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II. B O U N D S F O R P R O B A B I L I T I E S 

G. RICHTER 

ABSTRACT. In Part I of this series of papers [10] general 
limit theorems were proved for the distribution of the solu­
tion of random Fredholm integral equations with degenerate 
kernels. In this paper we consider bounds and estimates for 
corresponding probabilities and give some examples to illus­
trate the obtained results. 

1. Introduct ion . In Par t I of this series of papers we considered a 
sequence of random integral equations 

l 

Kn(t,s,Lü)xn(s,u))ds — \nxn(t,uj) — bn(t,uü), 

(En) À n ^ 0 , ri = 1 , 2 , . . . 

with random degenerate kernels 

n 

(Sn) Kn(t,s,u) = ^atn(t,uj)ßtn(s,uj). 

For the further statements we will use the notation of Part I. In 
particular, for simplification we also omit the variable UJ. Under 
appropriate conditions the limit distribution of the sequence {xn(t)} 
was determined in [10]. For this end we have used a sequence of 
approximating processes wn(t) whose limit distribution can be easily 
calculated. 

Of course, in this connection one must investigate the accuracy of the 
approximation or, at least, estimates for it. In this direction we will 
consider two problems for which we will derive explicit bounds. First, 
we will give bounds (estimates) for probabilities of the form 

(Pi ) P(xn(t0) e G0), GQ - suitable subset of R 1 , 
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approximately by terms of the approximating process wn(to), and, 
second, for 

(P2) P(^n(^2) £ G2/xn(ti) G Gì), Gt - suitable subsets of R1 , 

in a similar manner as above. 

The problems (Pi) and (P2) may arise in practical situations, for 
example in the theory of reliability, where Gi could denote the set of 
dangerous states of a system and G2 could be the set of states causing 
a failure of the system. 

2. Bounds and estimates. In this section we will consider the 
problems (Px) and (P2)- First, a general inequality is proved in §2.1 
using a basic result in [8], cf. also [6, 7]. In §2.2 and §2.3 we will apply 
this result to get solutions of (Pi) and (P2), respectively. Since we 
consider the integral equations (En) with random degenerate kernels 
(Sn) only for a fixed n, we will omit the index n, in general. 

2 .1 . A general result. In this section we present an inequality for 
the probability P(x(t r) G Gì), where 

x ( t r ) : = (x( t i ) ,x( t 2 ) , . . . ,x(^ r ) )T , 

x(t) — solution of (En), Gi — a Borei-set of R r , 

and 

U G Tr, Tr := { t i , . . . , tr}, U G [0,1], U ^ tj for i ^ j . 

Therefore, we introduce the vector 

y( t r ) := (y(h),... , ^ r ) ) T , y(t) - (x(t) - x(*))/«(0 

where x(t) is a solution of the unperturbed equation (En) and s(t)(> 0) 
is the standard deviation of a suitably chosen process, see Part I, and 
a corresponding set 

(1) G2 := {z G R r : z = Diag ( s - 1 ^ ) ) ^ - x(t r)) , u G Gì}. 
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Here, we note that, in the general case, the unperturbed solution x(t) is 
not the expected value of the random solution x(t). The investigation 
of the arising difference belongs to the so-called average problem which 
was considered by some authors, cf. [4]. Furthermore, Kv(z) denotes 
the open ball in R r with center z and radius 77, i.e., 

Kv(z) = { u e R r : | | u - z | | < / / } , 

(2a) G0(ri,G2):=UxeG2Krj(z) 

(26) Gu(r]lG2):=Rr\U^G2Kr)(z), 

and 

(3) fffo):=P(l|w(tr)-y(tr)||>T,) 

with 

(4) w(t) = -J^rUt) - 6T(t)c + CLT{t)È-\Dc - f) 
Xs{t) V 

(s(t) > 0 such that D2w(t) = 1). 

After these preparations we can prove 

THEOREM 1. Let the random integral equation (En) be given with 
the random degenerate kernel (Sn). Further, let G\ be a Borei set of 
R r . Then, for the solution process x(t), the following inequalities are 
valid: 

(5a) P(x(t r) e Gi) < inf{P(w(t r) 6 G°(V,G2)) + g(v)} 
r/>0 

(56) P(x(t r) e GO > sup{P(w(t r) e G"(TJ, G2)) - <?(T?)} 
V>0 
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where G°,GU and g are defined by (2a), (2b) and (3). 

PROOF. Obviously, P ( x ( t r ) G d ) = P ( y ( t r ) G G 2 ) . On the other 
hand we have, for arbitrary rj > 0, 

P ( y ( t r ) € G2) = P ( { y ( t r ) € G 2 } n { | |w(t r) - y ( t r ) | | < r,}) 

+ P ( { y ( t r ) € G 2 } n { | |w(t r) - y ( t r ) | | > r,}) 

< P ( w ( t r ) G G ° ( 7 , , G 2 ) ) + f f ( T ? ) . 

Thus, the inequality (5a) is proved. A similar proof can be given for 
(5b). D 

REMARK 1. For the practical application of the inequalities (5a) and 
(5b) it is necessary to know: 

1. exactly or approximately the distribution of w ( t r ) ; 

2. simple (applicable) description of the sets (7° (7/, G2) and Gu(r), G2), 
at least for special classes of sets G^\ 

3. bounds of the value g(rj). 

For the first task we refer to [10]. In that paper conditions were given 
for the distribution of w ( t r ) to be approximate Gaussian (cf. Theorem 
2, Example 1 and 2 in [10]). 

The second task was solved for parallelotops G2 in [8], cf. also [6, 
Hilfssatz 2]. In [8] it was shown tha t Gu(rj,G2) is again an easily 
describable parallelotop and that G° (77,(^2) can be approximated very 
well by a parallelotope, see also §2.2 and 2.3 and the paper [11]. 

The third problem is addressed in the following sections. 

2.2. Bounds for the one-dimensional distribution. In this section 
we will give bounds for the probability P(x(£0) £ Coi) where Goi is a 
Borel-set of R . Then, according to (1), the corresponding set G02 is 

Gü2 = {,ER1:2 = ^ M , « e G o 1 } , 
I s(t0) J 

and, from Theorem 1, we immediately get 
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THEOREM 2. For the solution x(t) of the equation (En) with the 
kernels (Sn) the following statement is valid: 

(6a) P(x(t0) G Coi) < inf{P(«;(to) e G > , G 0 2 ) ) + g(v)} 
r/>0 

(66) P{x(t0) e Goi > sup{P(«;(to) e Gu(rhG02)) - g(v}), 
v>o 

where 

G°(v,G02) = UzeGo2Kv(z), KTI(z) = {z-ri,z + rj) 

Gu(V,G02) = R\U^Ga2Kv(z) 

and 
g(T1) = P(\w(t0)-y(t0)\>71). 

We want to point out the fact that g(rj) may depend also on to. The 
following lemma gives a representation of the sets G° and Gu for the 
case that Goi is an interval (open or closed). 

LEMMA 1. If Goi is an interval {open or closed, respectively), then 

Go2 is also an interval (open or closed, respectively). For example: If 

G oi — (ûiî^i)? then G02 = (02^2) with 

«2 = (ai - x(t0))/s(t0), b2 = (bi - x(t0))/s(t0); 

the representations 

G0(rj,G02) = (a2-7i,°2 + v) 

Gu(71,Go2) = [a2 + V,b2-v} 

are possible; in particular, the set G°(rj, G02) is always an open set and 
Gu(rj,Go2) is always a closed set 

REMARK 2. Using (2a) and (2b) we see easily that the topological 
statements concerning the sets G° and Gu are also true in the general 

case. 
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REMARK 3. Under appropriate conditions it was proved that w(to) G 
JV(0,1) (in [9]) or w(t0) - ( d ) z G N{0,1) (in [10]). 

Consequently, in these cases the main problem is in finding (upper) 
bounds for g(rj). 

According to the Remark 3 we will now give an estimate for the 
difference 
(7) 

y(t0) - w(to) = T - ^ - [ ( â T ( * o ) £ - 1 D ° - 6T(t0)) • (/ + B^D0)'1 

Xs(t0) 

• B-\D°c - f°) - àT{t0)B-\Rc - r) | . 

Equation (7) can be obtained from Part I (formulas (5), (6a), (6b)). 

LEMMA 2. For g(rj), the following bound holds: 
(8) 

5(7?) < inf {p(\\É-1D°\\>q)+
 1 

0<<7<1 ^ r,(l - q)\X\S(to) 

•mmUE\\àT(t0)B-W°\\2 + ZlK6z(t0,to)-2àT(t0)B-iE(D°6(t0)) 

• yJSpK + E\\B'l(Rc - r ) | |2 + 2 ( ß T - 1 ß - 1 ; E[(Rc - r)(Dc - f)T]) 

+ E^i^B-^Rc - r) |(l - q); (g | |ä ( t 0 ) | | + yj^ K6i(t0,t0)\ 

• (g||c|| + ^EHB-ifOlp) + (1 - q) . [g | |ä(*0)|| -Hell 

+ ^JàT(t0){K - B-1KtÉ
T-1 + 2É-1E(DcfT) • ß T - x ) a ( i o ) 

+ E | | o T ( i ü ) ß - 1 r | 

The proof of Lemma 2 is carried out by means of (7) and Markov's 
and Schwarz's inequality. Therefore, we omit the details. 

If some additional assumptions are satisfied, then certain expressions 
arising in (8) can be simplified, as is shown in the following remarks. 
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REMARK 4. If <p and e are uncorrelated, then 

Èf = 11 [^t)^T(s)^^)+kt)ks)(Kfi,tk(t,s))i 

If, additionally, Ö and if, e and Si,i — l ( l)n, are uncorrelated, then 

E(L>cfT) = / f b(s)aT(t)c(K€i^k{t,s)) dtds. 

JO Jo V *' ' i<k 

REMARK 5. If e(s) and 6i(t), i = l ( l)n, are independent for 
arbitrary s and t, then 

E(D°6(t0)) = J2 I W4(Mo) ^; 

if <p, Ó and e are independent, then 

E(Äc-r)(Z?c-f)T = 0. 

Using Lemma 2 and Theorem 2 we get immediately 

COROLLARY 1. If in the integral equation only the right-hand side is 
random, i.e., Ci(t) — 0, 6i(t) — 0, then, under the additional condition 
that Go2 is a continuity-set of the measure Pw(t0)> the inequalities (6a) 
and (6b) become equalities, more precisely, 

(9) P(x(to)GGoi) = P M t o ) e G o 2 ) . 

For the proof we only want to point out the fact that, in the above 
mentioned case, the value g(rj) is equal to 0 for arbitrary 77 > 0. 

Also for the special cases considered in [10, 1, 2] the bound (8) for 
#(77) can be simplified. 
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COROLLARY 2. If et(s) = 0, i = l ( l )n , iften, /rom (8), it follows 
that 

g(V) < inf {Pdlß-1!?!! > g) + — J ^ — -

• minj VE||aT(<o)ß-1£>||2 + S,; A%(t<,,*o) - 2aT(*0)ß-1E(ZM(f0)) • SpK; 

(g||ä(*0)|| + v^tffc(*o,*o)) («11*11 + v ^ i J F ï f i p ) } } , 

E||â r(t0)B-1I?| |2 = V / / 7(<o,*)7(«o,«)^(s,w)dsd« 
• io io 

aT(<o)ß-1E(JD^o)) = Y" f î(to,s)kSi(s,t0)ds, 
i J° 

SpK = J J ßT(s)BT-xB-lß(u)t^clcJkki.6j{s,u) + kv{s,u) 

i 

E\\B~1f\\2= f [ ßT(s)BT~1E'1ß(u)K^(s,u) ds du. 
Jo Jo 

COROLLARY 3. If6l(t) = 0, i = l ( l )n, and <p(t) = 0, Êftera (8) ^'e/as 

1 
</(7/)< ini? (p( | |B-1Z3| |>(Z) + 

0<g<l ^ r,(l - q)\X\ë{to) 

i W JE||aT(<o)ß-1£>| 

^ / s^ ,9 | | a ( i 0 ) | |U | | c | | + v/E||ß-if| |2 
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with 

\A.Tu \ D - l n l l 2 

= pT(t0) / ÒLr(s)ÒL(u)[Ke^ek(s,u)) ds du p(to), 
Jo Jo v J l-k 

SpK = (ÉT-1B-\ [ f [aT(s)caT \u)c - 2ÒLT(s)cb(u) 
^ Jo Jo 

+ b(s)b(u)} • [Kc.,eA!(s,u)]i,fc ds du), 

E\\Ê-1f\\2=(êT-1È-1, f f b(s)b(u)(k€.,€k(s,u)) ds duy 

Likewise in the special cases with only one random function in the 
kernel (Sn) we get sharper bounds using a result of Geary in [5]. We 
quote it. 

LEMMA 3. Let (p,q)T be a normally distributed random vector with 
p e 7V(/ip,crp, q e N(ßqio-2

q), apq := cov(p,ç). Then, for 

p 
z := - with iiQ > 0, 

q 

we have 

with 

and 

$(t(z2)) - <S>(t(Zl)) <P(~Zl < z < ~z2), 

P(5i < z < z2) < $(t(z2)) - *(*(*i)) + e 

t(z) : 

e = 2(1 - ^Jaq)) 

II gZ — flp 

al - 2apqz + a2
qz

2 

As announced above we study the special cases 

n 

(SCI) Kn(t,s) = ^2ài(t)pi(s) + 6(t)ßn(s), 

file:///D-lnll2
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(SC2) Kn(tiS) = ^&i(t)fc(s) + ân(t)e{s^ 

Applying a well-known rank-1-perturbation theorem and (1), (2), (3a), 
(3b) in [10], we obtain, after a long but easy calculation, the following 
results. 

LEMMA 4. Given (En) and (Sn) with b(t) — 6(t), Kn(t,s) as in 
(SCI), let the matrix B := (A — XI) be regular with B~l :— (7r.k) and 
J B - 1 b = : c = (ci). Then 

x(t) = -l[b(t)-àT(t)c} 
A 

and, for z(t) := x(t) — x(t), 

Z(t) = X-XCn • - (6(t) - CLT(t) J2 *'k ' Wife) , 

where 

9 = 1 + y2KnkUk, (uk) = u = / ß{s)6(s) ds. 

If the random process 6(t) is Gaussian, we get immediately 

COROLLARY 4. Let 6(t) be a Gaussian process with E6(t) = 0. Then, 
for (SCI), the one-dimensional distribution of z(t) can be calculated 
approximately by means of Lemma 3. Toward this end we write 

z(t) — , q = g {g from Lemma 4) 

and take into account that (p(t),q)T is normally distributed. The needed 
quantities of Lemma 3 are 

Ep{t) = 0 
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4(t) = ^~2c2
n[Kò{t}t) - 2<xT(t)B-lù0(t)+àT(t)Ë~l(jËT-lot(t)} 

E<7=1, (Tq=ÎTn.UTrn., 

cov(p(t),q) = À-1c„(*X.ûo(*) - äT{t)B-1Üirn.) 

with 

üo{t)-= I ß(s)Ks(t,s) ds, 
Jo 

U:=f [ ß(t)ßT(s)Kö(t,s) dtds. 
Jo Jo 

In the same way we derive the following formulas for (SC2) (notation 
as in Lemma 4). 

LEMMA 5. Given (En) and (Sn) with 

b(t) = b(t), Kn(t,s) as in (SC2), 

we have 
1 fl 

z(i) — a(t) - - - I e(s)x(s) ds, 
9 Jo 

where 

a(t) = -GLT(t)ir.ni g = l - e(s)a(s) ds. 
Jo 

COROLLARY 5. Let e(t) be a Gaussian process with Ee(t) = 0. Then, 
for (SC2), the one-dimensional distribution of z(i) can be computed 
approximately with the help of Lemma 3. (We notice that z(t) — 
p(t)/°i Q — 9 (9 from Lemma 5) and (p(t),q)T is Gaussian.) The 
required quantities of Lemma 3 are 

Ep(t) = 0 

ap(t) = Kf(r,s)x(s)x(r) dr ds-a2(t) 
Jo Jo 

Eq — 1, a = / / Ke(r, s)ä(s)ä(r) dr ds, 
Jo Jo 
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cov(p(t),q) = —ä(t) • / / Ke(r,s)ä(s)x(r) dr ds. 
Jo Jo 

2.3. Bounds for conditional probabilities. In this section we will give 
only some hints for construction of bounds of conditional probabilities 

P(x(t2) G G2/x(t1) e Gì), 

where x(t) is a solution process of (En), using results of §2.2 and §2.1. 

Taking the definition of the conditional probability 

do) Pix{h) G G2/x(<l ) e G l ) 

= P({x(t1)eGi}n{x{t2)eG2}):P(x{tl)eG1) 

we will estimate the dividend on the right-hand side of (10) by means 
of the general inequalities (5a), (5b) and the divisor shall be estimated 
by (6a), (6b). Therefore, we introduce the following set: 

I s(ti) ) 

{zeR:z=u^±,ueG2}. 
I s(t2) > 

THEOREM 3. For the transition probability of the solution process 
x(t) of (En) the following bounds hold: 

P(x(h) G G2/x(tì) e Gì) 

< l l a ) < inf {P(w(t12) e G°(p,Gl2)) + g2(p)} : Pu, 
P>0 

P(x(t2)&G2/x(t1)eGi) 

(11&) > sup{P(w(t12) e G"{p,G\2)) - g2(p)} : P0, 

where 
w(t1 2) = (W(<1) /«;(i2))T 

G()(p,Gi2) = Uy€G.2A'„(y), K„(y) = {z e R2 : ||z - y| | < p}, 
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G»(p,G1
2
2) = R2\oyçG„Kp(y), 

ff2(p):=P(||w(t12)-y(t12)||>p) 

and PU,PQ from (6b), (6a), respectively. 

Until now we have not fixed the used vector-norm arising in Kp(y) 
and g2(p)- Above all, the evaluation of Gu, G°, and g2(p) depend on the 
chosen vector-norm, and therefore further consideration of this problem 
is needed; some related results are given in [11]. 

2 .4 . An algorithm. Now we will develop a framework of an algorithm 
for the calculation of bounds of the probability Po '•— P(#(£o) £ Goi). 

A L G O R I T H M . 

1. Calculate the unperturbed solution x(i) 
- see Par t I: (1), (2), (3a), (3b) with unperturbed quantities 

2. Examine special cases 
. only right-hand side is random 

- see Remark 6 below 
. (SCI) is given 

.. with Gaussian perturbation 
- use Corollary 4 

.. with other perturbation 
- use Lemma 4 or 
- go on with step 3 

. (SC2) is given 
.. with Gaussian perturbation 

- use Corollary 5 
.. with other perturbation 

- use Lemma 5 or 
- go on with step 3 

3. Calculate s (to) 
- see Par t I, §2.2 

4. Compute w(t) 
- see (4) 

5. Determine the distribution of w(t) 
. if the perturbative processes are Gaussian 

- see [9] 
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. general case 
- see Par t I or 
- use step 4 directly 

6. Determine the sets G° and Gu 

. if Gol is an interval 
- use Lemma 1 

. general case 
- use (2a), (2b); see also [11] 

7. Determine F(w(t0) G G°) and P(w(t0) G Gu) 
- use 5 t h and 6 t h steps 

8. Calculate g(n) or bounds for it 
- use (7) directly or 
. general case 

- use Lemma 2 
. if all Qùi(t) and b(t) are deterministic 

- use Corollary 3 
. if all ßi(t) are deterministic 

- use Corollary 2 
9. Calculate bounds of Po 

- use Theorem 2, formulas (6a), (6b). 

REMARK 6. If only the right-hand side is random, then the steps 6, 
7, and 8 can be omitted; in this case the wanted probability (step 9) 
can be calculated by means of Corollary 1. 

3. E x a m p l e s . In the section we will consider some examples of 
random integral equations where the results presented in §2 can be 
applied. In §3.1 we will consider the case where only the right-hand 
side of the equation is random. This case was also considered by other 
authors, cf. for example [1]. In §3.2 random integral equations with 
random kernels are investigated. 

3 .1 Random right-hand side. For the chosen examples we refer to 

[2, §3]. 

EXAMPLE 1. Consider the random integral equation (En) with 

K(t,s) = t, A = l, 
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b(t,u) = - s i n t + F-ß( t ,o ; ) , F e R + , 

where 
m 

B{t,u) = Y^VkLrnkit) 
k=0 

is the Lagrange interpolation polynomial with yk G 7V(0; 1), indepen­
dent, and Lmk(t) is a polynomial of degree m with Lmk(t) — 0, for 
t = i/m, i = 0(l)ra, i ^ k, and Lrnk(k/m) = 1. 

We shall determine the probability 

(12) P(x(£0) e Coi) with Coi = (x(t0)-/ i5(to),x(to)+^(t0)) , // > 0. 

For this purpose we will apply the algorithm given in 2.4 step by step. 

1. The unperturbed solution x{t) is x(t) = sint + 2(1 — cos(l))t. 

3. For the calculation of s(t) we use the representation 

s2 (t)= I I A^(r,s)7(t,r)7(t,s) dr ds + K^fat) 
Jo Jo 

- 2 / A^(t ,r)7(t ,r) dr 
Jo 

given in Part I, §2.2. With ip(t) = F • B{t), î(t,r) = -2t, and 

Jim = J0 ^«;(i) dt we get 

s2(«) = F 2 - ^ ( 2 f J m < + Lm,-(<))2. 

4./5. In order to apply Corollary 1 we need the distribution of the 
random process w(t). An easy calculation yields 

l r- f1 - i 
s(0 L ./o J 

9. With that, and using Corollary 1, the wanted probability (12) is 

P(x(*o) e Goi) = P(x(<o) - ns{t0) < x(to) < x(t0) + ps(t0)) 

= 2 $ ( / i ) - l , 
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where <ï> denotes the distribution function of a iV(0; Invariable. 

In order to see the influence of F and m on the standard deviation 
s(t) we will calculate it for m = 2 ,4 ,8 ,14 (number of mesh-points 
3 ,5 ,9 ,15 , respectively). The influence of F is obvious. Therefore, the 
following table gives the values of s ( t ) , t = 0(0.1)1, only for F = 0.2. 

T A B L E 1 

m=2: 0.20 0.18 0.21 0.26 0.30 0.34 0.36 0.37 0.37 0.38 0.38 

m=4: 0.20 0.26 0.26 0.22 0.23 0.25 0.26 0.29 0.37 0.39 0.31 

m=8: 0.20 0.40 0.27 0.25 0.24 0.21 0.28 0.33 0.27 0.57 0.33 

m=14: 0.20 2.15 0.87 0.97 1.10 1.60 1.69 2.15 2.63 0.79 2.98 

These results show that , as the number of mesh-points of the in­
terpolation polynomial increases, the s tandard deviation s(t) increases 
essentially (in this sense the interpolation is numerically unstable). 

EXAMPLE 2. The same equation is considered as in Example 1, but 
the random perturbation p(t) may be a Wiener process with covariance 
function K<p(t, s) — min(t, s). 

Then w(to) is also again a N(0; Invariable (cf. [9]), and therefore 

P{x(t0) - ns(t0) < x(to) < x(t0) + ps(to)) = 2 * M - 1 

with 

S2(*o) = *o(-2*§ 4- y ^ o + 1), 0<t0< 1. 

For the comparison with Example 1 we give the s tandard deviation 
s{t),t = 0.1(0.1)1: 

TABLE 2 

0.39 0.60 0.85 1.06 1.26 1.44 1.62 1.79 1.94 2.08 

3.2. Random kernel. Now it is assumed that the degenerate kernel 
contains a random part . 
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EXAMPLE 3. Given is a random integral equation (En) with 

K(t,s) = t + F-B(t), X = 1, b(t) = - s i n t , 

where B(t,uo) is the same random interpolation polynomial as in 
Example 1. Again, bounds for the probability (12) are wanted. Toward 
this end we again apply the algorithm given in 2.4. 

1. The unperturbed solution is again 

x(t) = sint + t • ci, ci = 2(1 - cos(l)). 

2. (SCI) is given with n — 1, 

äi(t) = t, ßi(s) = 1, 6(t) = F • B(t,u) is Gaussian. 

Thus, the required quantities in Corollary 4 are 

k=0 

(t) dt Jink = / Lmk{t 
Jo 

k=o 

m in 

cov^(t), q) = -cx • F2 [2 • Y, JmkLmk(t) + 4* • ] T j'J . 
A: = 0 A: = 0 

The following table gives the "standard deviation" s(t) of a linearized 
version of the centered solution process z(t) for t = 0(0.1)1 and bounds 
for the probability P() := P(x(to) G G01), see (12). The last mentioned 
values were calculated by means of Lemma 3. We write down the lower 
bound p and the error e of the inequality p < P{) < p+e for to = 0(0.1)1. 
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T A B L E 3 

m=4: 

m : 

/i = 1.0: 

p: 

e: 0.0000 

// = 2.0 : 

p: 

e: 0.0000 

L = 3.0 : 

p: 

e: 0.0000 

m : 

[i = 1.0 : 

p: 

1 e: 0.0000 

0.1839 

0.2682 

0.6724 

0.6886 

0.9341 

0.9236 

0.9879 

0.9701 

0.0460 

0.0671 

0.6820 

0.2831 

0.2379 

0.3380 

0.6807 

0.6881 

0.9299 

0.9240 

0.9776 

0.9705 

0.0595 

0.0845 

0.6826 

0.6831 

F = 0.20 

0.2420 0.2019 

0.3594 0.2873 

0.6834 0.6852 

0.6876 0.6845 

0.9279 0.9265 

0.9244 0.9270 

0.9748 0.9731 

0.9709 0.9737 

F = 0.05 

0.0605 0.0505 

0.0898 0.0718 

0.6827 0.6829 

0.6830 0.6828 

0.2074 

0.6815 

0.9293 

0.9767 

0.0518 

0.6826 

0.2289 

0.6802 

0.9302 

0.9782 

0.0572 

0.6825 

0.2356 

0.6841 

0.9273 

0.9741 

0.0589 

0.6828 
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TABLE 3 (CONTD.) 

/i = 2.0: 

p: 

e: 0.0000 

\ /i = 3.0 : 

p: 

e: 0.0000 

m=14: 

m : 

// = 1.0: 

p: 

e: 0.7363 

/i = 2.0: 

p: 

e: 0.7363 

1(1 = 3.0 : 
p: 

1 e: 0.7363 

0.9533 

0.9523 

0.9969 

0.9954 

0.1839 

1.9726 

0.2504 

0.2932 

0.2602 

0.2706 

0.2621 

0.2667 

0.9528 

0.9524 

0.9961 

0.9954 

1.9780 

2.4212 

0.2874 

0.2932 

0.2694 

0.2706 

0.2662 

0.2667 

0.9526 

0.9524 

0.9959 

0.9955 

0.9525 

0.9526 

0.9957 

0.9958 

F = 0.20 

0.8038 

0.7301 

0.2894 

0.2568 

0.2698 

0.2621 

0.2664 

0.2630 

0.8894 

2.7361 

0.2916 

0.2934 

0.2703 

0.2706 

0.2666 

0.2667 

0.9527 

0.9960 

1.0154 

0.2922 

0.2704 

0.2666 

0.9528 

0.9962 

1.4700 

0.2930 

0.2705 

0.2667 

0.9526 

0.9958 

1.5589 

0.2930 

0.2705 

0.2667 
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TABLE 3 (CONTD.) 

8(t) : 

\fi = 1.0: 

p: 

e: 0.1779 

\ fi = 2.0 : 

p: 

e: 0.1779 

/i = 3.0 : 

p: 

\ e: 0.1779 

0.0460 

0.4931 

0.5780 

0.7171 

0.7361 

0.7897 

0.7809 

0.8164 

0.4945 

0.6053 

0.7147 

0.7171 

0.7920 

0.7898 

0.8148 

0.8164 

F = 0.05 

0.2010 

0.1825 

0.7167 

0.6036 

0.7914 

0.7532 

0.8155 

0.7898 

0.2224 

0.6840 

0.7173 

0.7170 

0.7905 

0.7897 

0.8161 

0.8164 

0.2538 

0.7173 

0.7902 

0.8162 

0.3675 

0.7171 

0.7899 

0.8164 

0.3892 

0.7171 

0.7898 

0.8164 

EXAMPLE 4. Given (En) with 

K{t,s) = t'(l + F-B(s))ì \ = 1, b(t) = - s i n t , 

B(s,u;) is the same random interpolation polynomial as in Example 1. 
Also, here, bounds for the probability (12) are wanted. As in Example 
3 we use the algorithm from §2.4. 

1. x(t) = s int -f t - c\ 

2. (SC2) is given with n — 1, 

ài(t) = t, ßi(s) — 1, e(s) = F • B(S,ÜÜ) is Gaussian . 

Thus, the required quantities for Corollary 5 are 
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m „i 
al(t) = 4t F '2.L2

rnk, Lmk := / 

m «i 

Lmk(s)x(s) ds, 

sLmk{s) ds 

cov(p(t),q) = ~\t • F2 • Y^CLmk • Ink). 
k=0 

The following Table 4 contains also the "standard deviation" s(t) of 
a linearized version of the centered solution process z(t) for t = 0(0.1)1 
and bounds for the probability PQ := P(x(to) G Coi)- The last 
mentioned values were likewise calculated by means of Lemma 3. But 
in this case there is only the necessity to write down one lower bound 
for all t = 0(0.1)1 because this bound does not depend on t as an easy 
examination shows. 
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T A B L E 4 

m=4: 

m : 

u = LO 
Li = 2.0 

Li = 3.0 

m : 

Li = 1.0 

Li = 2.0 

Li = 3.0 

m=14: 

s(t) : 

Li = l.o 
Li = 2.0 

Li - 3.0 

m : 

Li = l.o 
Li = 2.0 

1 /i = 3.0 

0.0000 0.0218 

0.1527 0.1745 

P 
0.6861 

0.9424 

0.9864 

0.0000 0.0055 

0.0382 0.0436 

P 
0.6829 

0.9537 

0.9966 

0.0000 0.2661 

1.8627 2.1288 

P 
0.6275 

0.5268 

0.5061 

0.0000 0.0665 

0.4657 0.5322 

P 
0.7122 

0.8722 

0.9197 

F = 0.20 

0.0436 0.0654 

0.1963 0.2182 

e 

0.0000 

0.0000 

0.0000 

F = 0.05 

0.0109 0.0164 

0.0491 0.0545 

e 

0.0000 

0.0000 

0.0000 

F = 0.20 

0.5322 0.7983 

2.3949 2.6610 

e 

0.5101 

0.5101 

0.5101 

F = 0.05 

0.1330 0.1996 

0.5987 0.6652 

e 

0.0084 

0.0084 

0.0084 

0.0873 

0.0218 

1.0644 

0.2661 

0.1091 

0.0273 

1.3305 

0.3326 

0.1309 

0.0327 

1.5966 

0.3991 
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4. Concluding remarks. The considered examples show that the 
bounds developed for the one-dimensional distributions are applicable, 
and they are the sharper (closer) the smaller the random perturbation 
part is in comparison with the deterministic one. This statement is 
quantified in Example 3 and 4 by the ratio \iqjaq. The magnitude of 
the random perturbation is controlled by the factor F. Further, if the 
arising random processes are interpolation polynomials, as described 
above, then, if m is equal to about 4, the interpolation has a smoothing 
effect while an increasing number of mesh points causes an unfavourable 
influence on the accuracy of the bounds. So, we got for m = 14 and 
F = 0.20 a decreasing (!) lower bound for /j, — 1,2,3. The reason for 
this bad behaviour is the nonlinearity of the function t(z) in Lemma 3. 
Examples 3 and 4 were also handled without taking into consideration 
that special cases were given. We used the complete algorithm in 2.4 
with steps 3 to 9. The bounds gained by this method were not so good, 
of course. 
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