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EFFECTIVE B O U N D S FOR THE SINGULAR 
VALUES OF INTEGRAL OPERATORS 

V. FABER AND G. MILTON WING 

I. Introduction. In [1, 11] results on the asymptotic behavior of 
condition numbers of matrices arising in the numerical treatment of 
integral equations of the first kind are presented. These are partially 
based on a theorem of Chang [2], which provides information on the 
asymptotic properties of singular values of certain integral operators. 
Chang's paper is a natural outgrowth of a long sequence of investiga­
tions of eigenvalues of such operators (see, e.g., [4, 8, 9]). 

From the viewpoint of the numerical analyst, the estimates in [1, 11], 
being asymptotic, are rather unsatisfactory. Much more valuable would 
be actual bounds. A careful examination of Chang's work [3] reveals 
that such bounds are available there, but at the cost of a great deal of 
labor. We present here a simplified version of the proof of Chang. The 
desired bounds are an immediate by-product. 

In Section II we prove a result on singular values of products of op­
erators. (This maybe extracted from theorems of Weyl and Horn [6, 
10]. We provide an elementary proof.) In §111 this result is applied 
to the integral operators of primary interest, but under a somewhat 
restrictive hypothesis. This assumption is completely removed in §IV, 
and the desired bounds are obtained. In the final section, the possi­
ble extension of results to more general integral operators is discussed. 
Some classical eigenvalue bounds are obtained in the Appendix. 

II. A basic lemma. We consider integral operators if, L, and M 
where 

(2.1) K.= [ K(x,y).dy, 
Jo 

with similar representations for L and M. All kernels are assumed to 
be in Z>2. Denote by KJ the singular values of K, with Xj and /JLJ the 
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corresponding values for L and M. We assume the singular values or­
dered by magnitude. 

LEMMA 2.1. Suppose K = LM. Then 

(2.2) Ki/c2 . . . Kn < (AiA2 . . . An)(/ii/i2 . . . fin), n = 1,2. . . . 

PROOF. Let <pj and ißj be the normalized singular functions belonging 
to AC: 

(2.3) Kip^Krfj, j = 1,2,.... 

Consider the space S generated by {M^?i, M<p2, • • •, M<pn}. Assume 
for the moment that S is of dimension n, and let 0i, 02, • • • ? #n be an 
orthonormal set spanning 5 . Form the n by n Galerkin matrices 

(2.4) L = (^,L0,-)> 

with singular values £m5 Am , / im . Obviously, £ m = /cm. Also 

(2.5) /ci/c2 .. ./€n = detK. 

By a theorem of linear algebra [5], 

(2.6) È = LM. 

Therefore, 

, x /ci/c2 .. ./€n = d e t Z d e t M 

= (ÂiÀ2 . . .Ân)(/ i i /Î2. . .£n). 

It is proved in [1] by an application of the mini-max principle [3, 7] 
that 

(2.8) Am < Am, £ m < / / m , m = l , 2 , . . . , n . 
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The result is now immediate. D 

The condition that S be of dimension n must be removed. If it 
is of lower dimension, then M annihilates a linear combination of 
£>i,^2j--->^n- Therefore, \ij = 0 for some j < n. Hence all suc­
ceeding singular values are zero, and the same holds for the /c's. Thus 
(2.2) continues to hold. 

III. The preliminary theorem. We begin with another lemma. 

LEMMA 3.1. 

\fri 
where || ••• || indicates the usual Li norm and en —• 0, en < 1, 
n = l , 2 , . . . . 

PROOF. It is a classical result that (see [3]) 

oo 

(3.1) £ « ? < l l * l l 2 . 
j=l 

Hence 

(3.2) m4<£>S 2 <l | t f | | 2 

and 

(3.3) Kn < ILO. 
y/n 

For e > 0, there exists N such that, for n, m > Â ", 

(3.4) £*i<£-
m 
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Thus 

(3.5) (n - ra)/4 < £• 

Fix m and choose n large enough so that m/c^ < £. From (3.5), 

(3.6) ™£ < 2e, 

and the proof is complete.D 

LEMMA 3.2. The operator 

(3.7) L- = J" 1 - dy 
Jo 

has singular values Xn = ((n + l/2)7r) - 1 . 

PROOF. A simple computation provides the result. D 

LEMMA 3.3. Let if (0, y) = § f (0, y) = • • • = ^f (0, y)=0 for almost 

all y. Further suppose that QxS+iK(x,y) G L<i and that 

BSK fx BS~^1K 
(3-8) _ ( X | y ) = | o _ r ( , , t f ) ( b 

for almost all y. Then 

(3-9) ^•••«n<£;l^«Sfl^+1/v-{s+1)> 
{ ' p=l 

where en —• 0, £ < 1, n = 1,2,... . 

PROOF. We first establish the result for s = 0. In Lemma 2.1 select L 
as in Lemma 3.2. Let M be the integral operator with kernel BK/dx. 
From Lemma 3.1 we obtain 

(3.10) Mn = e'n 
dK 

dx 
n-l<\ e'n^0, e'n<l, n = l ,2 , . 
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Thus 

(3.11) 

« 1 / c 2 . . . K n < n ( 7 T ( P + l / 2 ) ) - i n ( e ; B | 

P II M Iin n 

- ^ ^ - n ^ + ' f f l - 1 . 
v ' p= l 

- l / 2 \ 

p=l 

Clearly (3.11) agrees with (3.9) for s = 0. Proceeding inductively, we 
suppose the result holds for s = s'. Choose L as before and select M 
as the operator with kernel ^ ? r . Then 
(3.12) 

M a a / + 1JC | |n n 
fcn II as«'+i 'I TTro + l /2 i - ( s , + 1 ) 

^ ^ ( . ' + 1)^1)1/2 1 1 1 P + V ^ 

This completes the induction. D 

P = I 

We have a preliminary theorem. 

THEOREM 3.1. If K(x,y) satisfies the hypotheses of Lemma 3.3^ then 

e II -91+1 

(3.13) v y p = l 

- ( l + s ' ) / n 

— ^ n ' £ n < l>£n ~» 0-

PROOF. We observe that ACI/C2 . . . Kn > k1^. The result follows from 
(3.12) except that we get en . Note, however, that (see (3.11)) 

4/n = {n4}1/n<Vn][>;-o. 
p=l p=l 
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Clearly elJn < l.D 

IV. Removal of the restrictions on K at x = 0. We now suppose 
the condition %£f(0, y) = 0, j — 0 ,1 ,2 , . . . , s fails to hold. Define 

(4.1) K(x,y) = K(x,y)-N(x,y), 

where 

3=0 3' 

Observe that 

(4.3) dxP(,y) dxP(,y) j^j\ dxi+P ' 

p = 0, l , 2 , . . . , s , 

so that 

Assume that g*s+iK(x,y) € Li and that 

dsK, dsK{0,y) fx ds+1K(z,y)dz <«> £<*"--^-r a^+! 

for almost all y. Then Ä"(x, y) satisfies the hypotheses of Lemma 3.3, 
and the conclusions of the lemma apply to the singular values kj of K. 

LEMMA 4.1. Let 7\ and T^ be two compact linear operators in L%. 
Denote their singular values by Oj{Tk), k — 1,2,j = 1,2,. . . . Then if 
T = Ti+T2, 

(4.6) a p + g _ 1 ( T ) < a p ( T i ) + a ( / ( r 2 ) , p + q>l. 
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PROOF. The analogue of this theorem for eigenvalues can be estab­
lished by the mini-max principle (see [7]). The proof for singular values 
is virtually the same. D 

THEOREM 4.1. Let if(0, y), | S (0, y ) , . . . , a'%ff,y) beinL2. Letm{s) 
be the number of these functions that are not zero for almost all y. 
Furtherj suppose that QX9+I (%, y) G L2 and that 

dsK, x d8K/gx , fxds+1Kf , , 

Then 

(4.8) Kn+m(s) <BS
n, n = l , 2 , . . . , 

where B„ is given by (3.13). 

PROOF. Write, in the notation of Lemma 4.1, 

(4.9) °P+q-i{K)<<Tp{k)+oq{N). 

Observe that N has separable kernel of order at most ra(s), and is 
therefore equivalent to a matrix operator of the same order. The 
operator N can thus have no more than m{s) non-zero singular values. 
Thus 

(4.10) aj(N) = 0, j > m ( s ) + l. 

In (4.9), choose p = n^q — m{s) + 1. This yields 

(K) 

(4-11) <Vn(K) + am{sHl(N) 

The proof is complete.D 

It should be noted that we have chosen to concentrate interest on Kn 

rather than on K,\K2 . . . Kn. Thus some information has been lost in our 
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development. Further simplification can be achieved by estimating B®. 

THEOREM 4.3. The quantity B^ satisfies 

\ds+1K\ 
BÎ < (2/3) l + s 

(4.12) 
dx3*1 

Bs
n < sn0F(.91O)s+3/2 

TT , 

dx8*1 
n - ( 3 + 3 / 2 ) 5 n = 2 j 3 > _ . 

PROOF. From (3.13), 

d s + 1 / r M n 

(4.13) ^ ' P= l 
Ä = ( l + s ) / n 

p II d8*1*: 

7 I - S + l ( n f ) ( S + 3 / 2 ) / n -

By Stirling's formula 

(4.14) n! > V ^ e - 7 1 - 1 ^ + l ) n + 1 / 2 , 

<»')"- * ( ^ r 
so that 

(4.15) 

Now, for n > 2, 

(4.16) 

Thus, for n > 2, 

(4.17) B°n < e n v ^ ( ^ ) 

e n. 

K^)4 
> .350. 

s+3/2 <9S+1K 

dx3*1 

The result for Bf is obtained directly from (4.13). This completes the 
proof. It should be observed that the result of Chang [2] follows at 
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once from Theorem 4.3. D 

V. Summary and remarks. We have presented a new and rel­
atively transparent proof of a theorem of Chang. The approach has 
easily produced effective bounds on the singular values of integral op­
erators. Chang's efforts actually represented a partial extension to 
singular values of results of Hille and Tamarkin on eigenvalues (see the 
Appendix). The methods of this article can be extended in such a way 
as to obtain a much more complete extension. That matter will be 
covered in a forthcoming paper. 

APPENDIX 

A CLASSICAL RESULT OF HILLE AND TAMARKIN 

In the early studies, the behavior of the eigenvalues of integral operators, rather 
than of the singular values, was investigated. Methods often used the Fredholm 
determinant and rather deep results from analytic function theory. In particular, 
Hille and Tamarkin [4] showed that if K(x, y) satisfies the hypotheses of Theorem 
4.1 and Ay are the eigenvalues of Kj arranged so that | A î + i | < | At- |, then 

(A.l) | A„ |= o ( n - 3 - 3 / 2 ) . 

(see also Chang [2].) An easy proof is now available. 

According to a result of Weyl [10], 

(A.2) | A1A2 . . . A n |</C1/C2 | / c n , ra = l ,2 , 

Now, for n > m(s), 
(A.3) 

llj=lK'j — 1Lj=l KJilj=l Kj+m(s) 

< MsU^-^hj 

Mafer (a )4)ii|^iin-m(s) 

< V p / öx n n - m ( a ) ( D + i / 2 H 5 + 1 ) 
- 7 r ( n - m ( S ) ) ( S + l ) ( ( n _ m ( 5 ) ) ! ) l / 2 UP=1 U > + V ^ 

Here, Ms is a constant and we have used Lemma 3.3 applied to k. Upon noting 
that 

(A.4) | A n | " < r j « 3 
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and making use of the kinds of estimates used in Theorem 4.3, we readily obtain 
(A.l). 
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