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CUT STRUCTURES IN ZERO-DIVISOR GRAPHS
OF COMMUTATIVE RINGS

M. AXTELL, N. BAETH AND J. STICKLES

ABSTRACT. Zero-divisor graphs, and more recently,
compressed zero-divisor graphs are well represented in the
commutative ring literature. In this work, we consider var-
ious cut structures, sets of edges or vertices whose re-
moval disconnects the graph, in both compressed and non-
compressed zero-divisor graphs. In doing so, we connect
these graph-theoretic concepts with algebraic notions and
provide realization theorems of zero-divisor graphs for com-
mutative rings with identity.

1. Introduction. The concept of the graph of the zero-divisors of a
commutative ring was first introduced by Beck in [11] when discussing
the coloring of a commutative ring. In his work, all elements of the
ring were considered vertices of the graph. Since the seminal paper
by D.F. Anderson and Livingston [7], the standard is to regard only
nonzero zero-divisors as vertices of the graph, and we adhere to this
standard.

By a ring, we mean a commutative ring with identity, typically
denoted by R. We use Z(R) to denote the set of zero-divisors of R
and Z(R)∗ to denote the set of nonzero zero-divisors. For any graph
G, we denote the set of vertices of G by V (G) and the set of edges, non-
ordered pairings a−b of vertices in V (G), by E(G). By the zero-divisor
graph of R, denoted Γ(R), we mean the graph with V (Γ(R)) = Z(R)∗

and, for distinct r, s ∈ Z(R)∗, r − s ∈ E(Γ(R)) if and only if rs = 0.
In this case, we say r and s are adjacent. Similarly, one can define the
compressed zero-divisor graph Γ(R) of a commutative ringR by defining
V (Γ(R)) to be the equivalence classes of elements in Z(R)∗ defined by
[x] = [y] if and only if ann(x) = ann(y). Again, [r] − [s] ∈ E(Γ(R)) if
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and only if rs = 0. For a general survey of Γ(R), see [5]. For a survey
of Γ(R), see [15, Section 1]. (Note that, in [15], Γ(R) is denoted
by ΓE(R) and is referred to as the zero-divisor graph determined by
equivalence classes.)

The purpose of this work is to consider cut structures, sets of edges
or vertices whose removal separates (i.e., disconnects) either Γ(R) or
Γ(R). In Section 2, we recall the previously studied concept of cut-
sets in Γ(R) and provide some new results relating these structures
to algebraic properties of the ring. We then turn our attention to the
concept of a bridge, or cut edge, a concept not yet studied in the context
of zero-divisor graphs. At the end of this section, we give a realization
theorem for Γ(R) related to the existence of nontrivial bridges. In
Section 3 we recall the compressed zero-divisor graph and show that
cut-sets in Γ(R) correspond naturally to cut-sets in Γ(R). We then give
a realization theorem for Γ(R) in the presence of a nontrivial bridge.
Finally, in Section 4, we return to the study of cut sets when R is
Noetherian. Here, we give some existence results in both Γ(R) and
Γ(R) in terms of Z(R) written as a finite union of associated primes of
R. Before we proceed, we recall some relevant terms from graph theory
that we will use throughout.

If x1, x2, . . . , xn are vertices in G, then x1 − x2 − · · · − xn denotes
a walk in G from vertex x1 to vertex xn, where xi − xi+1 ∈ E(G)
for 1 ≤ i ≤ n − 1. If x1, x2, . . . , xn are distinct vertices, then the
walk is called a path. A component (subgraph) of a graph is said to
be connected if there exists a path between any two distinct vertices
in that component. For x, y ∈ V (G), the distance between x and y,
denoted d(x, y), is the length of the shortest path between x and y; if
no path between x and y exists, we define d(x, y) = ∞. The diameter
of G, denoted diam(G), is the maximum of all distances between pairs
of vertices of G. For zero-divisor graphs, Γ(R) is connected for all
commutative rings R with identity and diam(Γ(R)) ≤ 3 by [7, Theorem
2.3]. An analogous result for Γ(R) appears as [21, Proposition 1.4].

If every pair of distinct vertices are adjacent in a graph G, then G is
said to be complete, and a complete graph on n vertices is denoted by
Kn. An element x ∈ V (G) is said to be looped if there exists an edge
from x to itself. A graph G is called complete bipartite if there exist
sets A,B ⊂ V (G) with A ∪B = V (G) and A ∩B = ∅ such that:
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(1) for distinct a1, a2 ∈ A and distinct b1, b2 ∈ B, a1 − a2 /∈ E(G)
and b1 − b2 /∈ E(G); and

(2) for all a ∈ A and b ∈ B, a− b ∈ E(G).

Finite complete bipartite graphs are denoted by Km,n, where |A| = m
and |B| = n. For a general graph theory reference, see [12].

The main objects of study in this work will be those of cut-sets and
bridges.

Definition 1.1. In a connected graph G, a set A ⊂ V (G) is said to be
a cut-set if there exist distinct c, d ∈ V (G)\A such that every path in
G from c to d involves at least one element of A, and no proper subset
of A satisfies the same condition.

Another way to define a cut-set is as a set of vertices A in a connected
graph G, where G can be expressed as a union of two subgraphs X and
Y , such that:

(1) E(X) ̸= ∅ and E(Y ) ̸= ∅,
(2) E(X) ∪ E(Y ) = E(G) and V (X) ∪ V (Y ) = V (G),

(3) V (X) ∩ V (Y ) = A,

(4) X\A ̸= ∅ and Y \A ̸= ∅, and
(5) no proper subset of A is a cut-set for any choice of X and Y .

In this setting, we say A separates the graph into X and Y . We note
that a cut-set consisting of only one element is called a cut vertex.

Definition 1.2. For an arbitrary graph G, a bridge is an edge whose
removal would increase the number of connected components in G.

Note that, if a connected graph has a bridge, then the graph formed
by removing that bridge has exactly two connected components (see
[12, page 46]). Moreover, if a and b are vertices of a graph G where
a−b is a bridge, then each of a and b is either an isolated point or a cut
vertex. Indeed, suppose that a is not an isolated point, and let Va and
Vb be connected components formed by the removal of the edge a − b
such that a ∈ Va and b ∈ Vb. Since a is not an isolated point, there
exists xa ∈ Va such that xa−a is an edge in G. Since any path from xa
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to b must involve the edge a−b, the removal of vertex a (and hence the
edge a− b) would result in xa and b no longer being connected. Hence,
a is a cut vertex. This discussion motivates the following definition.

Definition 1.3. A bridge a− b of a graph G is said to be nontrivial if
neither a nor b is an isolated point, i.e., if a and b are both cut vertices.

2. Cut structures. In this section, we describe various algebraic
properties of a commutative ring R with identity such that the zero-
divisor graph Γ(R) contains a cut-set or bridge.

2.1. Cut-sets in Γ(R). Cut-sets in the zero-divisor graph of a com-
mutative ring were introduced in [14] and further studied in [8, 10, 20].
Suppose that R is a commutative ring and that A is a cut-set separat-
ing Γ(R) into components X and Y . If a ∈ A and a is not adjacent
to any x ∈ X, then A\{a} separates vertex sets X\{a} and Y ∪ {a},
contradicting of the minimality of A. Therefore, a is adjacent to some
vertex xa ∈ X and similarly to some vertex ya ∈ Y . Conversely, by the
definition of A being a cut-set, if there is a path xa − a − ya in Γ(R)
with xa ∈ X\A and ya ∈ Y \A, then a ∈ A. We summarize this in the
following proposition.

Proposition 2.1. Let R be a commutative ring, let A separate Γ(R)
into X and Y , and let a ∈ Z(R)∗. Then a ∈ A if and only if there exist
xa ∈ X\A and ya ∈ Y \A such that xa − a− ya is a path in Γ(R).

In the next several results, we address an oversight in the proof of
[14, Theorem 3.3] and an overstatement found in [14, Theorem 3.4] of
the same paper. In addition, we extend some of these results from finite
rings to general Artinian rings. First, we give a lemma that appears in
[14, Theorem 2.8].

Lemma 2.2. [14, Theorem 2.8]. Let R ∼= R1×R2×· · ·×Rn for n ≥ 2
with commutative rings R1, . . . , Rn, and let A be a cut-set of Γ(R).
Then there exists i ∈ {1, 2, . . . , n} such that if a = (a1, . . . , an) ∈ A,
then ak = 0 for all k ̸= i.
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Using this lemma, we have the following proposition which gives the
existence of isolated vertices in Γ(R1 ×R2) for any commutative rings
R1 and R2.

Proposition 2.3. Let R ∼= R1 ×R2 be a commutative ring with iden-
tity, and let A be a cut-set of Γ(R). Then, without loss of generality,
A isolates a vertex of the form (r, 1).

Proof. By Lemma 2.2 we can, without loss of generality, assume A =
{(p, 0) : p ∈ B ⊆ R∗

1}. By way of contradiction, assume that for every
vertex of the form (r, 1) ∈ Γ(R), there exists a vertex (s, 0) ∈ Z(R)∗\A
such that (r, 1)−(s, 0) ∈ E(Γ(R)). Note that every element of Z(R)∗\A
is contained in one of the following sets: S1 = {(0, z) : z ∈ R∗

2},
S2 = {(t, 0) : t ∈ R∗

1\B}, S3 = {(w, y) : w ∈ R∗
1, y ∈ Z(R2)

∗}, and
S4 = {(x, u) : x ∈ Z(R1)

∗, u ∈ R∗
2}.

Let (0, z) ∈ S1. Then (r, 1) − (s, 0) − (0, z) is a path in Γ(R). Let
(t, 0) ∈ S2. Then (r, 1) − (s, 0) − (0, 1) − (t, 0) is a path in Γ(R).
If (w, y) ∈ S3, there exists y′ ∈ Z(R2)

∗ such that yy′ = 0. Thus,
(r, 1) − (s, 0) − (0, y′) − (w, y) is a path in Γ(R). Finally, consider
(x, u) ∈ S4. Recall that (x, 1) is not isolated by A via assumption.
Thus, there exists (x′, 0) /∈ A∪{0} such that (x′, 0)− (x, 1) ∈ E(Γ(R)),
and hence (r, 1) − (s, 0) − (0, 1) − (x′, 0) − (x, u) is a path in Γ(R).
Therefore, Γ(R)\A is connected, contradicting the fact that A is a cut-
set. �

Theorem 2.4. Let R ∼= R1×R2 be a commutative ring where R2 ̸∼= Z2.
Then A ⊆ R1 × {0} is a cut-set of Γ(R) if and only if A = {(s, 0) :
s ∈ ann(r)∗}, where ann(r) is a minimal non-trivial annihilator ideal
in R1.

Proof. Let r ∈ Z(R1) be such that ann(r) is a minimal non-trivial
annihilator ideal, and note that ann((r, 1)) = {(s, 0) : s ∈ ann(r)}.
Since (r, 1) is isolated and (0, 1) ∈ V (Γ(R))\A, when A = {(s, 0) : s ∈
ann(r)∗} is removed, Γ(R) is separated into two subgraphs X and Y .
By the minimality assumption on ann(r) and by Proposition 2.3, no
proper subset of A separates Γ(R) and A is a cut-set.

Conversely, let A ⊆ R1×{0} be a cut-set of Γ(R) isolating the vertex
(r, 1), where r ∈ Z(R1). Notice that, by the proof of Proposition 2.3,
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{(s, 0) : s ∈ ann(r)∗} isolates (r, 1), so {(s, 0) : s ∈ ann(r)∗} ⊆ A. Since
A is a cut-set of Γ(R), {(s, 0) : s ∈ ann(r)∗} = A. Notice that ann(r) is
a minimal annihilator ideal, else A is not a minimal separating set. �

In particular, if R ∼= F × R1 is a commutative ring where F is a
field and R1 ̸∼= Z2, then A ⊆ F ×{0} is a cut-set of Γ(R) if and only if
A = {(f, 0) : f ∈ F ∗}. The case where R ∼= F × Z2 is of little interest
since the only cut-set in its zero-divisor graph is the cut vertex (0, 1).

Theorem 2.4 gives the following generalization for when R is the
direct product of two or more rings.

Corollary 2.5. [14, Theorem 3.3]. Let R ∼= R1×R2×· · ·×Rn×F1×
F2 × · · · × Fm be a commutative ring where each Ri is a local ring and
each Fj is a field such that R is not isomorphic to Z2 × F where F is
a field. Then A is a cut-set of R if and only if :

(i) A = {(0, . . . , 0, ri, 0, . . . , 0) | ri ∈ ann(r)∗}, where ann(r) is a
minimal annihilator ideal, or

(ii) A = {(0, . . . , 0, fj , 0, . . . , 0) | fj ∈ F ∗
j }.

Using Corollary 2.5, we are now able to revise and extend the
statement of [14, Theorem 3.4].

Theorem 2.6. Let R be a non-local commutative Artinian ring, and
let A be a cut-set of Γ(R). Then A ∪ {0} is an ideal of R.

Corollary 2.5 demonstrates that the converse of Theorem 2.6 is false.
In addition, if R is local, then a cut-set of Γ(R) need not be an ideal
as the following examples demonstrates.

Example 2.7. Let R ∼= Z8[x]/(x
2 + 6x). Observe (see Figure 1) that

A = {2x, 4x, 6x, 2x+ 4, 6x+ 4} is a cut-set of Γ(R), yet A ∪ {0} is not
an ideal of R.

Notice that in Example 2.7, the cut-set A does not isolate any
vertices. If A isolates some vertex x, then since a cut-set is minimal,
ax = 0 for all a ∈ A. If x2 ̸= 0, then A ∪ {0} = ann(x) is an ideal. If
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Figure 1. Γ(Z8[x]/(x
2 + 6x)).

x2 = 0, then A = ann(x)\{x, 0} and ann(x) = A ∪ {x, 0}. Thus, either
A ∪ {0} or A ∪ {x, 0} is an annihilator ideal.

The cut-set of the zero-divisor graph of a commutative ring often
demonstrates excellent algebraic structure as shown in Theorem 2.6.
We now examine what algebraic structure cut-sets possess. The next
proposition follows directly from Proposition 2.1.

Proposition 2.8. Let R be a commutative ring with A a cut-set of
Γ(R). If a ∈ A and ann(a) ⊆ ann(y), then y ∈ A ∪ {0}.

The union of a cut-set A with {0} need not always be an ideal,
as demonstrated in Example 2.7. However, Proposition 2.8 shows
that A ∪ {0} always has the multiplicative structure of an ideal. We
isolate this result in the following corollary, which also appears as [18,
Theorem 2.2].

Corollary 2.9. Let R be a commutative ring with A a cut-set of Γ(R).
For any a ∈ A and r ∈ R, ra ∈ A ∪ {0}.
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It is often the case that the vertex sets of Γ(R) separated by a cut-
set also exhibit the multiplicative structure of an ideal as will be shown
in Proposition 2.10. However, this is not always the case. In Γ(Z12),
considering the cut vertex 6 with X = {2, 6, 10}, we have 2 · 10 /∈ X.
(See Figure 2.)

2
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3

4

8

9

10

Figure 2. Γ(Z12).

Also, in Γ(Z18), considering the cut-set A = {6, 12} and X =
{3, 6, 12, 15}, we have 32 = 152 = 9 /∈ X. (See Figure 3.)
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Figure 3. Γ(Z18).

In both of these examples, the elements of X which violate the
multiplicative closure property are the vertices that are isolated by
the cut-set. This leads to the following proposition.

Proposition 2.10. Let R be a commutative ring, and let A separate
Γ(R) into X and Y . If X contains no points isolated by the removal of
A, then X ∪ {0} absorbs multiplication from R.

Proof. Let c ∈ X ∪{0}. If c ∈ A∪{0}, then cr ∈ A∪{0} ⊂ X ∪{0}
for all r ∈ R by Corollary 2.9. Assume now that c ∈ X\A, and let
r ∈ R. If rc = 0, we are done. If rc /∈ X ∪ {0}, then rc ∈ Y \A. Since
c is not isolated by the removal of A, there exists xc ∈ X\A such that
cxc = 0. But then xc ∈ ann(rc), a contradiction. �
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It is then straightforward to see that, as long as non-isolated points
exist for a given cut-set, we can form a subgraph X such that X ∪ {0}
will absorb multiplication from R by placing all isolated vertices in the
complementary subgraph Y .

Corollary 2.11. Let R be a commutative ring, and let A separate Γ(R)
into X and Y . If X contains no points isolated by the removal of A,
then X ∪ {0} is multiplicatively closed.

The converse of Corollary 2.11 does not hold, as can be seen in
Figure 4. Consider Γ(Z30) with cut-set A = {6, 12, 18, 24} and X =
{6, 12, 18, 24, 5, 25}. Clearly, X ∪ {0} is multiplicatively closed, but 5
and 25 are each isolated by the removal of A. Similarly, if A = {15} and
X = {2, 4, 8, 14, 15, 16, 22, 26, 28}, we see thatX∪{0} is multiplicatively
closed, but each element of X (other than 15) is isolated by the removal
of the cut vertex 15.

2

15
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10 20
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5

6
12

18
24

25

8
921 27

14

16

22

26

28

Figure 4. Γ(Z30).

2.2. Bridges in Γ(R). We now turn our attention to studying bridges,
edges whose removal separates Γ(R). In this section, we show that the
existence of a nontrivial bridge in Γ(R) is quite restrictive and leads to
a realization theorem for Γ(R).

In contrast to the observation made in the introduction that the
vertices incident to a bridge are either cut vertices or isolated vertices,
we make the following note. It is not the case that an edge connecting
two cut vertices in a graph is a bridge, as can be seen in Γ(Z2×Z2×Z2).
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80, 0, 1< 80, 1, 0<

81, 0, 0<

81, 1, 0< 81, 0, 1<

80, 1, 1<

Figure 5. Γ(Z2 × Z2 × Z2).

Recall that the diameter of the zero-divisor graph of any ring R is
3 or less. The next proposition shows that diameter 0, 1 or 2 cannot
occur in a zero-divisor graph with a nontrivial bridge.

Proposition 2.12. Let R be a commutative ring with a nontrivial
bridge in Γ(R). Then diam(Γ(R)) = 3.

Proof. Since Γ(R) has a nontrivial bridge a − b, a is a cut vertex,
and hence 2 ≤ diam(Γ(R)) ≤ 3. Assume diam(Γ(R)) = 2, and let {a}
separate Γ(R) into Xa and Ya, and {b} separate Γ(R) into Xb and Yb.
Without loss of generality, b ∈ Xa and b /∈ Ya. Pick z ∈ Xb and w ∈ Yb

such that b /∈ {w, z}. Since diam(Γ(R)) = 2, z− b−w is a path in Xa,
and, in particular, w, z ∈ V (Xa). Since Z(R)∗ = V (Xb) ∪ V (Yb), we
have Z(R)∗ ⊆ V (Xa), a contradiction. Thus, diam(Γ(R)) = 3. �

Corollary 2.13. Let R be a finite commutative ring with identity such
that Γ(R) has a nontrivial bridge. Then R is not local.

Proof. By [10, Theorem 2.3], if R is local, then diam(Γ(R)) = 2. �

In the discussion that follows, it will be useful to consider Figure 6,
which illustrates the components of G as described in the proof of
Proposition 2.12.

Notation 2.14. If Γ(R) has a nontrivial bridge a − b, then there
are nontrivial components Xa, Ya, Xb, and Yb of Γ(G) such that {a}
separates Γ(R) into Xa and Ya, {b} separates Γ(R) into Xb and Yb,
Xb = Xa\{a}, and Ya = Yb\{b}.
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B

a b

A

Figure 6. A = Ya\{a} and B = Xb\{b}.

Lemma 2.15. Let R be a commutative ring, and let a−b be a nontrivial
bridge in Γ(R). Let Xa, Ya, Xb, Yb be as in Notation 2.14. Then:

(i) bx = 0 for all x ∈ Xb\{b}, and
(ii) ay = 0 for all y ∈ Ya\{a}.

Proof. Let y ∈ Ya\{a} and x ∈ Xb\{b}. Since Ya ⊆ Yb, any path
from y to x must pass through b. Similarly, since Xb ⊆ Xa, any path
from y to x must pass through a. Since diam(Γ(R)) ≤ 3 for any ring
R, the path must be y−a− b−x. Thus, ay = 0 for all y ∈ Ya\{a} and
bx = 0 for all x ∈ Xb\{b}. �

Our goal now is to prove our main result about nontrivial bridges in
Γ(R); that is, that they occur in exactly two situations.

Let a − b be a nontrivial bridge in Γ(R). Clearly ann(a) ̸= ann(b),
which implies a + b ̸= 0. If a2 = 0 = b2, then a − (a + b) − b is a
path in Γ(R), which contradicts the fact that a − b is a bridge. By
the paragraph preceding [8, Proposition 2.2], for every r, s ∈ R\Z(R),
ra = −sa = a and rb = −sb = b. Thus, (r + s)a = (r + s)b = 0. Since
a− b is a nontrivial bridge, r + s ∈ {0, a, b}. By choosing r and s such
that r ̸= −s, we have r + s ∈ {a, b}. If r + s = a, then a2 = 0. In
summary, if a− b a nontrivial bridge of Γ(R) with |R\Z(R)| ≥ 3, then,
without loss of generality, we have the following four properties.

(1) a2 = 0 and b2 ̸= 0,

(2) r + s ∈ {0, a} for all r, s ∈ R\Z(R),

(3) (r + s)2 = 0 for all r, s ∈ R\Z(R),

(4) (r + s)a = (r + s)b = 0.

Suppose r, s, t ∈ R\Z(R) are distinct. Then r + r, r + s and r + t
are three distinct elements in {0, a, b}, and (without loss of generality)
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r + s = a and r + t = b. By property (3), a2 = 0 and b2 = 0,
contradicting (1). Thus, we have the following proposition.

Proposition 2.16. If R is a commutative ring and Γ(R) has a non-
trivial bridge, then |R\Z(R)| ≤ 2.

This rather restrictive conclusion about the number of regular ele-
ments in a ring R such that Γ(R) has a nontrivial bridge now implies
that R is finite.

Proposition 2.17. If R is a commutative ring with identity and Γ(R)
has a nontrivial bridge, then R ∼= R1 ×R2, where R1 and R2 are finite
local rings. In particular, R is finite.

Proof. If a− b is a nontrivial bridge in Γ(R), then a and b are both
cut vertices and, by Lemma 2.15, R \ (ann(a)∪ ann(b)) is precisely the
set of regular elements of R. By Proposition 2.16, |R\Z(R)| ≤ 2 which
implies |R| < ∞ by [1, Theorem 2].

If Γ(R) has a nontrivial bridge, then R is not local by Corollary 2.13.
Thus, R ∼= R1 × · · · × Rn, where n ≥ 2 and each Ri is a finite, local
ring. Assume n ≥ 3. Since a and b are cut vertices, by [8, Lemma
3.1] we have, without loss of generality, that a = (x, 0, . . . , 0) and
b = (0, y, 0, . . . , 0) where x, y ̸= 0. If c = (0, 0, 1, 0, . . . , 0), then a−c−b
is a path in Γ(R), contradicting the fact that a−b is a bridge. Therefore,
n = 2. �

We now seek to identify the rings R = R1×R2, with each Ri a finite
local ring, such that Γ(R) has a nontrivial bridge. By Proposition 2.16,
if a − b is a nontrivial bridge in Γ(R), then |R\Z(R)| ≤ 2. By [19,
Theorem 2], if (Ri,Mi) a finite local ring with identity with unique
maximal idealMi, then |Ri| = pnr for some prime integer p and positive
integers n and r such that:

(1) |Z(Ri)| = |Mi| = p(n−1)r, and
(2) Mn

i = 0.

Thus, by Proposition 2.17, |Ri\Z(Ri)| = pnr−p(n−1)r = pnr−r(pr−
1) ≤ 2, which implies p ∈ {2, 3}. By [13], the only such local rings are
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Z2,Z3,Z4,F4 and Z2[x]/(X
2). By inspection, we obtain the following

result.

Theorem 2.18. Let R be a commutative ring with identity. Then
Γ(R) has a nontrivial bridge if and only if R is isomorphic to Z2 × Z4

or Z2 × Z2[x]/(x
2).

As a result of Theorem 2.18, we obtain the following zero-divisor
graph realizability result.

Corollary 2.19. A graph Γ with a nontrivial bridge is realizable as
a zero-divisor graph of a commutative ring with identity if and only if
Γ ∼= Γ(Z2 × Z4) ∼= Γ(Z2 × Z2[x]/(x

2)).

3. Compressed zero-divisor graphs. As the reader will notice,
the graph in Figure 1 is too crowded to be of much use in identifying
cut-sets. Moreover, much ring-theoretic information is duplicated in
the graph when vertices share the same annihilator. For this reason,
the compressed zero-divisor graph of a commutative ring R, Γ(R), is
defined. Given a ∈ Z(R)∗, let [a] = {b ∈ R : ann(a) = ann(b)}.
Clearly, if c, d ∈ [a], then c and d are adjacent to the same vertices
in Γ(R). Let V (Γ(R)) = {[a]|a ∈ Z(R)∗}, and let [a] − [b] in Γ(R)
if and only if a − b in Γ(R). Further, we place a loop on [a] in Γ(R)
if a2 = 0, or equivalently, cb = 0 for all c, b ∈ [a]. The compressed
zero-divisor graph of R has the benefit of simplifying Γ(R) and making
cut-sets more readily visible. See [6, 15, 21] for additional results on
the compressed zero-divisor graph of a commutative ring.

The following useful fact appears without proof in [3, 21].

Lemma 3.1. For x, y ∈ Z(R)∗, the product [x][y] = [xy] is well defined.

Proof. Note that we need only show that ann(xy) = ann(ab) for any
a ∈ [x] and any b ∈ [y]. Suppose that c ∈ ann(xy). If cx = 0, then
ca = 0, whence c(ab) = 0, and finally c ∈ ann(ab). Similarly, if cy = 0,
then c ∈ ann(ab). Thus, we assume that cx ̸= 0 and cy ̸= 0. Since
(cx)y = 0, (cx)b = 0. However, cb ̸= 0 and (cb)x = 0, so (cb)a = 0.
Again, c ∈ ann(ab), and we have ann(xy) ⊆ ann(ab). A symmetric
argument gives the reverse inclusion, and thus equality holds. �
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There is a natural mapping from V (Γ(R)) to V (Γ(R)) defined by
a 7→ [a]. It is straightforward to show that this map acts as a graph
homomorphism in the sense that, if a− b is Γ(R), then either [a] = [b]
or [a]− [b] in V (Γ(R)).

Given a set of vertices A in Γ(R), we can define A = {[a] : a ∈ A},
a set of vertices in Γ(R). Similarly, given a set of vertices A in Γ(R),
we can define A = {b : b ∈ [a] for some [a] ∈ A}.

x

4 x

3 x+2

2 x+4

2 x

x+2

4
2

x+4

Figure 7. Γ(Z8[x]/(x
2 + 6x)).

3.1. Cut-sets in Γ(R). In this section, we study cut-sets in Γ(R) by
way of the natural map A 7→ A from subsets of V (Γ(R)) to subsets
of V (Γ(R)). The following result will be useful in showing that the
natural projection from V (Γ(R)) to V (Γ(R)) preserves cut-sets. Before
beginning, we introduce some notation relevant for completing r-partite
graphs. If G is complete r-partite, then V (G) = V1∪V2∪· · ·∪Vr, where
x− y ∈ E(G) if and only if x ∈ Vi and y ∈ Vj with i ̸= j.

Theorem 3.2. Let R � Z2 × Z2 be a Noetherian commutative ring
with identity, and let r ∈ Z+. Then:

(i) Γ(R) is complete if and only if Γ(R) ∼= K1.
(ii) For r ≥ 2, Γ(R) is complete r-partite if and only if Γ(R) ∼= K2.

Proof.

(i) This result follows directly from [7, Theorem 2.8].

(ii) If r = 2, consider the case when |R| < ∞. By [7, page 439] and
[16, Theorem 1.14, Corollary 1.11], either Γ(R) is a star graph (a graph
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isomorphic to K1,m where m is possibly infinite) where no vertex other
than the center vertex can be looped, or Γ(R) is complete bipartite
with no looped vertices. Thus Γ(R) ∼= K2. Now assume |R| = ∞. If
Γ(R) is a star graph, then only the center vertex may be looped by
[10, Theorem 4.1], and thus Γ(R) ∼= K2. If Γ(R) is not a star graph,
then by [16, Theorem 1.14], R is isomorphic to a subring of a direct
product of two integral domains. Then no vertices in Γ(R) are looped,
and Γ(R) ∼= K2.

Now assume r ≥ 3. By [2, Theorem 3.1], if Γ(R) is complete r-
partite, then |Vi| > 1 for at most one i ∈ {1, 2, . . . , r}, and if Vj = {x},
then x2 = 0. Moreover, by [2, Theorem 3.6], R is isomorphic to a
subring of F × S, where F is a field and S is a finite ring. Since S
is a finite commutative ring with identity, S can be expressed as a
product of finite fields and finite local rings. For convenience, we write
R ∼= T1 × T2, where T1 is the direct product of the fields, and T2 is the
direct product of the finite local rings.

We claim that if V = Vi for some i where |V | > 1, then x2 ̸= 0 for
all x ∈ V . First note that, if x ∈ Vj for some j ̸= i, then x = (0, x′)
for some x′ ∈ T2 − {0}, else x2 = 0. Assume that (t, z)2 = 0 for
some (t, z) ∈ V . Then t = 0 and z2 = 0. Since |V | > 1, there exists
(u,w) ∈ V distinct from (0, z). Since r ≥ 3, there exists (0, x) /∈ V
with x2 = 0 and xz = 0. Now consider the vertex (0, x + z) of Γ(R).
Since (0, z)(0, x + z) = (0, 0) and (0, x + z) ̸= (0, x), (0, x + z) /∈ V
as distinct vertices in V cannot be adjacent. Since (u,w) ∈ V and
(0, z + x) /∈ V , (0, z + x)(u,w) = (0, 0), and hence zw + xw = 0. Since
xw = 0, zw = 0. and thus (0, z)(u,w) = (0, 0), contradicting the fact
that both (0, z) and (u,w) are in V . Therefore, V contains no element
that squares to zero.

Since x2 ̸= 0 for all x ∈ V and Γ(R) is complete r-partite, ann(x) =
ann(y) for all x, y ∈ V . Clearly, if v, w ∈ V (Γ(R))\V , then ann(v) =
ann(w), and thus Γ(R) ∼= K2.

Conversely, suppose that Γ(R) ∼= K2, and let [x] and [y] be the two
distinct vertices in Γ(R). If x2 = y2 = 0, then ann(x) = ann(y) =
Z(R), and hence [x] = [y], a contradiction. If x2 ̸= 0 and y2 ̸= 0, then
ann(x)∗ = [y] and ann(y)∗ = [x]. Then Γ(R) is complete bipartite.
If, without loss of generality, x2 = 0 and y2 ̸= 0, then ann(y)∗ = [x]
and ann(x) = Z(R). Then Γ(R) is complete r-partite for some r ≥ 2.
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Observe that r > 2 if and only if |[x]| > 1. �

By [21, Proposition 1.5], if Γ(R) ∼= Kn, then n ∈ {1, 2}. Thus,
Theorem 3.2 classifies which Γ(R) occur when Γ(R) is a complete graph.

We give two lemmas that further clarify the structure of cut-sets,
both of which will be useful in proving Theorem 3.6 concerning the
connection between the cut-sets in Γ(R) and cut-sets in Γ(R).

Lemma 3.3. Let R be a commutative ring with identity, let A be a cut-
set of Γ(R) and let A′ = {v ∈ V (Γ(R)) : ann(v) = ann(a) for some a ∈
A}. Then A = A′.

Proof. Let A separate Γ(R) into X and Y . Clearly, A ⊆ A′, so
suppose that b ∈ A′. Then ann(b) = ann(a) for some a ∈ A. By
Proposition 2.1, there exist xa ∈ X and ya ∈ Y such that xa − a− ya.
Since ann(b) = ann(a), we have xa− b− ya. Again, by Proposition 2.1,
b ∈ A. �

Lemma 3.4. Let R be a commutative ring with identity, and let A be a
cut-set of Γ(R). If [b] = [c] for all b, c ∈ V (Γ(R))\A, then Γ(R) ∼= K2

(or equivalently, Γ(R) is complete r-partite for some r ≥ 2).

Proof. Clearly, if A is a cut-set of Γ(R), then Γ(R) ̸∼= K1. Suppose
[b] = [c] for all b, c ∈ V (Γ(R))\A. Then V (Γ(R)) = A ∪ {[b]}. If
b ∈ ann(b), then bx = 0 for all x ∈ Z(R)∗\A, and A would not be
a cut-set of Γ(R). Therefore, it must be the case that b /∈ ann(b).
Thus, ann(b) ⊂ A ∪ {0} and, by the minimality condition of cut-sets,
ann(b) = A ∪ {0}. This means that Γ(R) consists of the cut-set A and
a collection of vertices each isolated by the removal of A. By way of
contradiction, we assume Γ(R) ̸∼= K2, in which case Γ(R) has three or
more vertices. We consider two cases.

If ann(b) is not a maximal annihilator ideal, then there exists
0 ̸= d ∈ R such that ann(b) ( ann(d). This implies that Z(R) = ann(d)
since Γ(R) consists of the cut-set A and a collection of vertices each
connected to every element of A and to no other vertex. In particular,
Z(R) is an ideal. Let [a] ̸= [c] with [a], [c] ∈ A. Since Z(R) is an
ideal, we have 0 ̸= a + b ∈ Z(R). Since b2 ̸= 0, we must have
a + b /∈ A. By assumption, [a + b] = [b], so c(a + b) = 0, which gives
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ca = 0. Thus, [c][a] = 0, implying that Γ(R) is complete. However,
by [21, Proposition 1.5], Γ(R) cannot be complete if |V (Γ(R))| ≥ 3, a
contradiction.

If ann(b) is a maximal annihilator ideal, then by [9, Corollary 3.5,
Proposition 3.6] either Z(R) = ann(b), or Z(R) = ann(b) ∪ ann(a),
where ann(a) is a maximal annihilator ideal and ann(b)∩ann(a) = {0}.
Since b2 ̸= 0, Z(R) ̸= ann(b). Thus, Z(R) = ann(b) ∪ ann(a) with
a ∈ A. Since Γ(R) is not complete, there exists [c] ̸= [a] in A such
that [a][c] ̸= 0. Since b2 ̸= 0, we see b ∈ ann(c)\ ann(b), and thus,
ann(c) ⊆ ann(a). Now, for each [q] ∈ A, we must have that [a][q] ̸= 0
because ann(b) ∩ ann(a) = {0}. Furthermore, since ann(c) ⊆ ann(a),
it must be the case that [c][q] ̸= 0. Therefore, no two vertices in A
are adjacent, and so Γ(R) is a star-graph with center [b]. Since Γ(R)
has at least three vertices, [b] is a cut vertex of Γ(R) with at least two
ends. By [15, Proposition 6.9], ann(b) is the only associated prime
of R, contradicting the fact that there are two maximum annihilator
ideals. Therefore, Γ(R) ∼= K2. �

Remark 3.5. In the last case of the proof of Lemma 3.4, we saw that
when Z(R)∗ is the disjoint union of two annihilator ideals with one a
maximal annihilator ideal, Γ(R) must be a star graph. We will return
to this idea in Proposition 4.3 when we characterize Γ(R) in this setting.

In Figure 3, the compressed zero-divisor graph of Z8[x]/(x
2 + 6x)

is shown, and it is easily noted that {[4x], [2x], [2x + 4]} does in
fact form a cut-set. This set of compressed elements corresponds to
A = {2x, 4x, 6x, 2x+4, 6x+4}, which is a cut-set of Γ(Z8[x]/(x

2+6x)).
This is not a coincidence as Theorem 3.6 indicates. A similar result for
finite rings appears in [22]. We remark that the assumption Γ(R) ̸∼= K2

is to ensure that Γ(R) does indeed have a cut-set.

Theorem 3.6. Let R be a Noetherian commutative ring with identity,
and assume Γ(R) ̸∼= K2. Let A ⊆ V (Γ(R)), and set A′ = {v ∈
V (Γ(R)) : [v] ∈ A}.

(i) If A is a cut-set of Γ(R), then A is a cut-set of Γ(R).
(ii) If A is a cut-set in Γ(R), then A′ is a cut-set in Γ(R).
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Proof. We begin by proving (ii). Since A is a cut-set of Γ(R),
there exist distinct, non-adjacent [x], [y] ∈ V (Γ(R))\A such that, for
any path [x] − [z1] − · · · − [zn] − [y] in Γ(R), [zi] ∈ A for some
i ∈ {1, . . . , n}. Observe that xy ̸= 0 in R since [x] is not adjacent
to [y] in Γ(R). If A′ does not separate x and y in Γ(R), there exists a
path x−b1−· · ·−bn−y in Γ(R) such that bi /∈ A′ for all i ∈ {1, . . . , n}.
Then [x]− [b1]− · · · − [bn]− [y] is a walk in Γ(R)\A, contradicting the
fact that A separates [x] and [y] in Γ(R). Thus, A′ separates x and y
in Γ(R).

Now assume that A′ is not a minimal separating set in Γ(R), that is,
there exists a cut-set B ( A′ of Γ(R) separating two distinct vertices w
and v. In other words, every path from w to v in Γ(R) passes through
a vertex of B. By definition, w, v /∈ B.

Assume [w] = [v]. Then ann(w) = ann(v). Since B separates w and
v and since ann(w) = ann(v), we see that ann(w)∗ ⊆ B. Since B is a
cut-set, ann(w)∗ = B by minimality. If [w] ∈ B, then ann(w) = ann(b)
for some b ∈ B, and hence w ∈ B by Proposition 2.8, a contradiction.
We may thus assume that [w] /∈ B. Since ann(w)∗ = B, B isolates [w].
Since B ∪ {[w]} ̸= V (Γ(R)), B separates Γ(R). But B ⊆ A and A is a
cut-set. By minimality, B = A. Let a ∈ A′\B, and consider [a] ∈ A.
By construction, [w]− [a] is an edge in Γ(R) and [w] ̸= [a] (since [a] ∈ A
and [w] /∈ A). Then w − a ∈ E(Γ(R)), and because ann(w) = ann(v),
w− a− v is a path in Γ(R). This contradicts the fact that B separates
w and v.

Thus, we may assume that [w] ̸= [v]. If [w] ∈ B, then ann(w) =
ann(b) for some b ∈ B. However, B is a cut-set, and by Proposition 2.8,
w ∈ B ∪ {0}, a contradiction. A similar argument applies to [v], and
thus [w], [v] /∈ B. If B ( A, then B is not a cut-set, so there exists a
path [w]−[x1]−· · ·−[xn]−[v] in Γ(R) with [xi] /∈ B for all i ∈ {1, . . . , n}.
Then, in Γ(R), w − x1 − · · · − xn − v is a path with xi /∈ B, for all
i ∈ {1, . . . , n}, a contradiction to the fact that B is a cut-set. Therefore,
B = A.

We claim now that B = A′. If not, let a ∈ A′\B. Since B = A,
[a] ∈ B. Then B\{[a]} is not a cut-set and does not separate Γ(R).

We will show that B does not separate Γ(R). Pick distinct c, d ∈
V (Γ(R))\B,and assume cd ̸= 0. If [c] = [d], choose [l] /∈ B\{[a]} such
that [c]− [l] is an edge in Γ(R) (else B\{[a]} isolates [c]). Then c− l−d
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is a path in Γ(R). If [l] = [a], then c− a− d is a path in Γ(R) avoiding
B. If [l] ̸= [a], then c− l − d is a path in Γ(R) avoiding B. If [c] ̸= [d],
then there exists a path [c]−[x1]−· · ·−[xn]−[d] with no [xi] in B\{[a]}.
Thus, c − x1 − · · · − xn − d is a path in Γ(R) with xi = a whenever
[xi] = [a]. By construction, xi /∈ B for each i ∈ {1, . . . , n}. Then, B
does not separate Γ(R), a contradiction. Thus, B = A′ and A′ is a
cut-set.

We now prove (i). Let A be a cut-set of Γ(R). Thus, by Lemma 3.3,
A = A′. Assume A in V (Γ(R)) is not a cut-set. Then either A is not
a minimal separating set of Γ(R) or A does not properly contain a
cut-set and is not a cut-set itself.

First assume that A separates Γ(R) but is not a minimal separating
set of Γ(R), and let B ( A be a cut-set of Γ(R). By (ii), B = {v ∈
V (Γ(R)) : [v] ∈ B} is a cut-set of Γ(R) and B ( A′. Thus A = A′ is
not a cut-set of Γ(R), a contradiction.

Now assume A is not a cut-set of Γ(R) and does not properly contain
one. Since A = A′ is a cut-set of Γ(R), by Lemma 3.4, we can choose
b, c ∈ V (Γ(R))\A′ with distinct [b], [c] /∈ A. Then, since A is not a
cut-set, either [b]− [c] is an edge in Γ(R) or [b]− [x1]−· · ·− [xn]− [c] is
a path in Γ(R) with no [xi] ∈ A. Then, either b− c is an edge in Γ(R)
or b− x1 − · · · − xn − c is a path in Γ(R) with no xi ∈ A′, whence A′

does not separate Γ(R). Since A = A′, A is not a cut-set of Γ(R), a
contradiction. �

Remark 3.7. Note that Theorem 3.6 does not guarantee that, for a
given set A in V (Γ(R)), if A is a cut-set of Γ(R), then A is a cut-set of
Γ(R). In Γ(Z12), we see A = {4} is not a cut-set. However, A = {[4]}
is a cut-set in Γ(Z12). (See Figures 8 and 9.)
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Figure 8. Γ(Z12).
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2 6 34

Figure 9. Γ(Z12).

3.2. Bridges in Γ(R). We now return to the study of bridges. The
following two results give a statement analogous to Theorem 2.18 for
compressed zero-divisor graphs containing nontrivial bridges.

Theorem 3.8. Let R be a commutative ring with identity such that
Γ(R) has a nontrivial bridge. Then Γ(R) is isomorphic to the line
graph [c]− [a]− [b]− [d] in which only the vertex [a] is looped.

Proof. Let [a] − [b] be the nontrivial bridge in Γ(R). Then both
vertices [a] and [b] are cut vertices in Γ(R). By [3, Corollary 4.3],
ann(a) and ann(b) are associated primes of R. By [15, Proposition
5.9], there is exactly one vertex [c] (necessarily of degree one) adjacent
to [a] and exactly one vertex [d] of degree one adjacent to [b]. Again,
by [15, Proposition 5.9], Γ(R) has exactly four vertices, whence Γ(R)
is [c]− [a]− [b]− [d].

Suppose that neither [a] nor [b] is looped, and consider the nonzero
zero-divisor cd. Since a(cd) = 0 and b(cd) = 0, [cd] /∈ {[a], [b], [c], [d]},
an impossibility. Thus, at least one of [a] or [b] is looped. However, if
[a] and [b] are both looped, then a2 = b2 = 0. Since [a] ̸= [b], a + b is
a nonzero zero-divisor not in [a] ∪ [b], lest c(a+ b) = 0 or d(a+ b) = 0.
But then [a]− [a+ b]− [b] is a path in Γ(R), contradicting the fact that
[a] − [b] is a bridge. Without loss of generality, we assume that [a] is
looped and [b] is not looped.

If we assume that [d] is looped, then d2 = 0 and b + d is a nonzero
zero-divisor. Since ad ̸= 0, [b + d] /∈ {[a], [b], [c]}. Since b2 ̸= 0,
[b + d] ̸= [d]. Therefore, [d] is not looped. We can also see that [c]
is not looped by showing that, if c2 = 0, then [a+ b] /∈ {[a], [b], [c], [d]}.
Therefore, Γ(R) is the graph [c]− [a]− [b]− [d] in which only vertex [a]
is looped. �

Using the structure of Γ(R) given in Theorem 3.8, we can now
determine when Γ(R) has a nontrivial bridge if R is Artinian.
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Theorem 3.9. Let R be an Artinian ring. Then Γ(R) has a nontrivial
bridge if and only if R is isomorphic to F × S, where F is a field and
S is a local ring (not a field) with maximal ideal M such that M2 = 0.

Proof. If R ∼= F × S, where F is a field and S is a local ring
with maximal ideal M such that M2 = 0, then each zero-divisor of
R resides in exactly one of the following equivalence classes: [(1, z)],
[(0, z)], [(1, 0)], [(0, 1)], where z denotes a fixed, nonzero zero-divisor of
S. Note also that Γ(R) is precisely [(1, z)] − [(0, z)] − [(1, 0)] − [(0, 1)]
where only the vertex [(0, z)] is looped.

Conversely, assume that Γ(R) has a nontrivial bridge. By Theo-
rem 3.8, Γ(R) is isomorphic to a line graph with four vertices. Since
R is Artinian, R can be written as R ∼= R1 × R2 × · · · × Rn, where
each Ri is a local ring. If n = 1 and M is the maximal ideal of R1,
then Mm = 0 for some m ≥ 1 since R1 is Artinian. If m = 1, the R1

is a field, and V (Γ(R)) = ∅. If m ≥ 2, then diam (Γ(R)) < 3, which
gives that Γ(R) does not have a nontrivial bridge. If n ≥ 3, then by [8,
Lemma 2.1], Γ(R) has at least three cut-sets. By Corollary 2.5, every
cut-set of Γ(R) has the form A = 0 × 0 · · · × 0 × ann(ai)

∗ × 0 · · · × 0
for some nonzero ai ∈ Ri. Then, if A ̸= A′ for two cut-sets A and A′

of Γ(R), then A ̸= A′ are distinct cut-sets of Γ(R) by Theorem 3.6.
That is, Γ(R) has at least three cut-sets. Both of these conclusions
contradict the fact that Γ(R) is a line graph with four vertices.

If R1 and R2 are both fields, then Γ(R) is complete bipartite, and
hence, Γ(R) has only two vertices. If neither R1 nor R2 is a field, then
there exist at least five vertices [(1, 0)], [(0, 1)], [(0, x)], [(y, 0)], [(w, z)] in
Γ(R) where w, x ∈ Z(R1)

∗ and y, z ∈ Z(R2)
∗. Therefore, it must be

the case that, without loss of generality, R1 is a field and R2 is a local
Artinian ring that is not a field. Thus, Mm = 0 for some integer m ≥ 2.
If M2 ̸= 0 and Mm = 0 for some m > 2, then Γ(R) has at least six
vertices [(1, 0)], [(0, 1)], [(0, z)], [(0, zm−1)], [(1, z)], [(1, zm−1)] for some
z ∈ Z(R2)

∗. Therefore, R is isomorphic to F × S, where F is a field
and S is a local ring with maximal ideal M such that M2 = 0. �

We note that R need not be Artinian for Γ(R) to have a non-
trivial bridge. Indeed, if F and K are fields, then let R = F ×
K[X1, X2, X3, . . .]/M

2 where M = (X1, X2, X3, . . .). Then Γ(R) is
the line graph [(1, x1)] − [(0, x1)] − [(1, 0)] − [(0, 1)] in which only the
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vertex [(0, x1)] is looped. However, we do not know of an example of
a non-Artinian ring S not isomorphic to the direct product of a field
and a local ring (S,M) with M2 = 0 such that Γ(R) has a nontrivial
bridge.

It is clear that, if Γ(R) has a nontrivial bridge, then Γ(R) also has a
nontrivial bridge. However, if Γ(R) has a nontrivial bridge [a] − [b],
then the corresponding edge set in Γ(R) need not be a nontrivial
bridge in Γ(R) though it is a minimal set of edges whose removal
separates Γ(R) into two distinct connected components. Clearly, the
image of such a minimal separating set of edges in Γ(R) need not even
be well-defined, let alone separate Γ(R). Conversely, the pre-image
of a minimal separating set of edges in Γ(R) need not be a minimal
separating set of edges in Γ(R). The ring Z12 can be used to illustrate
both of these observations. In summary, locating a bridge in a zero-
divisor graph gives the existence of cut vertices in that same graph, but
there is no hope in even partially reversing this process.

Figures 8 and 9 also show that though the endpoints of a nontrivial
bridge are cut vertices, the incident endpoints of a minimal set of edges
whose removal separates Γ(R) need not form a cut-set of Γ(R). These
incident endpoints can fail to separate Γ(R), or may separate but fail
to be a minimal such set of vertices. In summary, there is a nice
correspondence between cut-sets in Γ(R) and cut-sets in Γ(R), but no
such result can be formulated for sets of cut-edges.

4. Noetherian rings. Recall that in a Noetherian ring R, Z(R) =
n
∪
i=1

ann(xi), where the ann(xi) are precisely the associated prime ideals

(see [17, Theorem 80]). In this section, we investigate how cut-sets
and Ass(R) are related. We assume R is Noetherian, and to simplify
the statements of some results, we set the following notation for the
sequel.

Notation 4.1. Let R be a Noetherian ring and write

Z(R) =
n∪

i=1

ann(xi) with Ass(R) = {ann(xi)}.
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Set

A =

n∪
i=1

Ai,

where, for each i ∈ {1, . . . , n},

Ai = {yi,λ : ann(yi,λ) = ann(xi)}λ∈Λi

is indexed by some (possibly infinite) set Λi.

The following proposition is easily seen to be equivalent to [9,
Proposition 3.6].

Proposition 4.2. Let Z(R) = P1 ∪ P2 where P1 and P2 are incompa-
rable prime ideals (maximal in Z(R)). Then:

(i) diam(Γ(R)) = 2 if and only if P1 ∩ P2 = {0}.
(ii) diam(Γ(R)) = 3 if and only if P1 ∩ P2 ̸= {0}.

We now give several equivalent conditions equivalent to that given
in Proposition 4.2 (i) in the case when P1 and P2 are both annihilator
ideals.

Proposition 4.3. Let Z(R) = ann(x1)∪ann(x2) where both are prime
(annihilator ideals) and incomparable. The following are equivalent :

(i) ann(x1) ∩ ann(x2) = {0},
(ii) diam(Γ(R)) = 2,
(iii) A = Z(R)∗,
(iv) Γ(R) is complete bipartite with disjoint vertex sets ann(x1)

∗ and
ann(x2)

∗.

Proof. The equivalence of (1) and (2) follows from Proposition 4.2.

We now show that (1) implies both (3) and (4). With i ∈ {1, 2}, if
xi ∈ ann(xi)

∗, then xi /∈ ann(xj) for j ∈ {1, 2}\{i}. Then d(x, y) = 2.
Also, there is some z ∈ Z(R)∗ such that x1 − z − x2 a path in Γ(R).
This implies z ∈ ann(x1) ∩ ann(x2) = {0}, a contradiction. Thus,
x1 ∈ ann(x2) and x2 ∈ ann(x1).

Let y ∈ ann(x1)
∗ and z ∈ ann(x2)

∗. Since d(y, z) ≤ 2, either yz = 0,
or there exists w ∈ Z(R)∗ with y − w − z a path in Γ(R). If yz ̸= 0,
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then yw ∈ ann(x2) and wz ∈ ann(x1). Since ann(xi) is prime for each
i ∈ {1, 2}, w ∈ ann(x1)∩ ann(x2), a contradiction. Thus, yz = 0 for all
y ∈ ann(x1) and z ∈ ann(x2).

Finally, without loss of generality, let y, z ∈ ann(x1). If yz = 0,
then since each ann(xi) is prime, either y ∈ ann(x2), or z ∈ ann(x2),
a contradiction. Thus, Γ(R) is complete bipartite with disjoint vertex
sets ann(x1)

∗ and ann(x2)
∗ and A = Z(R)∗.

We now show that (3) implies (2). Clearly, diam(Γ(R)) > 1, and
we can choose distinct y, z ∈ Z(R)∗. If, without loss of generality,
ann(y) = ann(z) = ann(x1), then either there is c ∈ ann(x1)

∗\{y, z},
which gives a path y − c − z in Γ(R), or ann(x1) ⊆ {0, y, z}, in which
case y − z ∈ E(Γ(R)). Either way, d(y, z) ≤ 2.

Now, suppose ann(y) = ann(x1) and ann(z) = ann(x2). If yz ̸= 0,
y ∈ ann(x1) = ann(y) and z ∈ ann(x2) = ann(z). Then y(yz) = 0 =
(yz)z and d(y, z) ≤ 2.

That (4) implies (2) is clear. �

Corollary 4.4. Let Z(R) = ann(x1) ∪ ann(x2) where ann(x1) ∩
ann(x2) = {0}. Then there exist exactly two cut-sets in Γ(R), namely,
ann(x1)

∗ and ann(x2)
∗.

In the finite case, we have the following.

Corollary 4.5. Let R be a finite ring. If Z(R) = ann(x1) ∪ ann(x2),
where ann(x1) ∩ ann(x2) = {0}, then R ∼= F1 × F2, where F1 and F2

are finite fields.

Proof. Let x ∈ Z(R)∗. If x2 = 0, then x ∈ ann(x1) ∩ ann(x2), a
contradiction. Thus, Γ(R) has no looped vertices. By [10, Corollary
4.6], R ∼= F1 × F2, where F1 and F2 are finite fields. �

The next result provides some insight into the structure of Γ(R).

Proposition 4.6. Let

Z(R) =
n∪

i=1

ann(xi),
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where the ann(xi) are non-comparable prime ideals with |Ai| = |Λi|,
where each Λi is a (possibly infinite) index set for Ai. Then Γ(R)
contains the graph K|Λ1|,...,|Λn| as a subgraph. In particular, yi,α is
adjacent to yi′,β for each pair of distinct i and i′ and for all α and
all β. Moreover, yi,α is adjacent to yi,β for all α and β if and only if
x2
i = 0.

Proof. Fix l,m ∈ {1, . . . , n}, and let z ∈ ann(xl)\ ann(xm). Then
xlz = 0 ∈ ann(xm). Since ann(xm) is prime, xl ∈ ann(xm). Since this
holds for all l ∈ {1, . . . , n}\{m}, we see that yi,α is adjacent to yi′,β
for any i, i′, α, β with i ̸= i′. If yi,α is adjacent to yi,β for some α and
β, then yi,α ∈ ann(xi). Since ann(yi,α) = ann(xi), xi ∈ ann(xi), so
x2
i = 0. If x2

i = 0, then xi ∈ ann(xi) = ann(yi,α) for each α, and thus
yi,α is adjacent to yi,β for any α, β. �

The next result generalizes Corollary 4.4 in the case where |Ass(R)|
> 2.

Proposition 4.7. Let R be a Noetherian ring with

Z(R) =
n∪

i=1

ann(xi),

where the ann(xi) are non-comparable prime ideals. Let X be a cut-set
of Γ(R) separating the graph into W and Z.

(i) For each i, either Ai ⊆ X or Ai ∩X = ∅.
(ii) Ai ⊆ X for some i.
(iii) If there exist distinct Ai and Aj not contained in X, then, without

loss of generality, Ak ⊆ W for all Ak  X.
(iv) If there exists a unique Ai such that Ai is not in X, then, without

loss of generality, either Ai ⊆ W , or each element of Ai is isolated
by X.

Proof.

(i) Let a, b ∈ Ai be such that a ∈ X and b /∈ X. Then any
path through a can be redirected to a path through b since
ann(a) = ann(b) = ann(xi). Thus, X\{a} contains a cut-set,
contradicting the minimality of X.
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(ii) Suppose X contains no Ai. Then by (i), X ∩ Ai = ∅ for all i.
Let w ∈ W and z ∈ Z. All paths from w to z involve elements
of X, and, without loss of generality, we can choose w ∈ ann(x1)
and z ∈ ann(xi). By Proposition 4.6, either w − x1 − xi − z, or
w − x1 − z is a path in Γ(R), a contradiction.

(iii) Suppose that a, b ∈ Ai with a ∈ W and b ∈ Z. Pick c ∈ Aj . If
c ∈ W , then c− b ∈ E(Γ(R)) by Proposition 4.6, a contradiction
since X is a cut-set. A similar argument shows c ∈ Z. Thus, Ai

(similarly Aj) is contained in either W or Z. Assume Ai ⊆ W
and Aj ⊆ Z. Then x1 − x2 ∈ E(Γ(R), which contradicting that
X is a cut-set.

(iv) Assume that Ai ̸⊂ X for some i ∈ {1, . . . , n} and that Aj ⊆ X
for all j ∈ {1, . . . , n}\{i}. If A2

i = {0}, then, without loss of
generality, Ai ⊆ W since a − b ∈ E(Γ(R)) for all a, b ∈ Ai.
Thus, we may assume that A2

i ̸= {0}. Clearly, ann(xi)
∗ is a set

which isolates every vertex of Ai. If ann(xi) ⊆ X, then, by the
minimality of X, we have that ann(xi) = X, and the result holds.
If ann(xi) ̸⊆ X, then there exists y ∈ ann(xi)\X. If there exists
a, b ∈ Ai with a ∈ W and b ∈ Z ,then a − y − b is a path from
W to Z not through X, a contradiction. Thus, Ai is contained in
either W or Z. �

Note that proper containment in Proposition 4.7 (ii) is possible.
Consider R = Z8[x]/(x

2). Then ann(4x) is a maximal annihilator ideal
(in fact, Z(R)∗ = ann(4x)), but {4x} is not a cut-set. Also, even
though {4x, 2x, 6x, 4, 2x + 4, 4x + 4, 6x + 4} is a cut-set, it does not
correspond to any annihilator ideal (maximal or otherwise).

We conclude by stating two corollaries achieved by examining the
situations in Propositions 4.6 and 4.7 when situated within the com-
pressed zero-divisor graph. In Corollary 4.9, we omit statement (i)
since it gives no interesting information.

Corollary 4.8. Let Z(R) =
n
∪
i=1

ann(xi), where the ann(xi) are non-

comparable prime ideals with |Ai| = |Λi|, where each Λi is a (possibly
infinite) index set for Ai. Then Γ(R) contains the graph Kn. Moreover,
the vertex [xi] looped if and only if x2

i = 0.
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Figure 10. Γ(Z8[x]/(x
2)).

Corollary 4.9. Let R be a Noetherian ring with

Z(R) =
n∪

i=1

ann(xi),

where the ann(xi) are non-comparable prime ideals. Let X be a cut-set
of Γ(R) separating the graph into W and Z.

(ii) [xi] ∈ X for some i,
(iii) if there exist distinct [xi], [xj ] /∈ X, then, without loss of

generality, [xk] ⊆ W for all [xk]  X, and
(iv) if there exists a unique [xi] such that [xi] /∈ X, then, without

loss of generality, either [xi] ⊆ W , or [xi] is isolated by X.
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