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THE CLIQUE IDEAL PROPERTY

THOMAS G. LUCAS

ABSTRACT. For a commutative ring R, one can form
a graph Γ(R)∗ whose vertices are the zero divisors of R
(including 0) and whose edges are the pairs {a, b} where
ab = 0 with a ̸= b. For this graph, a clique is a nonempty
subset X such that ab = 0 for all a ̸= b in X. If R is a finite
ring, there is always a maximum clique of Γ(R)∗–a clique X
such that |X| ≥ |Y | for all cliques Y . We say that a finite
ring R has the clique ideal property if each maximum clique
of Γ(R)∗ is an ideal of R. If R = S ⊕ T where both S and
T are finite rings with the clique ideal property and neither
S nor T is a field, then R has the clique ideal property. The
converse does not hold. For each positive integer n > 1, the
ring R = Zn[X]/(X2) is a finite ring with the clique ideal
property. In contrast, Zn has the clique ideal property if
and only if n is either a prime or a perfect square.

Throughout this article, each ring is assumed to be finite and
commutative with a nonzero identity. In the event a ring R is (equal
or) isomorphic to a sum

⊕n
i=1 Si for some family of rings {Si}ni=1

where n > 1, then each Si is presumed to have a nonzero identity
(equivalently, no Si is {0}).

For a ring R, we may form a graph Γ(R)∗ whose vertices are the
zero divisors of R (including 0) where a pair of distinct vertices a and
b form an edge if ab = 0. This is in contrast to the graph Γ(R) where
the vertices are restricted to the set of nonzero zero divisors of R (as
in [3, 8]). Recall that a nonempty subset X of a graph is a clique if
it forms a complete subgraph. In the case X ⊆ Γ(R)∗, X is a clique
if and only if xy = 0 for all x ̸= y in X. A maximum clique of Γ(R)∗

is a clique X such that |X| ≥ |Z| for all cliques Z of Γ(R)∗. The
size of a maximum clique is the clique number of Γ(R)∗. Note that a
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maximal clique is simply a clique that is not a proper subset of some
other clique; it need not be a maximum clique. For example, both
Y = {0, 2, 16} and X = {0, 4, 8, 16, 24} are maximal cliques of Γ(Z32)

∗

(in fact, X is a maximum clique of this graph, see [4, Proposition
2.3]). Our concern is with the cliques of Γ(R)∗. In particular, we are
interested in characterizing the finite rings for which each maximum
clique is an ideal (thus, the inclusion of 0 as a vertex).

Consider the ring R = Zp2n where p is a prime. Then

Z(R) = {s | p|s, 0 ≤ s < p2n}

and the ideal I = pnR is the unique maximum clique of Γ(R)∗

(Theorem 3.1). For an alternate example, suppose R = Z4 ⊕Z9.Then
I = 2Z4 ⊕ 3Z9 is both a maximum clique of Γ(R)∗ and an ideal of R.
On the other hand, {0, 2, 4} is a maximum clique of Γ(Z8)

∗ but it is
not an ideal. Also, both

{(0, 0), (0, 1), (1, 0)}

and
{(0, 0), (0, 2), (1, 0)}

are maximum cliques of Γ(Z2⊕Z3)
∗, but neither is an ideal of Z2⊕Z3.

We say that a finite ring R has the clique ideal property (or more
simply, has CIP) if each maximum clique of Γ(R)∗ is an ideal of R.
A consequence of Lemma 1.1 is that, if R is a finite reduced ring that
is not a field, then it does not have the clique ideal property. An
alternate proof of this can be derived from the fact that, if R is a
reduced ring with finitely many minimal primes P1, P2, . . . , Pn such
that n > 1, then a maximum clique of Γ(R)∗ is a set of the form

{0, a1, a2, . . . , an}

where
ai ∈

∩
j ̸=i

Pj \ Pi

for each i (see [4, Theorem 3.3]). As we have restricted the vertices to
only the zero divisors (including 0), each finite field trivially satisfies
the clique ideal property.
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For an ideal I of R, we say that I is a clique ideal of R if I2 = (0).
In addition, I is a maximal clique ideal if I is a clique ideal that is
not properly contained in some other clique ideal, and I is a maximum
clique ideal if I is a (maximal) clique ideal such that |I| ≥ |J | for all
clique ideals J . Note that a clique ideal is also a clique of Γ(R)∗; the
converse holds for ideals when R is local (Lemma 1.1).

On the other hand, the nonzero idempotent ideal J = {(0, 0), (1, 0)}
is a clique of Γ(Z2 ⊕ Z2)

∗ but neither a clique ideal nor a maximal
clique. If R is a (finite) local ring of odd characteristic, then Theo-
rem 1.3 shows that R has CIP if and only if it contains at least one
ideal that is a maximum clique of Γ(R)∗. In contrast, the ring in Ex-
ample 3.11 is local of characteristic 2 with a maximum clique that is
an ideal and a maximum clique that is not an ideal. It turns out that
it is “almost true” that a finite local ring has CIP if and only if it
contains at least one ideal that is a maximum clique. In Theorem 1.6,
we show that, if R is a finite local ring that contains a set X that is
a maximum clique but is not an ideal and there is an ideal I that is
a maximum clique, then |R| = 16 and |X| = 4 = |I|. In addition to
the ring in Example 3.11, examples exist of such rings with charac-
teristic 4 (Examples 3.9 and 3.10) and with characteristic 8 (Example
3.8). Up to isomorphism, these are the only four finite rings with both
a maximum clique that is an ideal and a maximum clique that is not
an ideal.

Primarily, Section 1 is devoted to the local case. It begins with a few
general results dealing with cliques, maximal and maximum cliques,
and then looks at CIP in the local case. As mentioned above, a finite
local ring R of odd characteristic has CIP if and only if it has at least
one ideal that is a maximum clique of Γ(R)∗. More or less a restricted
“contrapositive” statement holds for the even characteristic case. If
R is finite and local with even characteristic and there is a maximum
clique X of Γ(R)∗ such that |X| ≥ 5 and X is not an ideal, then no
ideal of R is a maximum clique of Γ(R)∗ (Theorem 1.3).

In Section 2, we look at the finite nonlocal case. Throughout the
section, we make use of the fact that, if R is not local, then it is
(naturally) isomorphic to n⊕

i=1

RMi ,



502 THOMAS G. LUCAS

where {M1,M2, . . . ,Mn} is the set of maximal ideals of R. As
mentioned above, if R is a reduced ring that is not local, then it does
not have CIP. If R is not local, then it also fails to have CIP if it is
“partially reduced” in the sense that it is isomorphic to a sum S ⊕ T
where S is reduced (Lemma 2.1). Note that such a sum exists if and
only if RMi is a field for some maximal ideal Mi of R.

As a first positive result of Section 2, we show that, if S and T
are finite rings such that neither is a field and each has an ideal that
is a maximum clique of the respective zero divisor graphs Γ(S)∗ and
Γ(T )∗, then S ⊕ T has CIP, and each maximum clique of Γ∗(S ⊕ T )
has the form

IS ⊕ IT ,

where IS is maximum clique of Γ(S)∗ and IT is a maximum clique of
Γ(T )∗, Theorem 2.3. Corollaries 2.4 and 2.5 extend the result to sums
of finite families {Si}ni=1 of finite rings for n > 1. Thus, the ring R in
Example 3.11 is such that W = R ⊕ R has the clique ideal property
even though R does not. The ring W has two maximal ideals:

M ⊕R and R⊕M,

where M is the maximal ideal of R. Localizing W at either of these
maximal ideals yields a ring that is naturally isomorphic to R. Thus,
a finite direct sum of (finite) rings can have the clique ideal property
even if one or more of the summands does not, and a ring may have
the clique ideal property even though some localization at a maximal
ideal does not.

In contrast, if V is a local ring that has CIP and F is a finite field
(so a ring that trivially has CIP), then V ⊕ F does not have CIP.
The maximal ideals of V ⊕ F are V ⊕ (0) and N ⊕ F where N is the
maximal ideal of V . Localizing at V ⊕ (0) produces a ring isomorphic
to F , and localizing at N ⊕F produces a ring that is isomorphic to V ,
so both localizations have CIP. Hence, CIP may seem rather far from
being a local property. However, if R has odd characteristic and is not
a field, then it has CIP if and only if, for each maximal ideal M , RM

has CIP and is not a field, Corollary 2.10. In Theorem 2.7, we show
that, if R is a finite ring that is not local and RM has CIP for each
maximal ideal M , then R has CIP if and only if there is no maximal
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ideal N ∈ Max(R) such that RN is a field. A characterization of when
a finite ring R that is not local has CIP is provided in Theorem 2.9.
Specifically, the following are equivalent:

(1) R has CIP;

(2) some ideal of R is a maximum clique of Γ(R)∗;

(3) for each maximal ideal M of R, RM is not a field, and some
ideal of RM is a maximum clique of Γ(RM )∗;

(4) if

R ∼=
n⊕

i=1

Si

for some family of rings {Si}ni=1 with n > 1, then no Si is a field, and
each Si has an ideal that is a maximum clique of Γ(Si)

∗.

Section 3 is devoted to examples and a few special cases. Several
of the results in this section deal with the idealization of a module.
For a ring R and R-module B, the idealization of B (over R) is
formed from R×B by defining addition and multiplication as follows:
(s, a) + (t, b) = (s + t, a + b) and (s, a)(t, b) = (st, sb + ta). A
standard notation for this ring is R(+)B (see for example, [6, Section
25]). In Theorem 3.4, we give a complete characterization of when
R = Zpn(+)B has CIP when p is a prime, n is a positive integer
and B is a finite Zpn -module. A consequence is that Zpn(+)Zpn has
CIP for each prime p and positive integer n, Corollary 3.6. Unlike
Zp2n , Zpn(+)Zpn has multiple maximum cliques, provided n ≥ 2. In
the case n = 2k for some positive k, each ideal of the form

pmZpn(+)pn−mZpn

is a maximum clique for k ≤ m ≤ n, Corollary 3.6. If, instead,
n = 2k + 1, then pmZpn(+)pn−mZpn is a maximum clique for each
k + 1 ≤ m ≤ n.

The ring R in Example 3.14 is local and contains a pair of maximum
cliques X and Y such that neither is an ideal and Ann(Y ) ) Ann(X).
By Theorem 1.2 (and the fact that R is local), q3 = 0 for all q ∈ X∪Y ,
Ann(Y ) = {z ∈ Y | z2 = 0} and Ann(X) = {t ∈ X | t2 = 0}.
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1. Finite local rings.

Lemma 1.1. Let R be a finite ring that is not a field.

(i) If X is a clique of Γ(R)∗, then X is a maximal clique if and
only if X ⊇ Ann(X).

(ii) If X is a maximal clique of Γ(R)∗, then X is an ideal if and
only if x2 = 0 for each x ∈ X.

(iii) If I is an ideal of R, then it is a maximal clique of Γ(R)∗ if
and only if I = Ann(I).

(iv) If I is an ideal of R and R is local, then I is a clique of Γ(R)∗

if and only I2 = (0).

Proof. For a clique Y , if b ∈ Ann(Y ) \ Y , then Y ∪ {b} is a
strictly larger clique of Γ(R)∗. Hence, each maximal clique contains its
annihilator. Conversely, if Y ⊇ Ann(Y ), then certainly no element can
be added to Y ; thus, Y is a maximal clique if and only if Y ⊇ Ann(Y ).

For (ii), let X be a maximal clique. If x2 = 0 for each x ∈ X,
then for all a, b, c ∈ X (not necessarily distinct), we have c(a + b) =
ca+ cb = 0. Since X is a maximal clique, a+ b ∈ X. Also, for r ∈ R,
(rc)a = r(ca) = 0 so that we also have rc ∈ X. It follows that X is an
ideal of R.

For the converse, suppose thatX is an ideal (and a maximal clique).
Since R is not a field, each maximal clique contains at least one nonzero
element. We have two cases to consider. If a ̸= b are both nonzero
elements of X, then a + b ∈ X \ {a, b} and ab = 0 = a(a + b). It
follows that a2 = 0. The other possibility is that X = {0, c}. Since
X ⊇ Ann(X) (and c ̸= 0 is a zero divisor), we have c2 = 0.

For the statements in (iii) and (iv), let I be an ideal of R. If
I2 = (0), then, clearly, I is a clique of Γ(R)∗ (even if R is not local).
In particular, if I = Ann(I), then I is a clique. Moreover, in this
case, no element of R \ I can annihilate each element of I; thus, I is a
maximal clique of Γ(R)∗.

For the reverse implication in (iii), if I is a maximal clique, then
z2 = 0 for each z ∈ I and I ⊇ Ann(I) by (i) and (ii). Since zw = 0
for all z ̸= w in I, we have I = Ann(I).
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To complete the proof of (iv), suppose that R is local and I is a
clique of Γ(R)∗. As above, if a ̸= b are both nonzero elements of I,
then we have a2 = 0 = b2. The remaining case is when I = {0, c} for
some nonzero c. Since R is local and c2 ∈ I, it must be that c2 = 0 as
the only idempotents of a local ring are 1 and 0. Thus, no matter the
size of I, I2 = (0) whenever it is a clique. �

From Lemma 1.1, a necessary condition for an ideal to be a maximal
clique is for it to be nilpotent. Thus, if R has the clique ideal property,
each maximum clique is contained in every maximal ideal.

Theorem 1.2. Let R be a finite local ring that is not a field, and let
S = {b ∈ R | b2 = 0}.

(a) If Z is a maximum clique of Γ(R)∗, then z3 = 0 for each z ∈ Z.
(b) If X is a maximum clique that is not an ideal, then

(i) there is an element x ∈ X such that x2 ̸= 0 and x3 = 0,
(ii) Ann(X) = {y ∈ X | y2 = 0} is the largest ideal contained

in X, and
(iii) XS ⊆ Ann(X).

Proof. Since R is a finite local ring, each zero divisor is nilpotent.
For a nilpotent b ∈ R, let

ρ(b) = min{i ∈ N | bi = 0}.

Suppose that W is a clique with an element w ∈ W such that
ρ(w) = k > 4. Let i = ⌊k/2⌋ and j = i + 1. Since i ≥ (k − 1)/2 > 1,
i+ j ≥ k. Hence, wiwj = 0 with wi ̸= wj . Also, w ·wj ̸= 0, so neither
wi nor wj is in W . It follows that the set {wi, wj} ∪ W \ {w} is a
strictly larger clique of Γ(R)∗.

Next, suppose that Y is a clique with an element y ∈ Y such that
ρ(y) = 4. Clearly, y, y2 and y2 + y3 are distinct elements of R and
y · y2 = y3 = y(y2 + y3). Thus, neither y2 nor y2 + y3 is in Y . On
the other hand, y2(y2 + y3) = 0, so {y2, y2 + y3}∪Y \ {y} is a strictly
larger clique of Γ(R)∗. Therefore, z3 = 0 for each z ∈ Z when Z is a
maximum clique of Γ(R)∗.
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Assume that X is a maximum clique of Γ(R)∗ which is not an ideal
of R. Since R is a finite local ring that is not a field, |R| = pm for some
prime p and positive integer m > 1. In this case, the maximal ideal is
both nonzero and nilpotent. Hence, it has a nonzero annihilator. In
addition, if I is an ideal of R, then |I| = pk for some integer k ≥ 0.
Thus, |Ann(X)| = pa for some positive integer a. By Lemma 1.1,
X ⊇ Ann(X), and there is an element x ∈ X such that x2 ̸= 0. From
(a), we have x3 = 0.

Let w ∈ X \ {x}. Then, xw = 0 = x · x2. It follows that
x2 ∈ Ann(X). Hence, |X| ≥ 3. Since Ann(X) ⊆ X, each r ∈ Ann(X)
is such that r2 = 0. Thus,

Ann(X) ⊆ {y ∈ X | y2 = 0}.

For the reverse containment, simply note that, if v ∈ {y ∈ X | y2 = 0},
then v2 = 0 = vw for each w ∈ X \ {v}. Hence, v ∈ Ann(X), and we
have that Ann(X) = {y ∈ X | y2 = 0}. Since x2 ̸= 0, Ann(X) ( X.
Also note that, since x is nilpotent and x2 ̸= 0, 1 + x is a unit of R
and x ̸= x(1 + x). Hence, x(x(1 + x)) = x2 + x3 = x2 ̸= 0, and thus,
x(1 + x) is not in X. It follows that Ann(X) contains each ideal of R
that is contained in X.

For (iii), note that, if s ∈ S and x ∈ X, then (xs)2 = 0. Therefore,
from above, we have xs ∈ Ann(X) if and only if xs ∈ X. Thus,
to see that XS ⊆ Ann(X), suppose, by way of contradiction, that
there are elements t ∈ S and q ∈ X such that qt /∈ X. Since
Ann(X) = {y ∈ X | y2 = 0} is an ideal of R, q ∈ X \ Ann(X).
Hence, we can replace q by qt to obtain a new maximum clique

V = {qt} ∪X \ {q}.

Since (qt)2 = 0, qt ∈ Ann(V ). As only q was replaced and q /∈ Ann(X),
Ann(V ) = Ann(X) ∪ {qt}, and we have

|Ann(V )| = |Ann(X)|+ 1 = pa + 1,

a contradiction of Ann(V ) being an ideal. Hence, XS ⊆ X, and we
have XS ⊆ Ann(X). �

The next three results show how rare it is for a finite local ring R
to have an ideal that is a maximum clique of Γ(R)∗ and a subset X
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that is a maximum clique of Γ(R)∗ but is not an ideal of R.

Theorem 1.3. Let R be a finite local ring.

(i) If R has odd characteristic, then it has CIP if and only if at
least one ideal is a maximum clique of Γ(R)∗.

(ii) If R has even characteristic and there is a maximum clique X
of Γ(R)∗ such that X is not an ideal and |X| ≥ 5, then no
ideal of R is a maximum clique of Γ(R)∗.

Proof. Since R is local, there is a prime p and positive integer r
such that |R| = pr. In addition, for each nonzero ideal H, |H| = ph

for some positive integer h. In addition, if b ∈ R \H, then

|bR+H| ≥ ph+1 = p · |H|.

A consequence is that, if B is a nonzero ideal containing pn elements,
then a minimal generating set for B requires at most n elements.

There is nothing to prove in the case R is a field, the only clique
is (0). Also, Γ(R)∗ always has at least one maximum clique. Thus,
if R has CIP, it has at least one ideal that is maximum clique, and
each maximum clique is an ideal (no matter what the characteristic).
For the reverse implication with regard to (i), we will prove the
contrapositive. Thus, for both odd and even characteristic, we may
assume there is a maximum clique X of Γ(R)∗ that is not an ideal.
Then, X ) Ann(X) by Lemma 1.1. In the even characteristic case,
we further assume that |X| ≥ 5.

For both cases, we may assume that I is a clique ideal. Then,
I2 = (0) (Lemma 1.1) and so,

I ⊆ S = {f ∈ R | f2 = 0}.

Since |X| > |Ann(X)| and our goal is to show |X| > |I|, we may
further assume |X| ≥ |I| = pi > |Ann(X)| = pc. Let T =
{x1, x2, . . . , xt} = X \Ann(X), and let J be the ideal generated by X.
Then, Ann(X) = Ann(J). Also, t ≥ pi − pc since |X| = t + pc ≥ pi.
By Theorem 1.2, XI ⊆ Ann(X) and x2

j ̸= 0 for each 1 ≤ j ≤ t.
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Let J1 = x1R+Ann(X) and, for 1 < k ≤ t, recursively define ideals
Jk = xkR+ Jk−1 (so Jt = J). Since x1 /∈ Ann(X), we have

|J1| ≥ p · |Ann(X)|.

Also, since xnxm = 0 for all n ̸= m, xjJk = (0) for k < j ≤ t. On the
other hand, x2

j ̸= 0, and thus, xj /∈ Jk. It follows that

|Jk| ≥ p · |Jk−1| ≥ pk · |Ann(X)|

for all k > 1. In particular, we have

|J | = |Jt| ≥ pt · |Ann(X)| = pt · pc.

In addition |(J + I)/I| = |J/J ∩ I| ≥ pt+c−i.

As noted above, XI ⊆ Ann(X). Hence, we have

XI = JI ⊆ I ∩Ann(X)

since I is an ideal. Also, XI ̸= (0) as |I| > |Ann(X)|. Thus,
|I ∩Ann(X)| ≥ p, and we have

|I/(I ∩Ann(X))| = ph ≤ pi−1

for some positive integer h with i−c ≤ h ≤ i−1. Since |I∩Ann(X)| =
pi−h and |I| = pi, a minimal generating set for I ∩Ann(X) requires at
most i− h elements, and one for I requires at most h more elements.
Hence, we may select a set E = {e1, e2, . . . , ei−h} that generates
I ∩Ann(X) (not necessarily a minimal set) and an additional set

D = {d1, d2, . . . , dh} ⊆ I \Ann(X)

such that D ∪ E generates I.

For each q ∈ J , we may define an R-module homomorphism

φq : I −→ I ∩Ann(X)

by φq(b) = qb. Note that φq(d) = 0 for each d ∈ I ∩ Ann(X). Thus,
φq(ej) = 0 for all ej ∈ E. It follows that each φq is determined by
the values of the φq(dk)s. For each dk, there are at most pi−h =

|I ∩ Ann(X)| potential values. Hence, |N | ≤ ph(i−h), where N is the
set of distinct R-module homomorphisms of the form φq (for q ∈ J).
In addition, φq is the zero map for each q ∈ J ∩ I since I2 = (0).
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If pt+c−i > |N |, then there are at least two elements q, q′ ∈ J such
that φq = φq′ with q − q′ ∈ J \ I. It follows that q − q′ is a nonzero
annihilator of I that is not in I, and thus, I is not a maximum clique,
nor even a maximal clique.

We will use induction to show that pt+c−i > ph(i−h). When p is
odd, this inequality holds for all positive integers t, c and i such that
t+ pc ≥ pi > pc. On the other hand, if p = 2, then the inequality fails
for the case t = 2 = i > c = 1 as, in that case, h = 1 = i− h, and we
have t+ c− i = 1 = 12. However, the inequality

pt+c−i > ph(i−h)

does hold for all t, c and i when p = 2 and |X| = t + 2c ≥ 5. Also,
note that, in the special case t ≥ 3 > i = 2 > c = 1 and p = 2, we
again have h = 1 = i− h but now also have

2t+c−i = 2t−1 ≥ 22 > 2 = 21.

Thus, for the case p = 2, we may restrict to the case i ≥ 3.

Since t+pc ≥ pi > pc, it suffices to show that pi−pc+c−i > h(i−h)
for all positive integers i > c (with the above restriction to i ≥ 3 when
p = 2).

Consider the function g(z) = z(i− z). The maximum value of this
function is i2/4 and occurs when z = i/2. Note that, in some cases,
i/2 will not be an integer and it may be outside the range of h (which
is restricted to i− c ≤ h ≤ i− 1). Also note that

pi − pc = pc(pi−c − 1) ≥ 2c(2i−c − 1) = 2i − 2c

for all primes p. Thus, except for the special case that c = 1 and i = 2,
it suffices to show 2i − 2c > i2/4− c+ i. From the argument above, if
c = 1 and i = 2, then we only need to consider the case p is odd.

For the initial steps, we split the proof into odd and even charac-
teristics. For p odd, we start with c = 1 and i = 2, and for p = 2, we
establish the inequality 2i − 2c > i2/4− c+ i for i = 3 and c ∈ {1, 2}.

If c = 1, i = 2 and p is odd, then i/2 = 1 and

pi − pc = p2 − p = p(p− 1) ≥ 2p > 2

= 2− 1 + 1 = i− c+ i2/4 = (4(i− c) + i2)/4.
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If p = 2 and i = 3, then i/2 = 3/2. For the case c = 1, we have

2i − 2c = 8− 2 = 6 > 17/4 = 3− 1 + 9/4 = i− c+ i2/4;

and, when c = 2, we have

2i − 2c = 8− 4 = 4 > 13/4 = 3− 2 + 9/4 = i− c+ i2/2.

Thus, in all three cases, pi − pc > i− c+ i2/4. In addition, we have

pi − pc = p3 − p > 23 − 2 > i− c+ i2/4

for all odd primes p when c = 1 and i = 3; and

pi − pc = p3 − p2 > 23 − 22 > i− c+ i2/4

when p is odd, c = 2 and i = 3.

Next, we use induction on c to establish the inequality in the special
case i = c+1. Assume that the inequality pi − pc > i− c+ i2/4 holds
for c = k ≥ 2 and i = k+1, and consider the case c = k+1, i = k+2.
We have

2i − 2c = 2k+2 − 2k+1

= 2(2k+1 − 2k) > 2(4 + (k + 1)2)/4

= ((4 + (k + 1)2) + (4 + (k + 1)2))/4

> (4 + (k + 1)2 + 2k + 3)/4

= (4 + (k + 2)2)/4 = (4(i− c) + i2)/4,

as desired. It follows that pi − pc > i− c+ i2/4 for all primes p when
i = c+ 1 (and c ≥ 2 when p = 2).

Finally, we do induction on i for fixed c. Assume that the inequality
2i−2c > i− c+ i2/4 holds for the case i = k ≥ c+1 (with k ≥ 3 when
c = 1), and consider the case i = k + 1. We have

(4(k + 1− c) + (k + 1)2)/4 = ((4(k − c) + k2)/4)

+ ((4 + 2k + 1)/4) < 2k − 2c

+ ((2k + 5)/4) < 2k − 2c + 2k

= 2k+1 − 2c = 2i − 2c.
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Therefore, by induction, pi − pc ≥ 2i − 2c > i − c + h(i − h) for all
primes p and all integers i > c ≥ 1 (with i ≥ 3 when c = 1 and p = 2).

From the arguments above, we may now conclude that

|J | ≥ pt+c−i > ph(i−h) ≥ |N |,

and therefore, there is a pair of distinct elements q, q′ ∈ J such that
φq = φq′ with q − q′ ∈ J \ I. It follows that q − q′ ∈ Ann(I) \ I, and
thus, I is not a maximal clique. Therefore, no ideal of R is a maximum
clique when R has a maximum clique X that is not an ideal and either
|X| ≥ 5 or R has odd characteristic. �

The following corollary provides a positive interpretation of state-
ment (ii) from Theorem 1.3. It is independent of characteristic.

Corollary 1.4. Let R be a finite local ring. If there is a clique Y of
Γ(R)∗ such that |Y | ≥ 5, then R has CIP if and only if there is at least
one ideal that is maximum clique of Γ(R)∗.

By way of the proof of Theorem 1.3, we can say a little more about
the local case where there is a maximum clique that is not an ideal.
The next result provides an upper bound for the size of an ideal of a
local ring R that is a maximal clique Γ(R)∗ when no maximum clique
of Γ(R)∗ is an ideal.

Corollary 1.5. Let R be a finite local ring such that there is a
maximum clique X of Γ(R)∗ that is not an ideal of R.

(i) If no ideal of R is a maximum clique of Γ(R)∗, then |Ann(X)| ≥
|I| for each ideal I that is a maximal clique of R.

(ii) If |X| ≥ 5 and I is an ideal of R that is a clique of Γ(R)∗ such
that |I| > |Ann(X)|, then I ( Ann(I), and thus, I is not a
maximal clique.

Proof. From Lemma 1.1, X ) Ann(X). Since R is finite and local,
Ann(X) ̸= (0) and |R| = pr for some prime p and positive integer r.
Hence, |H| is a positive power of p for each nonzero ideal H of R. In
particular, |Ann(X)| = pc for some positive integer c.
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Let J be the ideal generated by X, and let I be an ideal that is
a maximal clique of Γ(R)∗. Then, I = Ann(I) by Lemma 1.1. For
both statements, it suffices to prove that |Ann(X)| ≥ |I|. By way of
contradiction, we assume that |I| = pi > |Ann(X)| ≥ p. Then, we
have |X| ≥ |I| ≥ p2 ≥ 4. If no ideal of R is a maximum clique of
Γ(R)∗, then |X| ≥ 5. Thus, from this point, we can establish both (i)
and (ii). From the proof of Theorem 1.3, there is an element r ∈ J \ I
such that rI = (0), contradicting that I is a maximal clique. Hence,
|Ann(X)| ≥ |I| for each ideal I that is a maximal clique of Γ(R)∗. �

Our final result of this section characterizes those finite local rings
that have both a maximum clique that is not an ideal and a maximum
clique that is an ideal. In Section 3, we provide four distinct exam-
ples of such rings, one of characteristic 8, two of characteristic 4 and
another of characteristic 2 (Examples 3.8, 3.9, 3.10 and 3.11, respec-
tively).

Theorem 1.6. Let R be a finite local ring with maximal ideal M . If
there is a set X that is a maximum clique and not an ideal and an
ideal I that is a maximum clique, then:

(i) |R| = 16;
(ii) |X| = 4 = |I|;
(iii) Ann(X) = Ann(M) = {0, z} for some nonzero element z ∈

M ;
(iv) X = {0, z, x, y} for some x, y ∈ M with x2 = y2 = z;
(v) I = (x+ y)R = {0, z, x+ y, x+ y+ z} is the only ideal that is

a maximum clique; and
(vi) there are exactly three other maximum cliques that are not

ideals: {0, z, x, y + z}, {0, z, x+ z, y} and {0, z, x+ z, y + z}.

Proof. Let M be the maximal ideal of R. Since R is local and
finite, Ann(M) ̸= (0). Assume that X is a maximum clique that
is not an ideal and I is a maximum clique that is an ideal. By
Theorem 1.3, |R| = 2r for some positive integer r and |I| = |X| ≤ 4.
Also, Ann(M) ⊆ Ann(X) ( X and I = Ann(I) by Lemma 1.1. It
follows that Ann(M) = Ann(X) = {0, z} for some nonzero element
z ∈ M , I = {0, z, w,w+ z} for some w ∈ M \ {0, z} such that w2 = 0,
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and X = {0, z, x, y} necessarily with x2 = z = y2, the latter by
Theorem 1.2. Since w2 = 0 = (w + z)2, |I ∪X| = 6. It follows that R
contains at least 12 elements. Thus, |R| = 2r for some integer r ≥ 4.

Since Ann(X) is an ideal, z + z = 0, and therefore, (x + y)2 = 0.
In addition, x(x + y) = x2 = z = y2 = y(x + y). Since xz = 0 = yz,
x + y ̸= z. Thus, the set J = {0, z, x + y, x + y + z} is a clique such
that the square of each member is 0. As no clique has more than four
elements, J must be an ideal of R (Lemma 1.1).

Another application of Theorem 1.2 yields that

(0) ̸= XI ⊆ Ann(X),

and thus XI = Ann(X). As noted above, neither x nor y can be
in I since I2 = (0) and x2 = z = y2. Also, xz = 0 = yz, so it must
be that xw = z = yw. Therefore, I = wR. Since z + z = 0, we
have (x + y)w = 0. It follows that x + y ∈ Ann(I) = I. Recall from
above that x(x + y) = x2 = z (and xz = 0), so either x + y = w
or x + y = w + z. If the latter, then x + y + z = w. Since
x(y + z) = 0 = z(y + z), {0, z, x, y + z} is also a clique. Hence,
we may assume x+ y = w. Therefore, I = J is the unique maximum
clique that is an ideal.

Each of the sets {0, z, x, y+z}, {0, z, x+z, y} and {0, z, x+z, y+z}
is a maximum clique of Γ(R)∗ that is not an ideal. Once we show
|R| = 16, it will be sufficient to conclude that these are the only other
maximum cliques that are not ideals.

Let r ∈ R, and consider the possible values of rw:

(i) rw = 0 implies r ∈ {0, z, w,w + z};
(ii) rw = w implies r−1 ∈ Ann(w) so r ∈ {1, 1+z, 1+w, 1+w+z};
(iii) rw = z implies r − x ∈ Ann(w) since xw = z, and hence,

r ∈ {x, x+ z, x+ w, x+ w + z};
(iv) rw = w + z implies (r − 1)w = z; thus, r ∈ {1 + x, 1 + x +

z, 1 + x+ w, 1 + x+ w + z}.

Therefore, R has 16 elements,

M = {0, x, y, z, x+ y, x+ z, y + z, x+ y + z}
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y + z x+ z

x y

z

x+ y x+ y + z

y + z x+ z

0

x y

z

x+ y x+ y + z

Figure 1. The graphs Γ(R) and Γ(R)∗ for R satisfying Theorem 1.6.

(with (x+ z) + (y + z) = w = x+ y) and

R\M = {1, 1+x, 1+y, 1+z, 1+x+y, 1+x+z, 1+y+z, 1+x+y+z}. �

Remark 1.7. By Theorem 1.6, if R is a finite local ring such that
there is a maximum clique of Γ(R)∗ that is an ideal I of R and another
maximum clique X that is not an ideal, then |R| = 16 and Γ(R)∗ has
eight vertices. Obviously, deleting 0 yields a graph Γ(R) with seven
vertices. Based on the more explicit description of what I and X look
like in this case, it can easily be deduced that Γ(R) is the graph labeled
as “Figure 6” in [8] (also see [9] for a few unrelated corrections). We
reproduce this graph in Figure 1 and include the corresponding graph
Γ(R)∗.

Up to isomorphism, four finite local rings have these graphs (see [8,
page 1160]), and each of these satisfies Theorem 1.6. One such ring is
Z4[W]/(W2 + 2W) (see Example 3.9 below). The other three are given
below as Examples 3.8, 3.10 and 3.11. Note that 2N ̸= (0) for the
maximal ideal N of the ring Z4[W]/(W2 + 2W). In contrast, 2M = (0)
for the maximal ideal M of the ring in Example 3.10. It follows that
these two rings are not isomorphic. For the ring Z4[W]/(W2 + 2W), if
we wish to match the x, y, z notation in Theorem 1.6, we must set
z = w2 for x and y; a simple choice is x = w and y = 3w+2, in which
case, x + y = 2. An explicit description of values for x, y and z that
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is consistent with the notation in Theorem 1.6 is included in each of
Examples 3.8, 3.10 and 3.11.

2. Finite rings that are not local. As noted earlier, a reduced
finite ring has CIP if and only if it is a field. More generally, if
R = S ⊕ T where S is a finite reduced ring and T is a finite ring,
then not only does R not have CIP, but no maximal clique of Γ(R)∗

is an ideal of R.

Lemma 2.1. If S and T are finite rings and S is reduced, then
R = S⊕T is a finite ring which does not have the clique ideal property,
and no maximal clique of Γ(R)∗ is an ideal of R.

Proof. Each nonzero ideal of R has the form I ⊕ J where I is an
ideal of S and J is an ideal of T . If I = (0), then

(1, 0) ∈ Ann(I ⊕ J) \ I ⊕ J.

Thus, in this special case, I ⊕ J is not a maximal clique of Γ(R)∗.
Next, consider the case I ̸= (0). Since S is a reduced ring, I +Ann(I)
has no nonzero annihilators. Thus, the only way to have I ⊇ Ann(I)
is to have Ann(I) = (0). It follows that

I ⊕ J ̸= Ann(I ⊕ J).

That no ideal of R is a maximal clique now follows from Lemma 1.1.
Therefore, R does not have CIP. �

Lemma 2.2. Let R = S ⊕ T , where S and T are finite rings. If no
ideal of S is a maximal clique of Γ(S)∗, then no ideal of R is a maximal
clique of Γ(R)∗, and R does not have the clique ideal property.

Proof. Assume that no ideal of S is a maximal clique of Γ(S)∗, and
let H be an ideal of R that is a clique of Γ(R)∗. Then, H2 = (0)
by Lemma 1.1. Also, H = I ⊕ J , where I is an ideal of S and J is
an ideal of T . By assumption, I is not a maximal clique of Γ(S)∗,
but we do have I2 = (0), so at least I is a clique of Γ(S)∗. From
Lemma 1.1, there is an element r ∈ Ann(I) \ I. Clearly, the element
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(r, 0) ∈ R \H is in the annihilator of H. Hence, H is not a maximal
clique of Γ(R)∗. �

Theorem 2.3. If S and T are finite rings that are not fields and each
has an ideal that is a maximum clique of the respective zero divisor
graphs Γ(S)∗ and Γ(T )∗, then R = S⊕T has the clique ideal property
and each maximum clique of Γ(R)∗ has the form IS ⊕ IT , where IS is
an ideal of S that is a maximum clique of Γ(S)∗, and IT is an ideal
of T that is a maximum clique of Γ(T )∗.

Proof. Assume that both S and T are finite rings with nonzero
ideals JS of S and JT of T such that JS is a maximum clique of
Γ(S)∗ and JT is a maximum clique of Γ(T )∗. Then, it is clear that
J = JS ⊕ JT is an ideal of R = S ⊕ T that is a clique of Γ(R)∗. Also,

|JS ⊕ JT | = |JS | · |JT | ≥ 4.

Let Y be a clique of Γ(R)∗ such that |Y | ≥ 4, and let

YS = {s ∈ S | (s, t) ∈ Y for some t ∈ T}

and
YT = {t ∈ T | (s, t) ∈ Y for some s ∈ S}.

Then,
|Y | ≤ |YS ⊕ YT | = |YS | · |YT |.

If there is an element (b, c) ∈ Y such that b is not a zero divisor of S,
then all the other elements of Y have the form (0, e), and there must be
two such elements that are not (0, 0). Thus, in this case, each element
of YT is a zero divisor of T , and we have that YT is a clique of Γ(T )∗.
It follows that |Y | ≤ 1 + |YT | ≤ 1 + |JT | < |J |, and thus, Y is not a
maximum clique.

Let X be a maximum clique of Γ(R)∗. From the argument in the
previous paragraph,

XS = {s ∈ S | (s, t) ∈ X for some t ∈ T} ⊆ Z(S)

and
XT = {t ∈ T | (s, t) ∈ X for some s ∈ S} ⊆ Z(T ).
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It follows that XS is a clique of Γ(S)∗ and XT is a clique of Γ(T )∗.
Also,

|X| ≤ |XS ⊕XT | = |XS | · |XT |

with |XS | ≤ |JS | and |XT | ≤ |JT |. Hence, |X| = |XS | · |XT | = |J | and
J = JS ⊕ JT is a maximum clique. In addition, X = XS ⊕XT with
|XS | = |JS | ≥ 2 and |XT | = |JT | ≥ 2.

Let b ∈ XS and c ∈ XT be nonzero. Then, it must be that all three
of (b, c), (b, 0) and (c, 0) are in X with

(b2, 0) = (b, 0)(b, c) = (0, 0) = (0, c)(b, c) = (0, c2).

Thus, X2
S = (0) and X2

T = (0). Hence, XS is an ideal of S and XT

is an ideal of T . Therefore, R has the clique ideal property, and each
maximum clique of Γ(R)∗ is the direct sum of maximum cliques that
are ideals. �

If neither S nor T is a field and both have the clique ideal property,
then R = S⊕T has the clique ideal property. Using recursion, we can
extend this conclusion to arbitrary finite sums of finite rings that are
not fields.

Corollary 2.4. If S1, S2, . . . , Sn are finite rings that are not fields
and each Si has an ideal that is a maximum clique of Γ(Si)

∗, then
R =

⊕n
i=1 Si has the clique ideal property. Moreover, an ideal J of R

is a maximum clique of Γ(R)∗ if and only if

J =
n⊕

i=1

Ji,

where

Ji = {si ∈ Si | (s1, s2, . . . , sn) ∈ J for some sj ∈ Sj , j ̸= i}

is an ideal of Si that is a maximum clique of Γ(Si)
∗ for each i.

Corollary 2.5. If S1, S2, . . . , Sn are finite rings that are not fields
and each Si has CIP, then R =

⊕n
i=1 Si has the clique ideal property.
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Remark 2.6. The converse of Corollary 2.5 does not hold. Let S be
one of the rings in Examples 3.8, 3.9, 3.10 or 3.11. Then, both

R = S ⊕ S and T = Z4 ⊕ S

have the clique ideal property even though S does not. Moreover, R
has two maximal ideals

N1 = M ⊕ S and N2 = S ⊕M,

where M is the maximal ideal of S. While R has the CIP, the
localizations

RN1
∼= S ∼= RN2

do not. The two maximal ideals of T are

P1 = 2Z4 ⊕ S

and

P2 = Z4 ⊕M.

The localization TP1
∼= Z4 has CIP while TP2

∼= S does not. On the
other hand, if

W =
n⊕

i=1

Vi,

where W is a finite ring with odd characteristic and no Vi is a field,
then W has CIP if and only if each Vi has CIP (see Corollary 2.11
below).

In addition, consider the ring R = Z12. It has two maximal ideals,
M = 3R and N = 2R. Since

R ∼= Z3 ⊕ Z4,

it does not have the clique ideal property (Lemma 2.1). For an
alternate proof, we note that, since 12 is not a perfect square, R does
not have the clique ideal property by Theorem 3.2 below. On the other
hand, both

RM
∼= Z3 and RN

∼= Z4
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have the clique ideal property (the “trivial” type for RM as it is a field).
The problem turns out to be that at least one of the localizations of R
is a field.

If R is a finite ring that is not local, then there is a smallest positive
integer m such that

n∩
i=1

Mm
i = (0),

where Max(R) = {M1,M2, . . . ,Mn}. Moreover, the natural map
from R to

n⊕
i=1

R/Mm
i

is an isomorphism and localizing yields RMi
∼= R/Mm

i for each i (see,
for example, [7, 6.2 Theorem]).

Theorem 2.7. Let R be a finite ring that is not local. If RM has the
clique ideal property for each maximal ideal M , then R has the clique
ideal property if and only if there is no maximal ideal N such that RN

is a field.

Proof. Assume that RM has the clique ideal property for each
maximal ideal M , and let

Max(R) = {M1,M2, . . . ,Mn}.

Then, there is a natural isomorphism from R to

T =
n⊕

i=1

RMi ,

defined by t 7→ (t/1, t/1, . . . , t/1). If there is no j such that RMj is a
field, then R has the clique ideal property by Corollary 2.4. For the
reverse implication, apply Lemma 2.1. �

Lemma 2.8. Let R = S ⊕ T be a finite ring such that T is not a
field. If I is a clique ideal of S and J is a clique ideal of T but not a
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maximal clique, then I ⊕ J is an ideal of R that is a clique of Γ(R)∗,
but it is not a maximal clique of Γ(R)∗.

Proof. Let I be a clique ideal of S, and let J be a clique ideal
of T that is not a maximal clique of Γ(T )∗. Then, I2 = (0) and
J2 = (0). Hence, (I ⊕ J)2 = (0). By Lemma 1.1, there is an element
t ∈ Ann(J) \ J . It is clear that (0, t) is an annihilator of I ⊕ J that is
not contained in I ⊕ J . Hence, I ⊕ J is a clique of Γ(R)∗, but it is not
a maximal clique. �

The next result provides both a refinement of Theorem 2.7 and a
converse for both Theorem 2.3 and Corollary 2.4.

Theorem 2.9. The following are equivalent for a finite ring R that
is not local.

(i) R has CIP.

(ii) At least one ideal of R is a maximum clique of Γ(R)∗.

(iii) For each maximal ideal M of R, RM is not a field, and at least
one ideal of RM is a maximum clique of Γ(RM )∗.

(iv) If {Si}ni=1 is a family of rings such that

R ∼=
n⊕

i=1

Si,

then no Si is a field, and each Si has an ideal that is a maximum
clique of Γ(Si)

∗.

(v) There is a family of rings {Si}ni=1 with n > 1 such that

R ∼=
n⊕

i=1

Si,

no Si is a field, and each Si has an ideal that is a maximum clique of
Γ(Si)

∗.
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Proof. Let Max(R) = {M1,M2, . . . ,Mm} (with m ≥ 2). Then,

R ∼=
m⊕
i=1

RMi .

It follows that (iv) implies (iii).

It is clear that (i) implies (ii), and (iii) implies (v). Also each of
(iii), (iv) and (v) implies (i) by Corollary 2.4. All that remains is to
show (ii) implies (iv).

Assume that

R ∼=
n⊕

i=1

Si,

where {Si}ni=1 is a family of rings. There is nothing to prove if n = 1
as R is not local. Thus, we may assume n > 1. For each Si, let
Max(Si) = {Mi,1,Mi,2, . . . ,Mi,ri}. Then,

Si
∼=

ri⊕
j=1

(Si)Mi,j

for each i and

R ∼=
n⊕

i=1

ri⊕
j=1

(Si)Mi,j .

To simplify notation, we let Si,j = SMi,j for each (i, j).

Let J be an ideal of R that is a maximum clique of Γ(R)∗. Then,
J = Ann(J) by Lemma 1.1, and J ̸= (0) since R is not local. Also,
J =

⊕n
i=1 Ji, where each Ji is an ideal of the corresponding ring Si.

In addition,

Ji ∼=
ri⊕
j=1

Ji,j ,

where Ji,j is an ideal of Si,j for each (i, j). Thus,

J ∼=
n⊕

i=1

ri⊕
j=1

Ji,j .
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By Lemma 2.1, no Si,j is a field. Since J
2 = (0), we also have J2

i,j = (0)
for each (i, j). Hence, by Lemma 2.8, each Ji,j is a maximal clique of
the corresponding graph Γ(Si,j)

∗ (and none are the zero ideal).

For a fixed i, if each Si,j has an ideal that is a maximum clique of
Γ(Si,j)

∗, then either Si is local (in which case, Si has an ideal that is
a maximum clique of Γ(Si)

∗) or Si has CIP, the latter by way of (iv)
implies (i). Thus, by way of contradiction, we may assume some Si,j

has no ideal that is a maximum clique of Γ(Si,j)
∗. Without loss of

generality, we may assume that no ideal of S1,1 is a maximum clique
of Γ(S1,1)

∗. Let X1,1 be a maximum clique of Γ(S1,1)
∗. Then, by

Corollary 1.5,
|Ann(X1,1)| ≥ |H1,1|

for each ideal H1,1 that is a maximal clique of Γ(S1,1)
∗. In particular,

|Ann(X1,1)| ≥ |J1,1|.

Let T be the direct sum of all Si,j except for S1,1. In the special
case r1 = 1,

T =
n⊕

i=2

Si;

otherwise, T is the direct sum of

r1⊕
j=2

S1,j and

n⊕
i=2

Si.

No matter which case holds, R ∼= S1,1 ⊕ T . Similarly, let J ′ be
the direct sum of all Ji,j except for J1,1. Then, J ∼= J1,1 ⊕ J ′. In
addition, the ideal H = Ann(X1,1)⊕J ′ is a clique of S1,1⊕T such that
|H| ≥ |J1,1⊕J ′|. We have R isomorphic to S1,1⊕T with J isomorphic
to J1,1 ⊕ J ′. Since J is a maximum clique of Γ(R)∗, J1,1 ⊕ J ′ is a
maximum clique of Γ(S1,1⊕T )∗. It follows that H is also a maximum
clique of Γ(S1,1 ⊕ T )∗. However, for each x ∈ X1,1 \ Ann(X1,1), the
element (x, 0) annihilates H but is not contained in H, providing a
contradiction. Thus, each Si,j and each Si has an ideal that is a
maximum clique of the respective graphs Γ(Si,j)

∗ and Γ(Si)
∗. �

Since a finite local ring of odd characteristic has CIP if and only if it
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has at least one ideal that is a maximum clique, there are two variations
on Theorem 2.9 when R is a finite ring with odd characteristic that is
not a field.

Corollary 2.10. Let R be a finite ring that is not a field. If R has
odd characteristic, then the following are equivalent.

(i) R has CIP.
(ii) At least one ideal of R is a maximum clique of Γ(R)∗.
(iii) For each maximal ideal M ∈ Max(R), RM has CIP and is not

a field.
(iv) For each maximal ideal M ∈ Max(R), RM is not a field and

at least one ideal of RM is a maximum clique of Γ(RM )∗.

Corollary 2.11. Let

T =
n⊕

i=1

Si

be a ring with odd characteristic that is not a field. Then, T has CIP
if and only if each Si has CIP and no Si is a field.

3. A few specific rings. The first two results of this section are
related to [2, Theorem 3.2] and [4, Proposition 2.3]. Essentially, both
follow from the proof Beck gives for [4, Proposition 2.3].

Theorem 3.1. Let R = Zpn for some prime p and positive integer n.
Then, R has CIP if and only if n is even. Moreover, if n = 2k, then
the only maximum clique is the ideal pkR.

Proof. Let k = ⌈n/2⌉. Then, 2k ≥ n. Each nonzero ideal of R is
principal and generated by pm for some positive integer m < n. Thus,
throughout the proof, we let Im = pmR for 1 ≤ m < n. Note that the
ideals

I1 ) I2 ) · · · ) In−1

for m ≥ k, I2m = (0), and for m < k, I2m ̸= (0). In addition, regardless
how m compares with k, |Im| = pn−m and Ann(Im) = In−m.
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If n is odd, then n = 2k − 1, and pk−1 ∈ R \ Ik is a nonzero
annihilator of Ik. Thus, no maximum clique of Γ(R)∗ is an ideal of R
when n is odd. On the other hand, if n = 2k, then Ik is an ideal whose
square is the zero ideal, and no element outside of Ik annihilates Ik.
It is clear that Ik is the unique largest subset of Γ(R)∗ that forms a
clique. Hence, in this case, R has CIP, and Ik is the unique maximum
clique of Γ(R)∗. �

Theorem 3.2. Let R = Zn, where n > 1 is a positive integer that is
not prime. Then, R has the clique ideal property if and only if n is
a perfect square. Moreover, if n = m2 for some m, then mR is the
unique maximum clique of Γ(R)∗.

Proof. If n is square-free, then R is reduced, and thus, Γ(R)∗ does
not have the clique ideal property. Hence, we may assume n = km2

for some positive integers k and m > 1 with k square-free.

Each nonzero ideal of R is principal and generated by a positive
integer j that divides n. For such an ideal jR, Ann(jR) = (n/j)R. In
addition, |jR| = n/j, and j2R = (0) if and only if mk divides j. Thus,
no matter whether k = 1 or is strictly greater than 1, the ideal mkR
is the unique largest ideal of R whose square is (0). Moreover, mkR
contains each ideal I whose square is zero. If k > 1, then m ∈ R\mkR
annihilates mkR. Hence, mkR is not a maximal clique in this case. It
follows that no maximum clique of Γ(R)∗ is an ideal when k > 1.

If k = 1, then n = m2 and mR = Ann(mR). Hence, mR is a
maximal clique of Γ(R)∗. There are primes p1 < p2 < · · · < ps and
corresponding positive integers r1, r2, . . . , rs such that

n =
s∏

i=1

p2rii .

We also have

R ∼=
s⊕

i=1

Z
p
2ri
i

.

From Theorem 3.1, each Z
p
2ri
i

has CIP with unique maximum clique

prii Z
p
2ri
i

. Since none of these rings are fields, R has CIP with unique
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maximum clique mR by Corollary 2.4. �

For each positive integerm, there is a finite ring with the clique ideal
property where the clique number of Γ(R)∗ is m. A similar statement
holds for the clique number of Γ(R).

Corollary 3.3. For each positive integer n, there is a finite ring R
with the clique ideal property such that the clique number of Γ(R)∗ (of
Γ(R)) is n.

Proof. For n = 1, each finite field has the clique ideal property since
0 is the only zero divisor. The clique number for Γ(R)∗ is 1 in this
case. Also, the ring R = Z4 has a single nonzero zero divisor; the set
{0, 2} is both an ideal of R and the complete set of zero divisors of R
with 2·2 = 0. Thus, R has the clique ideal property, the clique number
of Γ(R)∗ is 2 and the clique number of Γ(R) is 1.

Let n ≥ 2, and factor it into a product of powers of distinct primes:
n = pr1i pr22 · · · prmm . By Theorem 3.1, Ri = Z

p
2ri
i

has the clique ideal

property with a unique clique ideal prii Ri, an ideal of cardinality prii .
By Corollary 2.4,

R = R1 ⊕R2 ⊕ · · · ⊕Rm

has the clique ideal property with (unique) clique ideal

I = pr11 R1 ⊕ pr22 R2 ⊕ · · · ⊕ prmm Rm

such that |I| = n.

In order to obtain a finite ring with the clique ideal property such
that the clique number of Γ(R) is n, simply use the above scheme to
get a finite ring R with the clique ideal property such that the clique
number of Γ(R)∗ is n+ 1. �

For an R-module B, we may form a ring R(+)B (via the “idealiza-
tion of B”) from R×B by setting

(r, a) + (s, b) = (r + s, a+ b) and (r, a)(s, b) = (rs, rb+ sa).

Theorem 3.4. Let T = R(+)B, where R = Zpn for some prime p
and positive integer n, and B is a finite nonzero R-module. Also, let
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k = ⌈n/2⌉, and let q ≤ n be such that AnnR(B) = pqR (= (0) if
q = n).

(i) The following are equivalent.

(a) T has CIP.
(b) T has an ideal that is a maximum clique of Γ(T )∗.
(c) Either n is even or q ≥ k.

(ii) If n is odd and q < k, then pkR(+)B is a maximum clique ideal
but not a maximal clique, {(g, b)}∪pkR(+)B is a maximum clique for
each g ∈ Ik−1 \ Ik and each b ∈ B, and each maximum clique has this
form.

(iii) If n is even and q < k, then pkR(+)B is the unique maximum
clique of Γ(T )∗.

(iv) If q ≥ k, then pqR(+)B is a maximum clique of Γ(T )∗.
Moreover, there is an integer k ≤ s ≤ q such that ptR(+)Bt is a
maximum clique for each s ≤ t ≤ q, where Bt = {b ∈ B | ptb = 0},
and there are no other maximum cliques.

Proof. First note that, if C is a nonzero finite R-module, then
|C| is a positive power of p. Moreover, AnnR(C) = piR for some
1 ≤ i ≤ n. In particular, AnnR(B) = pqR for some 1 ≤ q ≤ n. Since
(0, b)2 = (0, 0) = (0, b)(0, c) for all b, c ∈ B, the ideal (0)(+)B is a
clique of Γ(T )∗.

For each integer 0 ≤ i ≤ n, let Ii = piR with In = (0) and I0 = R.
Also, let Bi = {b ∈ B | pib = 0}. Then, Bi = AnnB(Ii) and, for
1 ≤ r < s < q ≤ t ≤ n, we have

Br ( Bs ( B = Bq = Bt.

Each ideal of R is principal, and they are linearly ordered as

(0) = In ( In−1 ( · · · ( I1 ( I0 = R.

In addition, |Ii| = pn−i, and, for a ∈ Ii \ Ii+1, AnnR(a) = In−i =
AnnR(Ii) with |AnnR(a)| = |AnnR(Ii)| = pi.

We consider cases based on the comparison of q and k.
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Relevant to all three cases is the fact that, if g ∈ R \ Ik−1 is a
nonunit, then g2 ̸= 0, and there is an integer 1 ≤ j < k − 1 such that
g ∈ Ij \ Ik−1 with |AnnR(g)| = pj < pk−1. Thus, each clique of Γ(R)∗

which contains g has cardinality at most 1+pj which is strictly smaller
than pk−1. For f ∈ Ik−1 \ Ik, f

2 ̸= 0 and AnnR(f) = In−k+1 with
|AnnR(f)| = pk−1. It follows that each clique of Γ(R)∗ that contains
f has cardinality at most 1 + pk−1. In addition, the set

AnnR(f) ∪ {f}

is a maximal clique of Γ(R)∗. If n is odd, then AnnR(f) ∪ {f} is
a maximum clique of Γ(R)∗. On the other hand, if n is even, then
n = 2k and Ik is a maximum clique of cardinality pk.

Case 1. q < k and n is odd. In this case, Iq ̸= (0), and thus,
Ik(+)B is a clique of Γ(T )∗. However,

(pk−1, 0) ∈ T \ Ik(+)B

annihilates Ik(+)B. Thus, Ik(+)B is not a maximal clique of Γ(T )∗.
Since no element outside of Ik(+)B annihilates (pk−1, 0), the set

Ik(+)B ∪ {(pk−1, 0)}

is a maximal clique of Γ(T )∗. As above, if g ∈ R \ Ik−1, then
AnnR(g) ( Ik. It follows that each clique of Γ(T )∗ which contains
(g, b) for some b ∈ B has cardinality strictly smaller than |Ik| · |B|. On
the other hand, if g ∈ Ik−1 \ Ik, then AnnR(g) = Ik. In this case,

{(g, b)} ∪ Ik(+)B

is a maximal clique. Therefore, each maximum clique of Γ(T )∗ has
this form, and we have that T does not have CIP when q < k and n
is odd.

Case 2. q < k and n is even. We again have I2q ̸= (0), and thus,
Iq(+)B is not a clique of Γ(T )∗. Since q < k, Iq properly contains Ik
and IkB = (0). In addition, AnnR(Ik) = Ik since n is even. Thus,
Ik(+)B is a maximal clique of Γ(T )∗. In this case, Ann(g) = Im for
some m > k when g ∈ R \ Ik. Thus, no other clique is as large as
Ik(+)B. Therefore, Ik(+)B is the unique maximum clique of Γ(T )∗

when q < k and n is even. Also, T has CIP in this case.
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Case 3. q ≥ k. In this case, the ideal Iq(+)B is a maximal clique
of Γ(T )∗. We will show that there are no larger cliques and all others
of the same size are also ideals of T . For this, we need to know more
about the structure of B. Since B is an Abelian group and |B| = pm

for some m ≥ 1, B is isomorphic (as a group) to a direct sum

C1 ⊕ C2 ⊕ · · · ⊕ Cf ,

where each Ci
∼= Zpsi for some si (as a group). Since B is also a Zpn -

module, each si ≤ n, and we may further assume that Ci = priZpn ,
where ri = n − si with 0 ≤ r1 ≤ r2 ≤ · · · ≤ rf < n and r1 = n − q.
We have

|Iq(+)B| = pn−qpm = pn−q

f∏
i=1

pn−ri = pn
f∏

i=2

pn−ri

since n− r1 = q.

For s < q,

Bs =

f⊕
i=1

Di,s,

where Di,s = pgiCi, with gi = 0 when s+ ri ≥ n and gi = n− (ri + s)
when s + ri < n. We have |Di,s| = pn−ri when s + ri ≥ n and

|Di,s| = pn−(ri+gi) = ps when s + ri < n. In particular, |D1,s| = ps.
Thus,

|Is(+)Bs| = |Is| ·
f∏

i=1

|Di,s| = pn−s

f∏
i=1

pn−(ri+gi)

= pn
f∏

i=2

pn−(ri+gi) ≤ |Iq(+)B|

since gi ≥ 0 for each i ≥ 2. Moreover, for k ≤ s < t ≤ q,

|Is| · |D1,s| = pn = |It| · |D1,t|,

Di,s ⊆ Di,t ⊆ Ci

and
|Di,s| ≤ |Di,t| for all i.
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Hence,

|Ik(+)Bk| ≤ |Is(+)Bs| ≤ |It(+)Bt| ≤ |Iq(+)B|.

Further note that, if there is an i such that t + ri < n, then |Di,s| <
|Di,t| < |Ci|; thus, in this case, |Is(+)Bs| < |It(+)Bt| < |Iq(+)B|.

For a nonunit a ∈ R \ Ik, AnnR(a) = psR for some s ≥ k. Thus,
for each c ∈ B, any clique that contains (a, c) is properly contained
in It(+)Bt for some t ≥ s. Each such graph is strictly smaller than
|Iq(+)B|. Hence, Iq(+)B is a maximum clique of Γ(T )∗. Moreover,
there is an integer s such that k ≤ s ≤ q, where It(+)Bt is a maximum
clique of Γ(T )∗ for each s ≤ t ≤ q and there are no other maximum
cliques. �

Note that Zp(+)B has CIP for each finite nonzero Zp-vector
space B, and (0)(+)B is the unique maximum clique. For the case
R = Zpn with n ≥ 2, the values of “q” and “s” in statement (iii) of
Theorem 3.4 can range anywhere from k = ⌈n/2⌉ up to n.

Example 3.5. Let R = Zpn for some prime p and positive integer
n ≥ 2. Also, let k = ⌈n/2⌉. For integers k ≤ s ≤ q ≤ n, let

B = pn−qZpn ⊕ pn−sZpn .

Then, the maximum cliques of Γ(T )∗, where T = R(+)B are the ideals
ptR(+)(pn−tZpn ⊕ pn−sZpn) for s ≤ t ≤ q.

Proof. For each integer t such that s ≤ t ≤ q, the ideal

Jt = ptZpn(+)(pn−tZpn ⊕ pn−sZpn)

has cardinality pn · ps. In addition, J2
t = {(0, 0)}. From Theorem 3.4,

each Jt is a maximum clique (since Jq is a maximum clique) and, from
the proof of Case 3, there are no other cliques. �

The next result follows easily from Theorem 3.4. It can also
be derived from [1, Theorems 1 and 2] by viewing Zpn [X]/(X2) via
idealization as Zpn(+)Zpn .
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Corollary 3.6. Let T = Zpn(+)Zpn for some prime p and positive
integer n. Then, T has CIP, the ideal psZpn(+)pn−sZpn is a maximum
clique of Γ(T )∗ for each integer ⌈n/2⌉ ≤ s ≤ n and there are no other
maximum cliques.

Let n = pc11 pc22 · · · pcrr be a positive integer with distinct prime
factors

p1 < p2 < · · · < pr.

Then, the ring R = Zn(+)Zn is naturally isomorphic to the sum

r⊕
i=1

Ri,

where
Ri = Zp

ci
i
(+)Zp

ci
i
.

Combining Corollaries 2.4 and 3.6, we see that R has the clique ideal
property.

Corollary 3.7. For each positive integer n > 1, the ring Rn =
Zn(+)Zn has the clique ideal property. If n = km2 where k is square-
free, then, for each positive integer s that divides m, the ideal

Is = (kms)Zn(+)(m/s)Zn

is a maximum clique, and there are no other maximum cliques. In
particular, (0)(+)Zn is the only maximum clique in the case where n
is square-free.

Proof. As noted above, Rn has CIP by Corollaries 2.4 and 3.6.
Suppose that n = km2 with k square-free. Each ideal of Zn has the
form Jr = rZn for some positive integer r ≤ n that divides n (with
J1 = Zn and Jn = (0)). The annihilator of Jr (in Zn) is the ideal
Jn/r. Since k is square-free, the following are equivalent:

(i) J2
r = (0);

(ii) Jr ⊆ Jn/r;
(iii) n/r divides r; and
(iv) km divides r.
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Let s be a positive integer that divides m. Then, the ideal Is =
Jkms(+)Jm/s is such that I2s = (0). Moreover, since Jkms =
Ann(Jm/s) and Jm/s = Ann(Jkms), Is = AnnR(Is). Thus, Is is a
maximal clique of Γ(R)∗. Also, note that

|Is| = (m/s)(kms) = n.

Factor n as
n = pc11 pc22 · · · pcrr ,

where p1 < p2 < · · · < pr are distinct primes and each ci ≥ 1. Then,

m =

r∏
i=1

⌊ci/2⌋,

and a given pi divides k if and only if ci is odd. For s as above,

kms =
r∏

i=1

psii ,

where ⌈ci/2⌉ ≤ si ≤ ci. Under the natural isomorphism

R ∼=
r⊕

i=1

(Zpci (+)Zpci ),

we have

Is ∼=
r⊕

i=1

(psii Zp
ci
i
(+)pci−si

i Zp
ci
i
).

That each Is is a maximum clique now follows from Corollaries 2.4
and 3.6. �

Each of the finite local rings in the next four examples has an
ideal that is a maximum clique and a maximum clique that is not
an ideal. The first is a ring of characteristic 8, the second and third
have characteristic 4 and the fourth has characteristic 2. By way of
Theorems 1.3, 1.6 and 2.9 and the tables in [8, 9] (also see [5]), these
are the only four finite rings (up to isomorphism) with this property.
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Example 3.8. Let R = Z8[W]/(W2, 2W + 4), and let w denote the
image of W in R. Then,

R = {0, 1, 2, 3, 4, 5, 6, 7, w, w+1, w+2, w+3, w+4, w+5, w+6, w+7}.

The set X = {0, 2, 4, w + 2} is a maximum clique that is not an ideal
and I = wR = {0, 4, w, w + 4} is a maximum clique that is an ideal.
To match with the notation “x, y, z” in Theorem 1.6, we have z = 4
and can use x = 2 and y = w + 6 (so that x+ y = w).

Proof. Since 2w = 4 and w2 = 0, R = {0, 1, 2, 3, 4, 5, 6, 7, w, w +
1, w + 2, w + 3, w + 4, w + 5, w + 6, w + 7} and

M = {0, 2, 4, 6, w, w + 2, w + 4, w + 6}

is the maximal ideal. We have 4w = 0; thus, Ann(M) ⊇ {0, 4}. For w,
Ann(w) = {0, 4, w, w+4} since 2w = 4 ̸= 0. Hence, Ann(M) = {0, 4}.
Since 22 = 4 ̸= 0 but

2 · 4 = 0 = 2w + 4 = 2(w + 2),

Ann(2) = {0, 4, w + 2, w + 6} = Ann(6). Also, Ann(w + 2) =
{0, 2, 4, 6} = Ann(w + 6). It follows that I = wR is a maximum
clique of R that is an ideal and X = {0, 2, 4, w + 6} is a maximum
clique that is not an ideal. �

Example 3.9. Let R = Z4[W]/(W2+2W), and let w denote the image
of W in R. Then,

R = {0, 1, 2, 3, w, w + 1, w + 2, w + 3,

2w, 2w + 1, 2w + 2, 2w + 3, 3w, 3w + 1, 3w + 2, 3w + 3}.

The set X = {0, 2w,w, 3w + 2} is a maximum clique that is not an
ideal, and I = 2R = {0, 2w, 2, 2w + 2} is a maximum clique that is
an ideal. To match the notation “x, y, z” in Theorem 1.6, we have
z = 2w(= w2) and can use x = w and y = 3w + 2 so that x+ y = 2.

Proof. In R, w2 = 2w ̸= 0. Also,

M = {0, 2, w, w + 2, 2w, 2w + 2, 3w, 3w + 2}
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is the maximal ideal of R with 0 = 2w · 2 = 2w · w. In addition,

w · 3w = w2 = 2w = (w + 2)2 = (w + 2)(3w + 2),

2(w + 2) = 2w = 2(3w + 2),

w(3w + 2) = 0 = w(w + 2),

and

22 = 0 = (2w + 2)2.

Thus, Ann(w) = {0, 2w,w+2, 3w+2} = Ann(3w) and Ann(3w+2) =
{0, 2w,w, 3w} = Ann(w + 2). Thus, X = {0, 2w,w, 3w + 2} is a
maximum clique of Γ(R)∗ that is not an ideal. On the other hand,
I = 2R = {0, 2w, 2, 2w + 2} is a maximum clique of Γ(R)∗ that is an
ideal of R. �

Example 3.10. Let

R = Z4[X,Y]/(X
2 + 2,Y2 + 2,XY, 2X, 2Y),

and let x and y denote the respective images of X and Y in R. Then,

R = {0, 1, 2, 3, x, 1 + x, 2 + x, 3 + x, y, 1 + y,

2 + y, 3 + y, x+ y, 1 + x+ y, 2 + x+ y, 3 + x+ y}.

The set X = {0, 2, x, y} is a maximum clique that is not an ideal, and
I = (x+ y)R = {0, 2, x+ y, 2 + x+ y} is a maximum clique that is an
ideal. To match the notation “x, y, z” in Theorem 1.6, we have z = 2,
and x and y can stay as they are.

Proof. The maximal ideal of R is

M = {0, 2, x, 2 + x, y, 2 + y, x+ y, 2 + x+ y}

with 0 = 2 · 2 = 2x = 2y. In addition,

x(x+ y) = x2 = 2 = y2 = y(x+ y)

and

(x+ y)2 = 0 = (2 + x+ y)2.
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Thus, Ann(M) = {0, 2}. For x and y, we have Ann(x) = {0, 2, y, 2 +
y} = Ann(2 + x) and Ann(y) = {0, 2, x, 2 + x} = Ann(2 + y). Hence,
X = {0, 2, x, y} is a maximum clique that is not an ideal. In contrast,
the ideal

I = (x+ y)R = {0, 2, x+ y, 2 + x+ y}

is a maximum clique that is an ideal. �

As noted in Remark 1.7, a simple way to see that the rings of Exam-
ples 3.9 and 3.10 are not isomorphic is to note that 2 annihilates the
maximal ideal in Example 3.10 but does not annihilate the maximal
ideal in Example 3.9.

The ring in the next example can also be constructed as a factor
ring of Z2[X,Y]. We have begun with Z2[X,Y, Z] to more closely match
the notation in Theorem 1.6. In particular, x, y and z of Theorem 1.6
can exactly be matched with the respective images of X, Y and Z in
the factor ring of this example.

Example 3.11. Let

R = Z2[X,Y, Z]/(XY,XZ,YZ,X2 + Z,Y2 + Z).

Let x, y and z denote the respective images of X, Y and Z. Note that
z = x2 = y2 ̸= 0 and z2 = x3 = y3 = 0.

(a) The ring R has 16 elements:

{0, x, y, z, x+ y, x+ z, y + z, x+ y + z, 1, 1 + x, 1 + y, 1 + z,

1 + x+ y, 1 + x+ z, 1 + y + z, 1 + x+ y + z}.

(b) M = xR + yR is the maximal ideal of R and Ann(M) = zR =
{0, z}.

(c) BothX = {0, x, y, z} and I = {0, x+y, z, x+y+z} are maximum
cliques of Γ(R)∗ with XI = {0, z} = Ann(X).

(d) Since I is an ideal and X is not, R does not have the clique
ideal property, but T = R ⊕ R has the clique ideal property, as does
Rn for each n ≥ 3.
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(e) The maximal ideals of T (= R ⊕ R) are M1 = M ⊕ R and
M2 = R⊕M . While T has the clique ideal property, the localizations
TM1

∼= RM
∼= TM2 do not.

Proof. Since z = x2 = y2 and xy = 0 = xz = yz,

R = {0, x, y, z, x+ y, x+ z, y + z, x+ y + z, 1, 1 + x,

1 + y, 1 + z, 1 + x+ y, 1 + x+ z, 1 + y + z, 1 + x+ y + z}

and

M = xR+ yR = {0, x, y, z, x+ y, x+ z, y + z, x+ y + z}.

The element z can be obtained as a product of two elements of M in
several ways. Each of the following products equals z:

x2, y2, (x+ z)2,

(y + z)2, x(x+ y), y(x+ y),

x(x+ z), y(y + z), x(x+ y + z),

y(x+ y + z), (x+ z)(x+ y), (y + z)(x+ y),

(x+ z)(x+ y + z), (y + z)(x+ y + z).

It may easily be verified that the following hold:

M2 = {0, z} = Ann(M),

xR = {0, x, z, x+ z} = (x+ z)R

and

yR = {0, y, z, y + z} = (y + z)R.

The ideal

I = {0, x+ y, z, x+ y + z} = (x+ y)R = (x+ y + z)R

is such that I2 = (0), and no element of M \ I annihilates I. Hence,
I is a maximum clique ideal of R that is also a maximal clique. In
addition, I is the only ideal with four elements whose square is the
zero ideal. Thus, it is the unique maximum clique ideal.
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The principal ideals xR, yR and (x+ y)R are the only ideals with
four elements, and zR is the unique ideal with only two elements. We
also have yR = Ann(xR) and xR = Ann(yR).

From the list of factorizations for z given above, it is clear that a
maximum clique contains at most one of x and x+ z and at most one
of y and y + z. Since

(y + z)R = yR = Ann(xR) and (x+ z)R = xR = Ann(yR),

the following sets of four elements are all maximal cliques of Γ(R)∗:
X = {0, x, y, z}, W = {0, x, y + z, z}, V = {0, x + z, y, z} and
U = {0, x + z, y + z, z}. These sets, along with I, are the maximum
cliques of Γ(R)∗. Hence, R does not have the clique ideal property,
even though it has an ideal that is a maximum clique. By Theorem
2.3, T = R ⊕ R does have the clique ideal property, and so does Rn

for each n ≥ 3. �

The ring in Example 3.11 has characteristic 2. Thus, in R, we have
z = x2 = y2 = −z. If, instead, the base ring is Zp for some odd
prime p, then there are essentially two variations we may examine:
both x2 and y2 equal to z, or x2 = z = −y2. For both, we still have
xy = 0 = xz = yz and x3 = y3 = z2 = 0. It remains the case that the
annihilator of the maximal ideal is the principal ideal generated by z,
but, now, this ideal contains p elements which we may view as zZp.
The set

Xp = zZp ∪ {x, y}

is a maximal clique; however, it need not be a maximum clique in the
case x2 = z = y2. Moreover, it is not a maximum clique in the case
x2 = z = −y2 since the principal ideal generated by x+ y contains p2

elements and is its own annihilator.

Example 3.12. Let

R = Zp[X,Y, Z]/(XY,XZ,YZ, Z − X
2, Z + y2)

with p an odd prime. Let x, y and z denote the respective images of
X, Y and Z. Note that x2 = z = −y2 ̸= 0 and z2 = x3 = y3 = 0.
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(a) For positive integers b1, b2, b3, c1, c2, c3 ∈ {1, 2, . . . , p},

(b1x+ b2y + b3z)(c1x+ c2y + c3z) = b1c1x
2 + b2c2y

2 = (b1c1 − b2c2)z.

The product is 0 if and only if b1c1 ≡ b2c2 (mod p).

(b) The ring R = {a0 + a1x+ a2y + a3z | ai ∈ Zp} has cardinality
p4, and the maximal ideal M = xR + yR has cardinality p3. Also
M2 = zR and Ann(M) = zR = {0, z, 2z, . . . , (p− 1)z}.

(c) There are p + 1 ideals of cardinality p2. Specifically, yR, xR,
(x+ y)R, (x+ 2y)R, . . . , (x+ (p− 1)y)R. Of these,

(x+ y)R = Ann((x+ y)R) and (x− y)R = Ann((x− y)R),

while xR = Ann(yR), yR = Ann(xR) and, when p > 3 and 2 ≤ b ≤
p− 2, (x+ ay)R = Ann((x+ by)R) for a such that ab ≡ 1 (mod p).

(d) The ideals I = (x+y)R and J = (x−y)R are maximum cliques
of Γ(R)∗. The other maximal cliques are the sets of the form

Xf,g = zR ∪ {f, g},
where

f, g ∈ M \ (I ∪ J)

with fg = 0 (and necessarily with fR ∩ gR = zR). Each of the sets
Xf,g has cardinality p+ 2. Hence, R has the clique ideal property.

Proof. Since x2 = z = −y2 and xy = xz = yz = 0, each element
of R has the (unique) form a = a0 + a1x + a2y + a3z for some
a0, a1, a2, a3 ∈ Zp. Obviously, a is a unit if and only if a0 ̸= 0.
Thus, M = xR + yR, |R| = p4 and |M | = p3. For integers
b1, b2, b3, c1, c2, c3 ∈ {0, 1, . . . , p− 1},

(b1x+ b2y + b3z)(c1x+ c2y + c3z) = b1c1x
2 + b2c2y

2 = (b1c1 − b2c2)z.

Thus, M2 = zR and Ann(M) = zR.

Let f = f1x + f2y + f3z and g = g1x + g2y + g3z be elements of
M \ zR with fi, gi ∈ {0, 1, 2, . . . , p− 1} for each i. Then, the product
fg = (f1g1 − f2g2)z is the same as the products

(f1x+ f2y)(g1x+ g2y), (f1x+ f2y)(g1x+ g2y + g3z)
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and
(f1x+ f2y + f3z)(g1f + g2y).

Note that the product is 0 if and only if f1g1 ≡ f2g2 (mod p). Also,
xf = f1z and yf = −f2z. It follows that zR is contained in each
nonzero principal ideal of R. Since f is not in zR, at least one of f1
and f2 is not 0, and we have fR = (f1x+ f2y)R. In the case f1 ̸= 0,
we also have fR = (x + hy)R, where h is the product of f−1

1 and f2
in Zp. If f1 = 0, then f2 ̸= 0 and fR = yR.

Each of the following ideals has cardinality

p2 : yR, xR, (x+ y)R, (x+ 2y)R, . . . , (x− y)R.

These are the only ideals of cardinality p2. In addition, I = (x+ y)R
and J = (x − y)R are their own annihilators. For the others, the
annihilator is a different ideal in the list. Specifically, xR = Ann(yR)
and yR = Ann(xR). In the case p = 3, these four are the only ideals
of cardinality 9.

For a ∈ {2, 3, . . . , p− 2}, when p > 3,

Ann(x+ ay)R) = (x+ by)R,

where b ∈ {2, 3, . . . , p − 2} is such that ab ≡ 1 (mod p). In this case,
(x + ay)R ̸= (x + by)R, and thus, neither of these is a clique ideal.
It follows that, for each odd prime p, (x + y)R and (x − y)R are the
only maximum clique ideals. Moreover, for the ideals xR, yR and
(x + ay)R, when a ∈ {2, 3, . . . , p − 2} and p > 3, the product of any
pair of elements in the ideal is 0 if and only if at least one of them is
in zR. Otherwise, the product is a nonzero element of zR.

Let f, g ∈ M \ (I ∪ J) be such that fg = 0. As above, write
f = f1x+f2y+f3z and g = g1x+g2y+g3z. Then, we have f1g1 ≡ f2g2
(mod p). Since neither f nor g is in I ∪ J , f2 ̸= 0 ̸= g2. Moreover,
g /∈ fR and f /∈ gR; thus, fR ∩ gR = zR. The set

Xf,g = zR ∪ {f, g}

is a clique of Γ(R)∗. Since gR = Ann(f) and fR = Ann(g), Xf,g is a
maximal clique.

The ideals I and J are the only maximum cliques of Γ(R)∗. Thus,
R has the clique ideal property. �
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The case x2 = z = y2 is more complicated (for an odd prime p).
For each odd prime p, the corresponding zero divisor graph of

Rp = Zp[X,Y, Z]/(XY,XZ,YZ, Z − X
2, Z − Y

2)

has maximal cliques of the form

Xf,g = zRp ∪ {f, g}

for certain choices of f, g ∈ M \ zR. In some cases, this set is a
maximum clique, while in others it is not. For p = 5, the corresponding
ring

R5 = Z5[X,Y, Z]/(XY,XZ,YZ, Z − X
2, Z − y2)

has the clique ideal property. Specifically, the ideals I = (x+2y)R and
J = (x+ 3y)R are maximum cliques and, as in the previous example,
the other maximal cliques have cardinality 7 = 5 + 2. On the other
hand, if p = 3, then R3 does not have the clique ideal property, and
the various Xf,g sets are the maximum cliques, each with 5 = 3 + 2
elements. It turns out that Rp has the clique ideal property if and
only if Zp contains a square root of −1. Alternately, Rp has CIP if
and only p = 4k + 1 for some integer k. Thus, for example, R5, R13

and R17 have CIP, while R3, R7 and R11 do not.

Example 3.13. Let R = Zp[X,Y, Z]/(XY,XZ,YZ, Z − X
2, Z − y2) with

p an odd prime. Let x, y and z denote the respective images of X, Y

and Z. Note that x2 = z = y2 ̸= 0 and z2 = x3 = y3 = 0.

(a) The ring

R = {a0 + a1x+ a2y + a3z | ai ∈ Zp}

has cardinality p4, and the maximal ideal M = xR+ yR has cardinal-
ity p3. Also, Ann(M) = zR = {0, z, 2z, . . . , (p− 1)z}.

(b) For elements f = f1x+ f2y + f3z and g = g1x+ g2y + g3z, the
product fg = f1g1x

2 + f2g2y = (f1g1 + f2g2)z. Moreover, fg = 0 if
and only if p divides f1g1 + f2g2. In particular, f2 = 0 if and only if p
divides f2

1 + f2
2 .

(c) There are p + 1 ideals of cardinality p2. Specifically, yR, xR,
(x + y)R, (x + 2y)R, . . . , (x + (p − 1)y)R. Of these, xR = Ann(yR)
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and yR = Ann(xR). For 1 ≤ a ≤ p − 1, the annihilator of (x + ay)R
is the ideal (x+ by)R, where b is such that ab ≡ −1 (mod p).

(d) Let f = f1x + f2y + f3z and g = g1x + g2y + g3z be elements
of M \ zR such that f1g1 ≡ −f2g2 (mod p). The set

Xf,g = zR ∪ {f, g}

is a maximal clique of Γ(R)∗ if and only if fR ̸= gR.

(e) If Zp does not contain a square root of −1, then each set Xf,g

is a maximum clique of Γ(R)∗ and R does not have the clique ideal
property.

(f) If h ∈ Zp is a square root of −1, then the ideals I = (x+ hy)R
and J = (x − hy)R are maximum cliques of Γ(R)∗. Moreover, these
two ideals are the only maximum cliques of Γ(R)∗ and R has the clique
ideal property.

(g) R has CIP if and only if p = 4k + 1 for some integer k.

Proof. The proof is similar to that given for Example 3.12. First,
note that Ann(xR) = yR and Ann(yR) = xR. Thus, {x, y} ∪ zR is a
maximal clique of Γ(R)∗.

If p is such that Zp contains an element h that is a square root of
−1, then

(x+ hy)2 = z − z = 0 = z − z = (x− hy)2

(since xy = 0 and x2 = z = −y2). Thus, I = (x + hy)R and
J = (x − hy)R are such that I = Ann(I) and J = Ann(J). There
are no larger cliques in this case, so Rp has CIP when Zp contains a
square root of −1.

If Zp does not contain a square root of −1, then there is no nonzero
b ∈ Zp such that (x+ by)2 = 0. Thus, in this case, the only maximal
clique ideal is Ann(M) = zR, an ideal of cardinality p. Hence, R has
CIP if and only p = 4k + 1 for some integer k.

For the case that Zp does not contain a square root of −1, let
u, v ∈ Z(R) \ zR be such that uv = 0. Then, there are integers a,
b, c, d, e and f between 0 and p − 1 such that u = ax + by + cz,
v = dx+ ey + fz, ad+ be = 0, and at least one of a and b is positive
and at least one of e and f is positive. Since Zp does not contain a
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square root of −1, we cannot have both a = d and b = e. It follows
that {u, v} ∪ zR is a maximum clique of Γ(R)∗. �

The local ring in the next example has maximum cliques X and Y
where neither is an ideal and Ann(X) ( Ann(Y ). For another example
of such behavior, see [2, Theorem 2.1].

Example 3.14. Let

R = Z2[W,X,Y, Z]/(WX,WY,WZ,XY,XZ,YZ, Z + W
2, Z + X

2, Z + Y
2),

and let w, x, y and z denote the respective images of W,X,Y, Z in R.
We have z = w2 = x2 = y2 and z2 = w3 = x3 = y3 = 0.

(a) R = Z2 + wZ2 + xZ2 + yZ2 + zZ2 with maximal ideal M =
wZ2 + xZ2 + yZ2 + zZ2.

(b) M2 = {0, z} = Ann(M).
(c) Both V = {0, w, x, y, z} and W = {0, w, z, x+ y, x+ y + z} are

maximum cliques of Γ(R)∗.
(d) Ann(V ) = {0, z} ( Ann(W ) = (x+ y)R.

Proof. It is clear that each element a of R has a unique representa-
tion as a sum

a = a0 + a1w + a2x+ a3y + a4z

with each ai in Z2 with a ∈ M if and only if a0 = 0. Hence, |R| = 32
and |M | = 16. Since wz = xz = yz = z2 = 0, z ∈ Ann(M). Also, for
a pair of elements b and c in M , the product

b · c = b1c1w
2 + b2c2x

2 + b3c3y
2 = (b1c1 + b2c2 + b3c3)z ∈ {0, z}

since w2 = x2 = y2 = z. For the case b = c, we have b2 = (b1+b2+b3)z,
which is z if an even number of bis (for i = 1, 2, 3) are 0, and is 0
otherwise. Hence,

S = {s ∈ R | s2 = 0} = {0, z, w+x,w+y, x+y, w+x+z, w+y+z, x+y+z}

and

M\S = {t ∈ R | t2 = z} = {w, x, y, w+x+y, w+z, x+z, y+z, w+x+y+z}.
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Except for zR, each of the nonzero principal ideals of R contains
four elements, and each has an annihilator that contains eight ele-
ments. There are seven such ideals. Specifically:

(i) wR = (w + z)R with Ann(wR) = {0, x, y, z, x + y, x + z, y +
z, x+ y + z} = xR+ yR;

(ii) xR = (x+ z)R with Ann(xR) = {0, w, y, z, w + y, w + z, w +
y + z} = wR+ yR;

(iii) yR = (y + z)R with Ann(yR) = {0, w, x, z, w + x,w + z, x +
z, w + x+ z} = wR+ xR;

(iv) (w+ x)R = (w+ x+ z)R with Ann((w+ x)R) = {0, y, z, w+
x,w + x+ y, w + x+ z, w + x+ y + z} = yR+ (w + x)R;

(v) (w + y)R = (w + y + z)R with Ann((w + y)R) = {0, x, z, w +
y, w + x+ y, w + y + z, w + x+ y + z} = xR+ (w + y)R;

(vi) (x+ y)R = (x+ y + z)R with Ann((x+ y)R)) = {0, w, z, x+
y, w + x+ y, x+ y + z, w + x+ y + z} = wR+ (x+ y)R; and

(vii) (w + x+ y)R = (w + x+ y + z)R with Ann((w + x+ y)R) =
{0, z, w + x,w + y, x + y, w + x + z, w + y + z, x + y + z} =
(w + x)R+ (w + y)R.

Each of the principal ideals (w + x)R = (w + x+ z)R, (w + y)R =
(w + y + z)R and (x + y)R = (x + y + z)R is such that its square
is (0). On the other hand, each of the principal ideals wR, xR, yR
and (w + x + y)R is such that the square of the ideal is zR. Since
zM = (0), each maximal clique contains {0, z} = zR.

Suppose that T is a maximal clique which contains w. We have
0, z ∈ T , and the other elements come from the set {x, y, x + y, x +
z, y+z, x+y+z}. The following are the only possible pairs of distinct
elements from T \ {0, w, z} whose corresponding product is 0: {x, y},
{x, y + z}, {y, x + z}, {x + z, y + z} and {x + y, x + y + z}. Thus,
|T | = 5. The same analysis applies to the case w + z ∈ T instead of
w. Similarly, |U | = 5 if U is a maximal clique that contains at least
one of x, x+ z, y or y + z.

Next, suppose that Q is a maximal clique which contains w+x+ y
(or w + x+ y + z). In this case, the elements of Q \ {0, z, w + x+ y}
come from the set

{w + x,w + y, x+ y, w + x+ z, w + y + z, x+ y + z}.
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The following are the only pairs of distinct elements from this set whose
corresponding product is 0: {w + x,w + x + z}, {w + y, w + y + z},
{x+ y, x+ y + z}. It follows that |Q| = 5.

Each of the principal ideals (w + x)R = (w + x+ z)R, (w + y)R =
(w + y + z)R and (x + y)R = (x + y + z)R is properly contained in
its annihilator. Thus, none are maximal cliques. From the analysis
above, a maximal clique that contains one of these three ideals contains
exactly one more element. It follows that each of W = {w}∪ (x+y)R,
X = {x} ∪ (w + y)R, Y = {y} ∪ (w + x)R and V = {0, w, x, y, z} is
a maximum clique of Γ(R)∗. We have Ann(V ) = {0, z} ( Ann(W ) =
(x+ y)R. �

The ring R in the next example has a maximum clique ideal I that is
a maximal clique of Γ(R)∗ but not a maximum clique and a maximum
clique X of Γ(R)∗ that is not an ideal. From the proof of Theorem
1.3, it must be that |I| = |Ann(X)|. In addition, |X| = |Ann(X)|+1.
Moreover, each maximum clique Y is such that |Y | = |Ann(Y )| + 1
with Ann(Y ) = Ann(X).

Example 3.15. Let R = Zp[X,Y, Z]/(X
3,Y2, Z2,XZ,X2

Y) with p a
prime, and let M be the maximal ideal of R. Also, let x, y and z
denote the respective images of X, Y and Z in R, and let

S = {f ∈ R | f2 = 0}.

(a) Each element of R can be expressed as a unique sum of the form

a = a0 + a1x+ a2y + a3z + a4x
2 + a5xy + a6yz,

where each 0 ≤ ai ≤ p − 1, with a ∈ M if and only if a0 = 0. Thus,
|R| = p7 and |M | = p6.

(b) Ann(M) = x2Zp + xyZp + yzZp.

(c) The ideals I = yR + Ann(M) and J = zR + Ann(M) are
maximum clique ideals of R. While I is a maximal clique, J is properly
contained in the maximum clique X = {x} ∪ J . In addition, each
maximum clique Y is such that Y = {f} ∪ J .
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(d) If p = 2, then

H = (y + z)R+Ann(M)

is another maximum clique ideal of R that is a maximal clique.

(e) If p is odd, I is the only ideal of R that is both a maximum
clique ideal and a maximal clique.

(f) R does not have the clique ideal property.

Proof. The statements in (a) are clear. Consider the product a · c
where a, c ∈ M . Then,

a = a1x+ a2y + a3z + a4x
2 + a5xy + a6yz

and

c = c1x+ c2y + c3z + c4x
2 + c5xy + c6yz.

Since x3, y2, z2, xz and x2y are all 0, all three of x, y and z annihilate
the ideal

x2R+ xyR+ yzR = x2Zp + xyZp + yzZp.

Thus,

a · c = a1c1x
2 + (a1c2 + a2c1)xy + (a2c3 + a3c2)yz.

Suppose that a · c = 0. If a1 ̸= 0, then c1 = 0 = c2 and at least one
of a2 and c3 is 0. Thus (for example) Ann(x+y) = x2Zp+xyZp+yzZp.
It follows that

Ann(M) = x2Zp + xyZp + yzZp

with |Ann(M)| = p3.

Let f = f1x + f2y + f3z + h /∈ Ann(M), where h ∈ Ann(M) and
0 ≤ fi ≤ p− 1 for i = 1, 2, 3. We consider several cases.

Case 1. f1 ̸= 0 and f2 ̸= 0. In this case, Ann(f) = Ann(M) no
matter the values of f3 and h.

Case 2. f1 ̸= 0 and f2 = 0. In this case, zf = 0 and f2 ̸= 0. From
the analysis in the first paragraph, we have Ann(f) = zZp +Ann(M),
again no matter the values of f3 and h.
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For the next four cases we let g = g1x+g2y+g3z with 0 ≤ gi ≤ p−1
for i = 1, 2, 3, and consider the product f · g.

Case 3. f2 ̸= 0 and f1 = 0 = f3. We have

f · g = f2g1xy + f2g2y
2 + f2g3yz.

Such a product is 0 if and only if g1 = 0 = g3. Hence, Ann(f) =
yZp +Ann(M). It follows that the ideal

I = yZp + x2Zp + xyZp + yzZ

contains p4 elements and not only is I2 = (0), but I = Ann(I). Hence,
I is a maximal clique.

Case 4. f3 ̸= 0 and f1 = 0 = f2. We have

f · g = g2f3yz.

Thus,
Ann(f) = xZp + zZp +Ann(M).

We have |Ann(f)| = p5, but x2 ̸= 0, so Ann(f) is not a clique ideal.
However, the subideal J = zZp + Ann(M) is such that |J | = p4 and
J2 = (0). Thus, J is a clique. It is not a maximal clique as xJ = (0).
By Case 2, {x}∪ J is a maximal clique of Γ(R)∗. In addition, {h}∪ J
is a maximal clique for each h ∈ Ann(f) \ J .

Case 5. f2 ̸= 0, f3 ̸= 0 and f1 = 0 with p odd. In this case,

f · g = f2g1xy + (f2g3 + f3g2)yz.

For this product to be 0, we must have g1 = 0 and f2g3+f3g2 a multiple
of p. Since both f2 and f3 are units in Zp, given any 0 ≤ k2 ≤ p− 1,
there is a unique integer k3 between 0 and p − 1 such that p divides
f2k3+f3k2. In addition, either both k2 and k3 are 0 or neither is. Let
m be such that p divides f2m+ f3. Then,

Ann(f) = (y +mz)Zp +Ann(M).

Note that f2 = 2f2f3 ̸= 0 since p is odd. Thus, fZp + Ann(M) is
not a clique ideal when p is odd.

Case 6. f2 ̸= 0, f3 ̸= 0 and f1 = 0 with p = 2. As in Case 5,
Ann(f) = (y+mz)Zp +Ann(M) for some positive integer m, but the



546 THOMAS G. LUCAS

only choice for each of f2, f3 and m is 1. Thus, in this special case,

H = fZp +Ann(M)

is a clique ideal. As with the ideal I (when p = 2), |H| = 24. It follows
that H is a maximum clique ideal that is also a maximal clique.

Based on the ideals that are annihilators, the set

X = {x} ∪ J

is a maximum clique of Γ(R)∗, and I is a maximum clique ideal that
is a maximal clique but not a maximum clique. �
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