written as 

(20) DB = R + E, 

where E is a compact operator on H° and R is a bounded operator, 
with |Ä|o = \\R\\L2 < 1. By noting that A'1 = -HD + J (see §3), we 
have 

K = A(I + A~lB) = A(I - HDB + JB) 
= A{I-HR-HE + JB). 

Let ~E = -HE + JB. Then ~E is compact on H° and \HR\0 = 
WHRWLZ < | | # | | L 2 | | Ä | | L 2 = | |Ä | |L 2 < 1, so that the operator 7 -
HR + E is a Fredholm operator of index 0 on H°. Now suppose that 
CTc ^ 1. From Corollary 1.1 we see that K : H° -> H1 is 1-1. It 
follows that 7 - HR -h E : H° -> H° is 1-1. So from the Fredholm 
theorem it is onto as well. Thus K : H° —> 771 is 1-1 and onto. 

In the following we will lay stress on the decomposition (20) of DB. 
A similar approach has been adopted for the second kind of boundary 
integral equations in [8]. 

It is convenient to further specialize the function v(s) by taking the 
parameter proportional to the arc length; that is \v'(s)\ = d(Tc)/27r, 
where d(Tc) is the length of Tc. Suppose v(s) = (x(s),y(s)) and 
that the corner points are at v\ = v ( s i ) , . . . , v m = ^(sm)) with 
-7T = S0 < Si < ... < Sm < S m + i = 7T, V0 = v(s0) = Vm+1 = v ( s m + i ) . 

The arc-length function v(s) = (x(s),y(s)) then can be described as: 

s — s ' 
v(s) = Vi H —(vi+i -Vi), for SÌ < s < s i + i , i = 0 , . . . , m. 

Si + l - Si 

At each v\ the number \i ^ ( — 1,1) is defined by requiring (1 — Xi)^ 
to be the interior angle Vi-iV{Vi+i for i — l , . . . , m . For the sake of 
convenience, we let 

b= (l/2)min{|si - Si_i|; i = 1 , . . . ,ra + 1}, 
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Si,±i/2 = Si±b, i = l , . . . , r a . 

NOW for S ^ Si, 2 = 1, . . . , 771, 

DBw(s) irli. 
i / ^ 

-— / h{s1a)w{a)da 
* J-* 

v(s) — v(a) 

2 s i n ^ 
ty(cr) da 

Y fsm,l/2 

s l , - l / 2 

h(s,a)w(a) da 

where 

/i(s, a ) 

1 / r /-«1.-1/2X 
- / + / )/i(s,cr)w(cr)dc7, 

s ; ( s ) ( s ( s ) - x(a)) + ?/(s)(j/(s) - i/(cr)) _ 1 , s - (7 

(x(8)-x(v))* + (y{s)-y(v))* 2 C ° 2 ' 

Since v(s) is 27r-periodic and smooth except at the corner points, a 
simple computation shows that the last two integrals above determine 
a compact operator on H°. The first integral can be written as 

J- r* '" I / 2 (x'(s)(x(s) - x(a)) + y'(s)(y(s) - y (a)) _ _J__\ 

7 r / n _ 1 / 2 V (x(s) - x(aW + (v(s) - y(e)Y s-a)Wy<T) (x(s) - x(a))2 + (y(s) - y(a))2 

1 [Sm-v* / 1 1 s~a\ f ^ J 
-— / cot }w(a)da, 

da 

or 

/

s m, 1/2 rSm,l/2 

G(s,a)w(a)da + / r ( s — cr)w(cr) der, 
-1 , -1 /2 ^«1 , -1 /2 

where r ( s — cr) = — ^(^r^: — \ cot —^) is a smooth function of (s, er) G 
[—7T, 7T] x [s\,-i/2, «5m,1/2] 7 which makes the last integral above determine 
a compact operator. The first integral we write as 

fsm, 1/2 m ^ Psi,1/2 

/ G(s,a)w(a)da = 2_] / G(s,a)w(a)da 
^ s l , - l / 2 i —1 ^ s i , - l / 2 

™ ^ 1 /-Si + 1,-1/2 

i = l Jsi,l/2 

G(s,a)w(a) da. 
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The second sum above determines a compact operator on H°. More
over, G(s,a) is a smooth function of (s,a) G ([—7r, 7T]\[SÌ, slA/2]) x 
[si,-i/2^i] a n d ( [ - 7 r ^] \h , - i / 2 , ^ ; ] ) x [^,s?;.1/2], i = l , . . . , m . Thus 
the first sum above as an operator on H° can be written as 

R + (compact part), 

where 

{ j*i,i/2 G(s,(j)w((j) da, s e [si,_i/2,Si), i = l , . . . , m , 

Aî-i/2 G ( S ' ̂ M * ) dcr' s e (s^ ^1/2], i = 1,.. -, m, 
0, otherwise. 

And for (s,<r) G ((s*, s u / 2 ] x K _ i / 2 , s7]) U ( h , _ i / 2 , s*) x [s?;, ̂ +1/2]), 
by simple calculation, we have 

^ / x l-COSX^TT 
G ( s , c r ) = 

(a - Si)((T - st + s - Si) 

(s - a)[(s - Si)2 4- (a - Si)2 - 2 ( 5 - 5z)(cr- Si) cos Xi^Y 

Summing up all the discussions above, we find that 

DB = R + E, 

where E is a compact operator on H°. 

For the analysis of the operator R we need a lemma. 

LEMMA 5.1. For any real number \ E ( — 1,1), if 

1 — COSX7T a(a — s) 
c(s^) = ix (a + s)(s2 -f a2 + 2scrcosx7r) ' 

£/ie integral operator defined by 

Rxw(s) — I rx(s,a)w(a) da, 0 < s < 1, 

zs a bounded operator on L2[0,1], tó/i | |ÄX | |x,2[o,i] < 1 ~ c o s ^f < 1-
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In order to prove this result we introduce the Mellin transform as 
follows, 

POO 

(21) w(X) = / <jiX-lw(a)da, 
Jo 

and describe some of its properties. 

PROPOSITION 5.1 (Parseval relation). Forw(a) G L2(0, oo), 

/

OO POO 

\w(X - i/2)\2d\ = 2TT / \w(a)\2 da. 
-oo Jo 

In fact with a change of variable a — e~l in (21), we have 

/

oo 

e- i A t e- t / 2 w(e- ' )d t , 
-oo 

which is the Fourier transform of the function e~t^2w(e~t). Thus, from 
the Parseval relation for Fourier transform, follows 

/

OO /»OO POO 

\w(X - i/2)\2dX = 2TT / m e " * ) ! ^ - * dy = 2TT / |^(cr) |2 da. 
-oo J— oo JO 

By use of the same change of variables, the Mellin transform of the 
function 

u(s) — \ k( — )w(a)— 
Jo Vcr' a 

at the point X — i/2 is 

/

OO POO 

e~lXt i e-(t-T)l2k(e-(t-T))e-Tl2w(e-T)dTdt. 
-oo J — oo 

This is the Fourier transform of the convolution of the functions 
e~t/2k(e~t) and e~t^2w(e~t). From a corresponding result for Fourier 
transform equals (see, for example, [35]) 

/

OO POO 

e-iA*e-'/2Jfc(e-*) dt / e-
jA*e-*/2w(e-*) d* = fe(A-t/2)w(A-t/2), 

-oo J — oo 
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under the condition e - f / 2 /c(e~*) G Zq(R) and e~t/2w(e~t) G L 2 ( R ) . 
As a result we have 

PROPOSITION 5.2 (convolution theorem). For 

u(s) = / k(-)w(a) — , 
Jo W / a 

ifw(a) G 1/2(0, oo) and a~1/2k(a) G Li(0 , oo), £/ien 

(23) Û(A - i /2) = fc(A - i/2)w(X - i/2), 

in L2(R). (See also [42, 13]). 

PROOF OF LEMMA 5.1: Let u(s) = Rxw(s). Then u(s) = Ä x iu 0 (s) , 
where 

W0[S) \ 0 , s G ( l ,oo) . 

And 

„ , , / ^ l - C O S X T T ( l - ^ ) w o ( < T ) rfCT 
itxWo(s) = / - 2 

where 

1 — cos \TT 1 — r 
kx(r) = 

7T (1 + T ) ( 1 4- 2rcosx7T 4- r 2 ) 
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Now, by use of (22) and (23), 

/»l POO /«OC 

/ \u(a)\2da< \u{a)\2 da = (27T)-1 / \u{\ - i/2)\2d\ 
JO JO J-oo 

/

oo 

| f c x ( A - i / 2 ) | 2 | û > 0 ( A - i / 2 ) | 2 d A 
-OO 

/

OO 

\w0(X-i/2)\2d\ 
-oo 

/»OO 

= sup |fcx(À - i/2)\2 / K ( ^ ) | 2 dör 
AGR JO 

= $up\kx{\-i/2)\2 [ \w{a)\2do-, 
AGR JO 

where 

MA-i/2) = 
1 — cos( l /2 — ZA)XTT 

COSh À7T 

Thus the lemma follows because 

sup |fcx(A — i/2)\ = sup 
AGR AGR 

cosh X\7T — cos XK/2 

COSh À7T 

- I - C O S X T T / 2 , f o r * G ( - ! , ! ) . • 

THEOREM 5.1 For a polygonal Tc, write K = A + B as in (13*). 
Then DB = R + E, where E is compact on H° and 

||fi|U2(27r) < max (1 - COSXZTT/2) < 1. 
1< i < rn 

PROOF: 

\\RM\l2(2«) = \\RM\U-*,*] 
rn 

= DiiÄHiL[Si,_1/2,8i] + iwiU i,. i.1/a])-
i=l 

file:////RM/U-*,*
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Now 

II^HL K , - l / 2 ' s * ] 

< S M / 2 x — COSX?;TT 

/2 

<is 

\ 2 

(a — 5?;)(<r — Si + s — Si)w(a) da 
(s — a)[(s — St)

2 + (<7 — S?;)2 — 2 ( 5 — Si)(a — Si) COSX?;7T 

[ I f 1 —COSX?7T cr(cr — s)lü((J + Si) der \ 

Jo y Jo 7T (s + cr)(s2 +cr 2 + 2scrcosx7;7r)y 

1 f ( f 1 ~ cosXi71" °"(°" — s)w(ba + s?;) der \ 

Jo \Jo n (s + a) (s2 + a2+ 2sa cos Xiir) J 

By using Lemma 5.1, we obtain 

H ' H I L K - , / , . * ] < llfix,HL[o.i]fe / «>2(to+ *)<** 
v 0 

/

s t , l / 2 

Similarly, we have 

il^llLt^.-s,,./,] ^ HRx,llL[o.i] f * ^ V ) ^ -
^ « i , - l / 2 

Therefore 

l ^ l l L h x . . ] < ( m a x | |fiX l | |L 2 [o,i])2 

1 J K î < r a 

< ( m a x ||fixilU2[o,i])2IHlL2[-w,7r]-
l<i<rn ZL ' J 

Thus 

I|Ä||L2(27T) < max | |Ä X J |L 2 [O,I] < max (1 - cosxi7r/2) < 1. D 
Ki<m l<i<m 
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As a result of the discussion in the beginning of this section, we obtain 

THEOREM 5.2. For a polygonal Tc, if CTc ^ 1, then K : H° - • Hl 

is 1-1 and onto. 

REMARK. The above proof of this theorem is simpler than that of 
[12]. The analysis enables us to view the integral equation of the first 
kind (13), 

as a Fredholm equation of the second kind 

(I-HR + E)w = f*i 

where /* = A~1f,E is compact and HR is bounded on H° with 
\HR\o < 1. This will lead to a numerical analysis of the Fredholm 
equation of the second kind when numerical methods for the integral 
equation of the first kind (1) are considered. 

From the discussion of the decomposition of DB, we can find that 
if v'(s) is continuous, the kernel function of DB will be continuous 
on [—7T,7r] x [—7T,7T], so that DB is compact on H°. In this way, the 
following is obtained. 

THEOREM 5.3. lfv'(s) is continuous and CTc ^ 1, then K : H° —• 
H1 is 1-1 and onto. 

The result can be extended to the equation (1*). By adopting 
A~l = —HD H- J in equation (18*) the operator DF then is compact 
on H° once vf(s) is continuous and -£jF(v(s),v(o-)) is continuous on 
[—7T,7T] x [—7T,7T]. Thus the result i) in Theorem 4.4 holds. Since for 
u e H® Au; = Aeu), so that A~l = A~l = -HD -h J, a similar 
discussion will show that the result ii) in Theorem 4.4 holds. The 
details are omitted here. 
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