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PARTIAL COLORING, VERTEX DECOMPOSABILITY,
AND SEQUENTIALLY COHEN-MACAULAY

SIMPLICIAL COMPLEXES
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HUY TÀI HÀ AND ADAM VAN TUYL

ABSTRACT. In attempting to understand how combi-
natorial modifications alter algebraic properties of mono-
mial ideals, several authors have investigated the process of
adding “whiskers” to graphs. In this paper, we study a simi-
lar construction for building a simplicial complex ∆χ from a
coloring χ of a subset of the vertices of ∆ and give necessary
and sufficient conditions for this construction to produce ver-
tex decomposable simplicial complexes. We apply this work
to strengthen and give new proofs about sequentially Cohen-
Macaulay edge ideals of graphs.

1. Introduction. Square-free monomial ideals are intimately con-
nected to combinatorics. This connection raises the natural question:
how do changes in combinatorial structures affect algebraic properties
of associated square-free monomial ideals? In [15], Villarreal investi-
gates the process of adding whiskers to a finite simple graph, and (citing
also Fröberg, Herzog and Vasconcelos) proves that the edge ideal of a
graph with whiskers added to every vertex is always Cohen-Macaulay.
To add a whisker to a vertex, one adds an additional vertex and an
edge between the old vertex and the new one.

Generalizing Villarreal’s work, in [8] the second and the third
authors studied additions of whiskers to subsets of the vertices that
produce sequentially Cohen-Macaulay edge ideals. The configuration
of the whiskers, not the number, determines when the resulting ideals
are sequentially Cohen-Macaulay, demonstrating the subtlety of the
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problem. The techniques in [8] are mostly algebraic, focusing on
when the cover ideals are componentwise linear, a property which is
equivalent to the Alexander dual being sequentially Cohen-Macaulay.

In a different direction, several authors have used methods from com-
binatorial topology to study similar phenomena. The primary combi-
natorial object in these efforts is the independence complex of a graph,
the simplicial complex whose Stanley-Reisner ideal coincides with the
edge ideal of the graph. For instance, Woodroofe [16] and Dochter-
mann and Engström [7] use combinatorial topology to prove that the
independence complex of a chordal graph is vertex decomposable, im-
plying that the edge ideal is sequentially Cohen-Macaulay. Dochter-
mann and Engström [7] also show that the independence complex of
a completely whiskered graph is a pure vertex decomposable simplicial
complex, and consequently, Cohen-Macaulay, thus giving a combina-
torial topological proof of Villarreal’s result. Cook and Nagel [6] use
full clique-whiskering, a technique that begins by partitioning the ver-
tex set of a graph into cliques. For each of these cliques, one adds
a new vertex and connects it to each vertex in the clique. Cook and
Nagel prove that fully clique-whiskered graphs are vertex-decomposable
[6, Theorem 3.3]; when the cliques in the partition each consist of a
single vertex, this recovers the results of Villarreal and Dochtermann-
Engström.

The first and fourth authors take a blended approach in [1] to extend
these results about independence complexes of graphs to all simplicial
complexes. Starting with any coloring χ of the vertices of ∆, they
construct a new simplicial complex ∆χ that is vertex decomposable.
The whiskering construction of Villarreal and the clique-whiskering
technique of Cook and Nagel [6] become special instances of this
construction.

The constructions in [1, 6, 15] always result in pure vertex decom-
posable simplicial complexes (and thus, Cohen-Macaulay complexes).
The algebraic results of [8] are therefore not a consequence of these
results because the corresponding independence complex associated to
the partially whiskered graph is not necessarily pure.

In this paper, in the spirit of [8], we extend the construction in
[1] to partial whiskerings of simplicial complexes. We start with a
partial coloring χ of ∆ (see Definition 2.9) and use χ and ∆ to build
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a new simplicial complex ∆χ (see Construction 3.1), which we call
a partially whiskered simplicial complex. We give a necessary and
sufficient condition for a partially whiskered simplicial complex to be
vertex decomposable.

Theorem 1.1 (Theorem 3.4). Let ∆ be a simplicial complex on the
vertex set V , and let W be a subset of V . Let χ be the s-coloring of
∆|W given by W = W1 ∪ · · · ∪ Ws. Then ∆χ is vertex decomposable
if and only if link∆(µ)|W is vertex decomposable for every face µ of ∆
such that µ ⊆ W .

Theorem 3.4 has a number of consequences. Corollary 3.7 shows that
when W = V , ∆χ is always vertex decomposable, thus recovering the
main result of [1]. Corollary 3.7 also gives the analog to the numerical
bound of the second and third authors [8] for graphs. Namely, if one
has a simplicial complex with n vertices, and |W | ≥ n − 3, one gets a
vertex decomposable simplicial complex. As in the case of graphs, this
bound is sharp (see Example 3.8).

In Section 4, we apply Theorem 3.4 to study edge ideals of graphs.
In particular, we get necessary and sufficient conditions for a whiskered
graph to be vertex decomposable (see Theorem 4.6). This result yields
Corollary 4.8, a new proof for [8, Theorem 3.3] specifying which
configurations of whiskers force the edge ideal to be sequentially Cohen-
Macaulay; this provides the combinatorial approach to the results of
[8] sought in [7]. We also use Theorem 3.4 to classify which whiskered
bipartite graphs are sequentially Cohen-Macaulay (see Theorem 4.11).

Our paper is organized as follows. In Section 2, we recall the
relevant background. In Section 3, we present the main theorems and
derive some of their consequences. Section 4 applies our results to
independence complexes of graphs.

2. Background. We recall the relevant background on simplicial
complexes.

Definition 2.1. A finite simplicial complex ∆ on a finite vertex set
V is a collection of subsets of V with the property that, if σ ∈ ∆ and
τ ⊆ σ, then τ ∈ ∆. The elements of ∆ are called faces. The maximal
faces of ∆, with respect to inclusion, are the facets.
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The vertex sets of our simplicial complexes will be either the set
{x1, . . . , xn} or the set {x1, . . . , xn, y1, . . . , ys}. If ∆ is a simplicial
complex and σ ∈ ∆, then we say σ has dimension d if |σ| = d + 1
(by convention, the empty set has dimension −1). We say ∆ is pure if
all of its facets have the same dimension; otherwise, ∆ is non-pure. If
F1, . . . , Ft is a complete list of the facets of ∆, we sometimes write ∆
as ∆ = ⟨F1, . . . , Ft⟩. If σ ∈ ∆ is a face, then the deletion of σ from ∆
is the simplicial complex defined by

∆ \ σ = {τ ∈ ∆ | σ ̸⊆ τ}.

The link of σ in ∆ is the simplicial complex defined by

link∆(σ) = {τ ∈ ∆ | σ ∩ τ = ∅, σ ∪ τ ∈ ∆}.

When σ = {v}, we shall abuse notation and write ∆ \ v (respectively,
link∆(v)) for ∆ \ {v} (respectively, link∆({v})).

We shall be particularly interested in the class of vertex decompos-
able simplicial complexes. This class was first introduced in the pure
case by Provan and Billera [13] and in the non-pure case by Björner
and Wachs [3]. We recall the non-pure version.

Definition 2.2. A simplicial complex ∆ on vertex set V is called vertex
decomposable if

(i) ∆ is a simplex, or
(ii) there is some vertex v ∈ V such that ∆ \ v and link∆(v) are

vertex decomposable and do not share any facets; such a vertex
v is called a shedding vertex of ∆.

Remark 2.3. When ∆ is vertex decomposable, then ∆ also inherits
other combinatorial and algebraic properties. In particular, if ∆ is pure
and vertex decomposable, then ∆ has a pure shelling, and its Stanley-
Reisner ring R/I∆ is Cohen-Macaulay. If ∆ is non-pure and vertex
decomposable, then ∆ is still shellable, in the non-pure sense of Björner
and Wachs [3], and its Stanley-Reisner ring R/I∆ is sequentially
Cohen-Macaulay (see Section 4 for a definition). We point the reader
to the text of Herzog and Hibi [11] for a complete treatment of these
ideas.



SCM SIMPLICIAL COMPLEXES 341

For simplicial complexes ∆ and Ω over disjoint vertex sets V and U ,
respectively, the join of ∆ and Ω, denoted by ∆ · Ω, is the simplicial
complex over the vertex set V ∪U , whose faces are {σ ∪ τ | σ ∈ ∆, τ ∈
Ω}. Provan and Billera proved:

Theorem 2.4 ([13, Proposition 2.4]). The join ∆ ·Ω is vertex decom-
posable if and only if both ∆ and Ω are vertex decomposable.

The property of vertex decomposability is preserved when taking
a link. The following result was first proved in [13, Proposition 2.3]
in the pure case; the non-pure case follows similarly, as noted in [12,
Theorem 3.30] and [17, Proposition 3.7].

Theorem 2.5. If ∆ is vertex decomposable, then link∆(σ) is vertex
decomposable for any σ ∈ ∆.

An important notion for our main construction and results in Sec-
tion 3 is that of a coloring of a simplicial complex.

Definition 2.6. Let ∆ be a simplicial complex on the vertex set V
with facets F1, . . . , Ft. An s-coloring of ∆ is a partition of the vertices
V = V1∪ · · ·∪Vs (where the sets Vi are allowed to be empty) such that
|Fi ∩ Vj | ≤ 1 for all 1 ≤ i ≤ t, 1 ≤ j ≤ s. We will sometimes write that
χ is an s-coloring of ∆ to mean χ is a specific partition of V that gives
an s-coloring of ∆. If there exists an s-coloring of ∆, we say that ∆ is
s-colorable.

Note that the definition of an s-coloring is equivalent to an s-
coloring (in the graph theoretic sense) of the 1-skeleton of the simplicial
complex.

Example 2.7. If ∆ is a simplicial complex on |V | = n vertices, then
∆ is n-colorable; indeed, we take our coloring to be V = {x1} ∪ {x2} ∪
· · · ∪ {xn}.
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In this paper, we are interested in the case in which a subset of
the vertices of a simplicial complex is colored, or equivalently, in the
coloring of an induced subcomplex.

Definition 2.8. Let ∆ be a simplicial complex on the vertex set V ,
and let W ⊆ V . The restriction of ∆ to W (or equivalently, the induced
subcomplex over W ) is the subcomplex

∆|W = {σ ∈ ∆ | σ ⊆ W}.

Definition 2.9. Let ∆ be a simplicial complex on the vertex set V ,
and let W ⊆ V . If χ is an s-coloring of the restriction ∆|W , then we
call χ a partial coloring of ∆. We call the vertices in W the colored
vertices of ∆ and those in W = V \W the non-colored vertices.

Example 2.10. Let ∆ = ⟨x1x2x3, x2x4⟩, and let W = {x1, x2, x4}.
Then ∆|W = ⟨x1x2, x2x4⟩. Then a 2-coloring χ of ∆|W is given by
W = {x1, x4}∪{x2}. So χ is a partial coloring of ∆, where the vertices
of W are the colored vertices, and {x3} is a non-colored vertex.

3. Partial colorings and vertex decomposability. Given any
simplicial complex ∆ with a partial coloring χ, we introduce a con-
struction to make a new simplicial complex ∆χ. Our main result gives
necessary and sufficient conditions for ∆χ to be vertex decomposable.
We begin with the construction of ∆χ.

Construction 3.1. Let ∆ be a simplicial complex on the vertex set
V = {x1, . . . , xn}, and let W be a subset of V . Let χ be an s-coloring
of ∆|W given by W = W1 ∪ · · · ∪ Ws. Define ∆χ to be the simplicial
complex on the vertex set {x1, . . . , xn, y1, . . . , ys} with faces σ∪τ , where
σ is a face of ∆, and τ is any subset of {y1, . . . , ys} such that, for all
yj ∈ τ , we have σ ∩Wj = ∅. Note, in particular, that since ∅ is a face
of ∆, {y1, y2, . . . , ys} is always a face of ∆χ.

The first and fourth authors recently studied Construction 3.1 in [1]
in the case that W = V ; this case also appears in [9] and implicitly
in a proof in [2]. We call the process of adding a new vertex yi for a
color class Wi whiskering, and the resulting complex ∆χ the (partially)
whiskered simplicial complex.
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Example 3.2. Consider the simplicial complex ∆ = ⟨x1x2x3, x2x4⟩ of
Example 2.10. If W = {x1, x2, x4}, take χ to be the coloring of ∆|W
given byW = {x1, x4}∪{x2}. Then ∆χ = ⟨x3y1y2, x4y2, x1x3y2, x2x3y1,
x2x4, x1x2x3⟩. ∆ and ∆χ are shown in Figure 1.
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Figure 1. The simplicial complexes ∆ (left) and ∆χ (right).

Remark 3.3. To forestall any potential confusion, “whiskering a
vertex,” as first defined in [15], referred to adding a new additional
vertex to a graph and joining the new and old vertices by an edge. This
operation was defined in terms of the finite simple graph. However, this
procedure also results in a change in the independence complex of the
graph (see Section 4 for details). In our definition, when we use the
term “whiskering,” we are generalizing the operation that changes the
independence complex, not the graph.

Our main result is necessary and sufficient conditions for ∆χ to be
vertex decomposable.

Theorem 3.4. Let ∆ be a simplicial complex on the vertex set V ,
and let W be a subset of V . Let χ be the s-coloring of ∆|W given
by W = W1 ∪ · · · ∪ Ws. Then ∆χ is vertex decomposable if and only
if link∆(µ)|W is vertex decomposable for every face µ of ∆ such that
µ ⊆ W .

Remark 3.5. The special case µ = ∅ in Theorem 3.4 is instructive.
Because link∆(∅) = ∆, the link hypothesis imposes the condition that
∆|W is vertex decomposable.

Proof of Theorem 3.4. (⇐). We proceed by induction on the num-
ber of vertices of ∆. The base case is the empty simplicial complex ∆ =
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{∅}. In this case, the only partial coloring of ∆ is W = W1 ∪ · · · ∪Ws,
where all the Wi are empty. Then ∆χ is the simplex ⟨{y1, . . . , ys}⟩,
which is vertex decomposable.

Now let ∆ be a simplicial complex on vertex set V = {x1, . . . , xn},
and let W ⊆ V . If W = ∅, then ∆χ = ∆ · ⟨{y1, . . . , ys}⟩, the join of
two simplicial complexes. The link hypothesis with µ = ∅ implies that
∆|∅ = ∆ is vertex decomposable. It then follows from Theorem 2.4 that
∆χ is vertex decomposable. We can therefore assume that ∆ ̸= {∅}
and W ̸= ∅.

Let w ∈ W . After relabelling, we will assume that w ∈ W1. To
prove that ∆χ is vertex decomposable, we will show that ∆χ \ w and
link∆χ(w) are both vertex decomposable.

Recall that the faces of ∆χ are of the form σ ∪ τ , where σ is a face
of ∆ and τ ⊆ {y1, . . . ys} such that, if yj ∈ τ , then Wj ∩ σ = ∅. Note
that

∆χ \ w = {σ ∪ τ ∈ ∆χ | w /∈ σ ∪ τ}
= {σ ∪ τ ∈ ∆χ | w /∈ σ}
= (∆ \ w)χ′ ,

where χ′ is the partial coloring (W1 \ {w}) ∪ W2 ∪ · · · ∪ Ws of ∆ \ w
induced by the coloring χ of ∆. Since w ∈ W , the uncolored vertices
of ∆ and ∆ \w are the same set W . Now let µ be a face of ∆ \w such
that µ ⊆ (W \ {w}). Then, since w /∈ W ,

(link∆\w(µ))|W = {σ ∈ (∆ \ w) | µ ∩ σ = ∅, µ ∪ σ ∈ (∆ \ w)}|W
= {σ ∈ ∆ | w /∈ σ, µ ∩ σ = ∅, µ ∪ σ ∈ (∆ \ w)}|W
= {σ ∈ ∆ | µ ∩ σ = ∅, µ ∪ σ ∈ ∆}|W
= (link∆(µ))|W .

Thus, we have that (link∆\w(µ))|W is vertex decomposable by hypoth-
esis. Therefore, since ∆ \ w is a simplicial complex on fewer than n
vertices with χ′ a partial coloring on W \{w} such that (link∆\w(µ))|W
is vertex decomposable for all µ ⊆ (W \ {w}), induction implies that
∆χ \ w = (∆ \ w)χ′ is vertex decomposable.

Now consider link∆χ(w). We have

link∆χ(w) = {σ ∪ τ ∈ ∆χ | w /∈ σ ∪ τ, σ ∪ τ ∪ {w} ∈ ∆χ}
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= {σ ∪ τ ∈ ∆χ | w /∈ σ, (σ ∪ {w}) ∪ τ ∈ ∆χ}
= (link∆(w))χ′′ ,

where χ′′ is the partial coloring of link∆(w) given by U2 ∪ · · · ∪ Us,
and Uj = Wj ∩ {vertices of link∆(w)}. Because w ∈ W1, we need only
consider Uj for j = 2, . . . , s. Set U = U2 ∪ · · · ∪ Us (i.e., the colored

vertices of link∆(w)) and U to be the set of non-colored vertices of
link∆(w).

Note that U = W ∩ {vertices of link∆(w)}. Let µ be a face of
link∆(w) such that µ ⊆ U . Since µ ∈ link∆(w), we have µ ∪ {w} ∈ ∆.
Then

linklink∆(w)(µ) = link∆(µ ∪ {w}),

so

(linklink∆(w)(µ))|U = (linklink∆(w)(µ))|W = (link∆(µ ∪ {w}))|W .

By the assumption on ∆, (link∆(µ ∪ {w}))|W is vertex decomposable.
Because link∆χ(w) = (link∆(w))χ′′ , and link∆(w) is a simplicial com-
plex on fewer than n vertices, link∆χ(w) is vertex decomposable by
induction.

To show that ∆χ is vertex decomposable, all that remains is to show
that no facet of link∆χ(w) is a facet of ∆χ \ w. Let σ ∪ τ be a facet of
link∆χ(w). Then (σ ∪{w})∪ τ is a face of ∆χ, so y1 /∈ τ . On the other
hand, if σ ∪ τ ∈ ∆χ \ w, then since σ ∩W1 = ∅, σ ∪ τ ∪ {y1} is also a
face of ∆χ \ w and so the link and deletion do not share any facets.

(⇒). Let µ ∈ ∆ be a face such that µ ⊆ W , and hence µ ∈ ∆|W .
Because χ is an s-coloring of ∆|W , we have |µ∩Wi| ≤ 1 for i = 1, . . . , s.
After relabelling the Wj ’s, we may assume that |µ ∩ Wi| = 1 for
i = 1, . . . , t, and |µ ∩Wi| = 0 for i = t+ 1, . . . , s.

By Construction 3.1, we have µ∪{yt+1, . . . , ys} ∈ ∆χ. We now claim
that

link∆(µ)|W = link∆χ(µ ∪ {yt+1, . . . , ys}).

Notice that our conclusion will then follow from this claim and Theo-
rem 2.5 because ∆χ is assumed to be vertex decomposable.

For any τ ∈ link∆(µ)|W , we have τ∪µ ∈ ∆, τ∩µ = ∅, and τ∩W = ∅.
By Construction 3.1, τ∪µ∪{yt+1, . . . , ys} ∈ ∆χ because (τ∪µ)∩Wi = ∅
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for i = t + 1, . . . , s. Moreover, since τ ∩ (µ ∪ {yt+1, . . . , ys}) = ∅, we
have τ ∈ link∆χ

(µ ∪ {yt+1, . . . , ys}).
We now consider the reverse inclusion. Let τ ∈ link∆χ(µ ∪

{yt+1, . . . , ys}). Thus, τ ∪ µ ∪ {yt+1, . . . , ys} ∈ ∆χ and τ ∩ (µ ∪
{yt+1, . . . , ys}) = ∅. Since |µ ∩ Wi| = 1 for i = 1, . . . , t we know
that yi /∈ τ for i = 1, . . . , t. Therefore, τ ⊆ {x1, . . . , xn}, and τ ∪ µ
must be a face of ∆. Thus, τ ∈ link∆(µ).

Further, since τ ∪ µ ∈ ∆ and |µ ∩Wi| = 1 for i = 1, . . . , t, we have
|τ ∩Wi| = 0 for i = 1, . . . , t. Since τ ∪µ∪{yt+1, . . . , ys} ∈ ∆χ, we have
|τ ∩Wi| = 0 for i = t+1, . . . , s as well. Therefore, τ ∈ link∆(µ)|W . �

Remark 3.6. Let ∆ = ⟨x1x2x3x4, x1x3x4x5, x1x3x5x6, x1x2x5x6,
x2x3x6⟩, and let χ be the coloring given by W = {x1} ∪ {x2}. Then
∆|W , link∆(x1)|W , and link∆(x2)|W are all vertex decomposable. How-
ever, link∆({x1, x2})|W is not vertex decomposable, so by Theorem 3.4,
neither is ∆χ.

We now give a bound on the number of vertices to color to ensure
that ∆χ is vertex decomposable. The following corollary also recovers
[1, Theorem 3.7] in the case where |V \W | = 0.

Corollary 3.7. Let ∆ be a simplicial complex on vertex set V , W a
subset of V and χ a coloring of ∆|W . If |V \W | ≤ 3, then ∆χ is vertex
decomposable.

Proof. All simplicial complexes on three or fewer vertices are vertex
decomposable. Since |W | = |V \ W | ≤ 3, link∆(µ)|W is vertex
decomposable for any µ ∈ ∆ such that µ ⊆ W . Thus, by Theorem 3.4,
∆χ is vertex decomposable. �

The previous corollary is an analog of a bound of the second and
third authors [8, Corollary 3.5]. The numerical bound on the cardinal-
ity of W in Corollary 3.7 is sharp:

Example 3.8. Let ∆ = ⟨x1x2x3, x3x4x5⟩, W = {x3} and χ be the
coloring of ∆|W given by W = W1 = {x3}, so |W | = 4. Then
link∆(∅) = ∆|W = ⟨x1x2, x4x5⟩, which is not vertex decomposable.
Thus, ∆ with this coloring does not fit the conditions of Theorem 3.4.
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Indeed, ∆χ = ⟨x4x5y1, x1x2y1, x3x4x5, x1x2x3⟩ is not vertex decom-
posable.

As noted in [8], it is not necessarily the number of whiskers but
rather their configuration that determines whether the resulting ideal
is sequentially Cohen-Macaulay. A similar phenomenon occurs in our
setting. In particular, given any coloring of ∆, if χ is its restriction to
all but one color class, then ∆χ is vertex decomposable.

Corollary 3.9. Let ∆ be a simplicial complex on the vertex set V =
{x1, . . . , xn}, and let χ be an s-coloring of ∆ given by V = V1∪· · ·∪Vs.
For each i = 1, . . . , s, let χi be the induced partial coloring of ∆|Yi given
by Yi = V1 ∪ · · ·Vi−1 ∪ Vi+1 ∪ · · ·Vs. Then ∆χi

is vertex decomposable
for each i = 1, . . . , s.

Proof. It suffices to prove the statement for i = 1. Let Y1 =
V2 ∪ · · · ∪ Vs be the induced partial coloring of ∆ given by χ1. Then
Y1 = V1. Since χ is a coloring, if σ ∈ ∆ and σ ⊆ V1, then |σ| ≤ 1.
Then, for any µ ⊆ Y , link∆(µ)|V1 is either the simplicial complex {∅}
or a zero-dimensional simplex. Because these simplicial complexes are
vertex decomposable, Theorem 3.4 implies the desired result. �

4. Sequentially Cohen-Macaulay edge ideals. We round out
this paper by applying Theorem 3.4 to edge ideals of graphs. In
particular, we give a new proof of [8, Theorem 3.3] and classify when
a whiskered bipartite graph is sequentially Cohen-Macaulay.

We recall some terminology. Let G = (V,E) be a finite simple graph.
We say W ⊆ V is an independent set if for all e ∈ E, e ∩W ̸= e. We
can form a simplicial complex from the independent sets of G:

Definition 4.1. Let G be a finite simple graph. The independence
complex of G, denoted Ind (G), is the simplicial complex Ind (G) =
{W | W is an independent set of G}.

If V = {x1, . . . , xn}, we can identify the vertices of G with the
variables of R = k[x1, . . . , xn]. The edge ideal of G, denoted I(G), is
the quadratic squarefree monomial ideal generated by the monomials
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xixj whenever {xi, xj} ∈ E. The edge ideal of G is the Stanley-Reisner
ideal of Ind(G), i.e., I(G) = IInd(G)

.

We recall the definition of sequentially Cohen-Macaulay modules as
it pertains to I(G).

Definition 4.2. The graph G is sequentially Cohen-Macaulay if
R/I(G) is sequentially Cohen-Macaulay; that is, there exists a finite
filtration of graded R modules 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = R/I(G)
such that Mi/Mi−1 is Cohen-Macaulay for each i ∈ {1, . . . , t}, and
for all i ∈ {1, l . . . , t − 1}, dimMi/Mi−1 < dimMi+1/Mi. The ideal
I(G) is a sequentially Cohen-Macaulay edge ideal if G is sequentially
Cohen-Macaulay.

If we specialize the general theory of vertex decomposable simplicial
complexes, we have the following link between these objects.

Theorem 4.3. If Ind(G) is vertex decomposable, then G is sequentially
Cohen-Macaulay.

Given a subset S ⊆ V , we denote by G ∪W (S) the graph obtained
by adding whiskers to all the vertices of S. After relabelling, we
can always assume S = {x1, . . . , xs}. The following lemma, which is
simply applying the definitions, describes the connection between the
whiskered graph G ∪W (S) and Construction 3.1.

Lemma 4.4. Let G be a finite simple graph on the vertex set V ,
and let S ⊆ V . Let χ be the s-coloring of Ind (G)|S given by S =
{x1} ∪ · · · ∪ {xs}. Then Ind,(G ∪W (S)) = Ind (G)χ.

Remark 4.5. One can also recover the clique-starring and clique-
whiskering techniques of Woodroofe [16] and Cook and Nagel [6] from
Construction 3.1, coloring all vertices and allowing each coloring class
to have more than one vertex.

When restricted to independence complexes of graphs, Theorem 3.4
gives us necessary and sufficient conditions for a whiskered graph to
have vertex decomposable independence complex. Below, G\µ denotes
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a graph G with the vertices of µ and adjacent edges removed. For any
subset W ⊆ V , we use G|W to denote the induced subgraph of G
on W , i.e., the graph with vertices the elements of W and edge set
{e ∈ E | e ⊆ W}.

Theorem 4.6. Let Ind (G) be the independence complex of a graph G
on a vertex set V , and let S ⊆ V . Then Ind (G ∪ W (S)) is vertex
decomposable if and only if Ind ((G \ µ)|S) is vertex decomposable for
all µ ∈ Ind (G) with µ ⊆ S.

Proof. By Lemma 4.4, Ind (G∪W (S)) = Ind (G)χ for the s-coloring
χ of Ind (G)S given by S = {x1} ∪ · · · ∪ {xs}. On the other hand, for
any µ ⊆ S, one can show that

linkInd (G)
(µ)|S = Ind (G \ µ)|S = Ind ((G \ µ)|S).

Thus, the statement is simply restricting Theorem 3.4 to independence
complexes. �

Recall that a graph G is chordal if it has no induced cycles of length
≥ 4. The independence complexes of chordal graphs are particularly
nice:

Theorem 4.7 ([7, Theorem 4.1][16, Corollary 7(2)]). If G is chordal
graph, then Ind (G) is vertex decomposable.

We now show how Theorem 4.6 not only allows us to give a new proof
of [8, Theorem 3.3] but also strengthen it. The original conclusion of [8,
Theorem 3.3] is that the associated edge ideals are sequentially Cohen-
Macaulay. This now follows from Corollary 4.8 and Theorem 4.3.

Corollary 4.8. Let G be a finite simple graph, and let S ⊆ V . Suppose
that G \ S, the induced subgraph over the vertices V \ S, is either a
chordal graph or the five cycle C5. Then Ind (G ∪ W (S)) is vertex
decomposable. In particular, G∪W (S) is sequentially Cohen-Macaulay.

Proof. First assume that G \ S is a chordal graph. Let V =
{x1, . . . , xn} and suppose, after relabelling, S = {x1, . . . , xs}. Let χ
be the s-coloring of Ind (G)|S given by S = {x1} ∪ · · · ∪ {xs}. For



350 BIERMANN, FRANCISCO, HÀ AND VAN TUYL

any µ ⊆ S, (G \ µ)|S is an induced subgraph of G|S , so it is chordal.
By Theorem 4.7, Ind ((G \ µ)|S) is vertex decomposable. Now apply
Theorem 4.6.

The proof for the case G \ S is a five-cycle is similar because the
independence complex of a five-cycle is vertex decomposable, as are
any induced subgraphs. �

Remark 4.9. The proof of Corollary 4.8 only requires that all the
induced subgraphs of G \ S have the property that their independence
complexes be vertex decomposable. Woodroofe [16] has shown that all
graphs whose only induced cycles are either three-cycles or five-cycles
have this property; this family contains the family of graphs listed in
the above corollary. Our statement of Corollary 4.8 was chosen to
highlight the connection to the work of [8].

In the case of bipartite graphs, we can strengthen our results and
classify exactly when a whiskered bipartite graph is sequentially Cohen-
Macaulay. Recall that we say that a graph G = (V,E) is bipartite if
there exists a partition V = V1 ∪ V2 such that, for all e ∈ E, we have
e ∩ V1 ̸= ∅ and e ∩ V2 ̸= ∅. We then need the following result of the
fourth author.

Theorem 4.10 ([14, Theorem 2.10]). Let G be a bipartite graph. Then
Ind (G) is vertex decomposable if and only if G is sequentially Cohen-
Macaulay.

We then have the following classification.

Theorem 4.11. Let I(G) be the edge ideal of a bipartite graph G on
a vertex set V and let S ⊆ V . Then G ∪W (S) is sequentially Cohen-
Macaulay if and only if (G \ µ)|S is sequentially Cohen-Macaulay for
all µ ∈ Ind (G) with µ ⊆ S.

Proof. When G is a bipartite graph, the graph G ∪W (S) will also
be bipartite for any S ⊆ V . In addition, any subgraph of the form
(G \ µ)S will also be bipartite.
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So, Theorem 4.10 implies G∪W (S) is sequentially Cohen-Macaulay
if and only if Ind (G∪W (S)) is vertex decomposable. But, by Theorem
4.6, Ind (G ∪W (S)) is vertex decomposable if and only if Ind (G \ µ)S
is vertex decomposable for all µ ∈ Ind (G) with µ ⊆ S. But, again by
Theorem 4.10, this can happen if and only if (G \ µ)S is sequentially
Cohen-Macaulay for all µ ∈ Ind (G) with µ ⊆ S. �

Remark 4.12. It is natural to ask if Theorem 4.11 holds for all graphs,
not just bipartite graphs. Examining the proof of Theorem 4.11, we
might be able to find a counterexample if there exists a graph G that is
sequentially Cohen-Macaulay, but Ind (G) is not vertex decomposable,
i.e., if the converse of Theorem 4.3 is false. This is indeed the case. As
pointed out in [8, Example 4.4], we can construct a graph G from a
minimal triangulation of the real projective plane such that G is Cohen-
Macaulay over a field k if and only if the characteristic of k is not 2.
In particular, over a field of characteristic 0, G is Cohen-Macaulay, but
Ind (G) is not vertex decomposable.

Acknowledgments. We used CoCoA [4], Macaulay2 [10] and the
package SimplicialDecomposabilty by David Cook II [5] for our com-
puter experiments.
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