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THE RADICAL OF THE DIFFERENTIAL IDEAL
GENERATED BY XY IN THE RING OF

TWO VARIABLE DIFFERENTIAL POLYNOMIALS
IS NOT DIFFERENTIALLY FINITELY GENERATED

DAVID BOURQUI AND JULIEN SEBAG

ABSTRACT. Let (k, δ) be a differential field contain-
ing Q. We prove that, in general, a radical differential
ideal of the differential ring k{X,Y } is not a differential ideal
of finite type.

1. Introduction.

1.1. Let (k, δ) be a differential field containing Q. Let N ≥ 1 be an
integer. The polynomial k-algebra k[(Xi,j)i∈{1,...,N},j∈N] is denoted by
k{X1, . . . , XN}, when it is endowed with the unique derivation ∆ of
k{X1, . . . , XN} extending δ and satisfying the formula ∆(Xi,j) =Xi,j+1

for every pair of integers (i, j) ∈ {1, . . . , N} ×N. The morphism of
k-algebras k[X1, . . . , XN ]→ k{X1, . . . , XN}, defined by Xi 7→Xi,0 for
every integer i ∈ {1, . . . , N}, gives rise to a structure of k[X1, . . . , XN ]-
algebra on k{X1, . . . , XN}. This process is called the adjunction of
differential indeterminates and the differential k-algebra k{X1, . . . , XN},
called the ring of differential polynomials, provides a suitable framework
for the algebraic study of (polynomial) differential equations as proposed
by J. Ritt and E. Kolchin. Let S ⊂ k{X1, . . . , XN}. We denote by [S]
the differential ideal generated by S, and we set {S}=

√
[S]. The ideal

{S} is a radical differential ideal.

1.2. In the present article, we mainly prove the following statement
(see also Question 1 and Corollary 2.6).

Theorem 1.3. Let (k, δ) be a differential field which contains Q. Let
X,Y be differential indeterminates over the field k. Then, in the ring of
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differential polynomials k{X,Y }, the radical differential ideal generated
by the polynomial XY is not differentially finitely generated.

The basic idea of the proof is an explicit computation of an algebraic
system of generators of the differential ideal {XY }, a descent argument,
and a precise use of the weight grading of the differential k-algebra
k{X1, . . . , XN}, which is recollected in Section 2.1. Let us mention that
this result also has a natural interpretation in terms of the nilpotency at
the level of arc schemes. We assume that the field k is endowed with the
trivial derivation. With a k-algebra of finite type A := k[X1, . . . , XN ]/I,
we associate the so-called arc scheme L (Spec(A)), which can be defined,
via differential algebra, to be Spec(k{X1, . . . , XN}/[I]). So, Theorem
1.3 provides information on the reduced subscheme

L (Spec(k[X,Y ]/〈XY 〉))red := Spec(k{X,Y }/{XY }),

and, more generally, on the arc scheme associated with homogeneous
reduced affine plane curves of degree 2 (see Corollary 2.6).

2. The proof of Theorem 1.3.

2.1. Recollection. The ring k{X1, . . . , XN} is graded by the weight
of differential polynomials. The weight of a given monomial

M :=Xν1
i1,j1

. . . XνN
iN ,jN

is defined by the formula wt(M)=
∑n
`=1 ν`j`. One extends this definition

to every differential polynomial P ∈ k{X1, . . . , XN} by taking the
supremum of the weights of the monomials of P . As an illustration,
let us note that, for every tuple (i, j, n) ∈N×N×N∗, the differential
polynomial ∆(n)(XiYj) is isobaric with weight n+ i+ j.

2.2. Preliminary results. Let us state a technical preliminary result
about the irreducible decomposition of the differential ideal {XY } of
the differential ring k{X,Y }.

Lemma 2.3. Let (k, δ) be a differential field containing Q. Then we
have

{XY }= [X]∩ [Y ] = [X] · [Y ]
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in the differential ring k{X,Y }. In particular, the differential ideal
{XY } is algebraically generated by the polynomials XiYj for i, j running
over N.

Proof. By the Kolchin irreducibility theorem [2, IV.17, Proposition
10], one knows that {XY }= {X}∩{Y }. We remark that the differential
ideals [X] and [Y ] are prime; hence, {XY }= [X]∩[Y ]. Let us prove that
[X]∩ [Y ]⊂ [X] · [Y ]. Let Z ∈ [X]∩ [Y ]. There exist integers m,n ∈N
and polynomials α1, . . . , αm ∈ k{X,Y }, β1, . . . , βn ∈ k{X,Y }, such that

(2-1) Z =

m∑
i=0

αiXi =

n∑
j=0

βjYj .

For every integer i ∈ {0, . . . ,m}, we write αi = ri +
∑
j≥0 Yjαij , with

ri ∈ k{X}; hence, equation (2-1) reads

Z =

(∑
i,j

αijYjXi

)
+

( m∑
i=0

riXi

)
=

n∑
j=0

βjYj .

By specializing all the Yj to zero, we conclude that the polynomial∑m
i=0 riXi vanishes. This proves the required property. �

2.4. The proof of Theorem 1.3. Let us assume that there exist
polynomials b1, . . . , bm ∈ k{X,Y }, with wt(b1) ≤ · · · ≤ wt(bm), such
that

(2-2) {XY }= [b1, . . . , bm].

There exists an integer n ∈N∗ such that 2n− 2≥ wt(bm); hence, (2-2)
and Lemma 2.3 imply, for Γ := {(i, j)∈ {0, . . . , 2n−2}2 : i+ j ≤ 2n−2},
that

(2-3) {XY }= [(XiYj)(i,j)∈Γ] = [(X0Yj)j∈{0,...,2n−2}].

To prove the last equality in (2-3), let us note that it is sufficient to
show that, for every pair of integers (i, j) ∈ Γ, we have

XiYj ∈ [(X0Yj)j∈{0,...,2n−2}].

This last claim comes, by induction, from the formula

XiYj = ∆(Xi−1Yj)−Xi−1Yj+1.
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We are going to prove that the polynomial XnYn ∈ {XY } does
not belong to [(X0Yj)j∈{0,...,2n−2}]. Let us assume that the converse
assertion holds. There exist polynomials Pi,j ∈ k{X,Y } such that

(2-4) XnYn =
∑
i,j

Pi,j∆
(ni,j)(X0Yj).

By Section 2.1,we observe that the differential polynomial ∆(ni,j)(X0Yj)
is isobaric with weight j + ni,j , and homogeneous of degree 2 for

every pair of integers (i, j). Let us set Fj := ∆(2n−j)(X0Yj) for every
integer j ∈ {0, . . . , 2n− 2}. Since the differential polynomial XnYn is
homogeneous of degree 2 and isobaric of weight 2n, we may assume
that (2-4) reads as follows: there exist λ0, . . . , λ2n−2 ∈ k such that

(2-5) XnYn =

2n−2∑
j=0

λjFj .

Let us note that, for every integer j∈{0, . . . , 2n−2}, there exist non-zero
positive integers δj,i such that

Fj =X2n−jYj + δj,1X2n−j−1Yj+1(2-6)

+ · · ·+ δj,2n−j−1X1Y2n−1 +X0Y2n.

More precisely, by the Leibniz formula, we deduce that, for every pair
of integers (j, s) ∈ {0, . . . , 2n− 2}×{1, . . . , 2n− j− 1}, we have

(2-7) δj,s =

(
2n− j
s

)

◦ By specializing, for every integer j ≥ n+ 1, the variable Yj to zero,
we conclude that

(2-8) XnYn =

n∑
j=0

λj

(
X2n−jYj +

n−j∑
`=1

δj,`X2n−j−`Yj+`

)
.

By identifying in (2-8) the coefficients ofX2nY0, X2n−1Y1, . . . , Xn+1Yn−1
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respectively, we obtain

(2-9)

λ0 = 0,

λ1 + δ0,1λ0 = 0,

...
...

λn−1 + δn−2,1λn−2 + · · ·+ δ0,n−1λ0 = 0.

Then, from the study of system (2-9), it follows that, for every integer
j ∈ {0, . . . , n− 1}, we have λj = 0; hence, by (2-8), we deduce

(2-10) XnYn = λnXnYn.

The relation (2-10) clearly implies that λn = 1. Let us note that, if
n∈{1, 2}, these last assertions imply that 0 = 1, which is a contradiction.

◦ Let us assume that n≥ 3. Then, equation (2-5) now reads

(2-11) XnYn = Fn +

2n−2∑
j=n+1

λjFj .

From now on, we analyze the above equation (2-11). For every integer
m ∈ {n+ 1, . . . , 2n− 2}, we claim that

(2-12) λm = (−1)m−n
(

n

m−n

)
.

Let us prove this claim. By identifying the coefficients of Xn−1Yn+1 in
(2-11), we obtain the formula λn+1 =−δn,1; hence, by (2-7), we have

λn+1 =−
(
n

1

)
.

Let us fix s ∈ {n+ 2, . . . , 2n− 2} and assume that, for every integer
t ∈ {n+ 1, . . . , s− 1}, (2-12) holds true for λt. Let us set s= n+ ` with
`∈ {2, . . . , n−2}; then 2n−s= n−`≥ 0. By identifying the coefficients
of X2n−sYs in (2-11), we obtain the formula

λs + δn+`−1,1λn+`−1 + δn+`−2,2λn+`−2(2-13)

+ · · ·+ δn+1,`−1λn+1 + δn,` = 0.

Let us note that, for every integer r ∈ {1, . . . , `− 1}, we have by the
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induction hypothesis and (2-7)

(2-14) δn+`−r,rλn+`−r = (−1)`−r
(
n+ r− `

r

)(
n

`− r

)
= (−1)`−r

(
`

r

)(
n

`

)
.

From (2-14), we deduce that

(2-15) λs =

(
n

`

)
·
(

(−1) + `+ · · ·+ (−1)`−1

(
`

`− 2

)
+ (−1)``

)
=−

(
n

`

)
·
(

1− `+ · · ·+ (−1)`−2

(
`

`− 2

)
+ (−1)`−1`

)
=−

(
n

`

)
·
( `−1∑
i=0

(
`

i

)
(−1)i

)
= (−1)`

(
n

`

)
.

This concludes the proof of the claim.

◦ Let us identify the coefficient of X0Y2n in (2-11). By the specific
form (2-6) of the Fj , we obtain

0 = 1 +

n−2∑
`=1

(−1)`
(
n

`

)
=

n−2∑
`=0

(−1)`
(
n

`

)
=−((−1)n−1n+ (−1)n) = (−1)n(n− 1).

This is a contradiction, which concludes the proof of the theorem.

2.5. The nodal plane curve singularity. We deduce from Theo-
rem 1.3 the following statement:

Corollary 2.6. Let (k, δ) be a differential field containing Q. Let
f ∈ k[X,Y ] be a non-degenerate reduced homogeneous polynomial of
degree 2. Then, in the ring of differential polynomials k{X,Y }, the
radical differential ideal generated by the polynomial f is not differentially
finitely generated.
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Proof. Let f ∈ k[X,Y ] be an irreducible homogeneous polynomial of
degree 2, which we may assume to be unitary. Let k′ be an algebraic
closure of k. The derivation δ may be extended in a unique way to k′. Let
us assume that there exist polynomials b1, . . . , bm in the ring k{X,Y }
such that {f}= [b1, . . . , bm]. In particular, the radical differential ideal
{f}⊗k k′ is finitely generated. Furthermore, there exists a differential
k′-automorphism Φ of k′{X,Y } such that Φ({f}⊗k k′) = {XY }. Our
assumption implies that the radical differential ideal {XY } is finitely
generated, which contradicts Theorem 2.4. �

2.7. Further comments. The main result of the present article
provides a negative answer to the following general question:

Question 1. Let (k, δ) be a differential field containing Q. Let N ≥2 be
an integer. Let I be a radical differential ideal of k{X1, . . . , XN}. Does
there exist an integer m≥1 and a1, . . . , am∈I such that I=[a1, . . . , am]?

By the Ritt-Raudenbusch basis theorem, one knows that, for every
radical differential ideal I of k{X1, . . . , XN}, there exist an integer m≥1
and a1, . . . , am ∈ I such that I = {a1, . . . , am} (see [1, Theorem 7.4]).
On the other hand, by Ritt’s works, we know that there exist differential
ideals not of finite type in arbitrary finitely generated differential k-
algebras.1 Let us emphasize the fact that Question 1 is stronger than
these results, insofar as it asks for the existence of this finiteness property
among the radical differential ideals.

To conclude, let us note that our negative answer to Question 1
crucially relies on the homogeneity of the polynomial XY . So, it seems
interesting to us to study the following question:

Question 2 (D. Bourqui, A. Reguera and J. Sebag). Let (k, δ) be
a differential field containing Q. Let f ∈ k[X,Y ] be an analytically
irreducible polynomial. Is the radical differential ideal generated by the
polynomial f differentially finitely generated in the ring of differential
polynomials k{X,Y }?

1As an illustration of this remark, we may consider the ideals J1 := [(X2
i )i∈N]

or J2 := [(XiXi+1)i∈N] of the finitely generated differential Q-algebra Q{X}. In
particular, we observe that {J1} = [X0] and {J2} = [X1]; hence, these examples do
not provide a negative answer to Question 1.
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To the best of our knowledge, Question 2 is open, even for the
polynomial f =X3−Y 2.
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