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FROBENIUS VECTORS, HILBERT SERIES AND
GLUINGS OF AFFINE SEMIGROUPS

A. ASSI, P.A. GARCÍA-SÁNCHEZ AND I. OJEDA

ABSTRACT. Let S1 and S2 be two affine semigroups,
and let S be the gluing of S1 and S2. Several invariants
of S are related to those of S1 and S2; we review some
of the most important properties preserved under gluings.
The aim of this paper is to prove that this is the case for
the Frobenius vector and the Hilbert series. Applications to
complete intersection affine semigroups are also given.

1. On gluings of affine semigroups. In this section, we briefly
summarize results on the gluing of affine semigroups. We also introduce
concepts and notation used throughout the paper.

An affine semigroup S is a finitely generated submonoid of Zm for
some positive integer m. If S ∩ (−S) = 0, that is to say, S is reduced,
it can be shown that it has a unique minimal system of generators
(see, for instance, [25, Chapter 3]). The cardinality of the minimal
generating system of S is known as the embedding dimension of S.
Recall that each reduced affine semigroup can be embedded into Nm

for some m. In the following, we will assume that our affine semigroups
are submonoids of Nm.

Given an affine semigroup S ⊆ Nm, denote by G(S) the group
spanned by S, that is,

G(S) =
{
z ∈ Zm | z = a− b,a,b ∈ S

}
.
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Let A be the minimal generating system of S, and let A = A1 ∪A2

be a nontrivial partition of A. Let Si = ⟨Ai⟩ (the monoid generated by
Ai), i ∈ {1, 2}. Then S = S1 + S2. We say that S is the gluing of S1

and S2 by d if

• d ∈ S1 ∩ S2, and
• G(S1) ∩G(S2) = dZ.

We will denote this fact by S = S1 +d S2.

There are several properties that are preserved under gluings, and
also some invariants of a gluing S1 +d S2 can be computed by knowing
their values in S1 and S2. We summarize some of them next.

Assume that A = {a1, . . . ,ak}. The monoid homomorphism φ :
Nk → S induced by ei 7→ ai, i ∈ {1, . . . , k}, is an epimorphism (where
ei is the ith row of the k×k identity matrix). Thus, S is isomorphic as
a monoid to Nk/ kerφ, where kerφ is the kernel congruence of φ, that
is, the set of pairs (a,b) ∈ Nk × Nk with φ(a) = φ(b). A presentation
of S is a system of generators of kerφ. A minimal presentation is
a presentation such that none of its proper subsets is a presentation.
All minimal presentations have the same (finite) cardinality (see, for
instance, [25, Corollary 9.5]). Suppose that S = S1 +d S2, where
Si = ⟨Ai⟩ for i ∈ {1, 2}, and that A = A1 ∪A2 is a nontrivial partition
of A. We may assume, without loss of generality, that A1 = {a1, . . . ,al}
and A2 = {al+1, . . . ,ak}. According to [22, Theorem 1.4], if we know
minimal presentations of S1 and S2, then we can construct a minimal
presentation of S in the following way. Let ρi be a minimal presentation
of Si, i ∈ {1, 2}. Take (a,b) ∈ Nk × Nk with φ(a) = φ(b) = d, the
first l coordinates of b equal to zero and the last k− l coordinates of a
equal to zero. Then

ρ = ρ1 ∪ ρ2 ∪ {(a,b)}

is a minimal presentation of S (actually, [22, Theorem 1.4] asserts that
this characterizes that S = S1 +d S2).

For an affine semigroup S define Betti(S) as the set of s ∈ S for
which there exists a,b ∈ φ−1(s) such that (a,b) belongs to a minimal
presentation of S. Theorem 10 in [14] states that

Betti(S1 +d S2) = Betti(S1) ∪ Betti(S2) ∪ {d}.

Since several invariants such as the catenary degree and the maximum
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of the delta sets depend on the Betti elements of S ([9, 8], respectively),
the computation of these invariants for S1+dS2 can be performed once
we know their values for S1, S2 and d (see, for instance, [7, Corollary
4]).

Affine semigroups with a single Betti element can be characterized
as a gluing of several copies of affine semigroups with empty minimal
presentation (and thus isomorphic to Nt for some positive integer t)
along this single Betti element ([15]).

We say that S is uniquely presented if, for every two minimal
presentations σ and τ and every (a,b) ∈ σ, either (a,b) ∈ τ or
(b,a) ∈ τ , that is, there is a unique minimal presentation up to
rearrangement of the pairs of the minimal presentation. It is known
([14, Theorem 12]) that S1 +d S2 is uniquely presented if and only if
S1 and S2 are uniquely presented and ±(d − a) /∈ S1 +d S2 for every
a ∈ Betti(S1) ∪ Betti(S2).

It is well known that the cardinality of any minimal presentation of
an affine semigroup is greater than or equal to its embedding dimension
minus the dimension of the vector space spanned by the semigroup.
An affine semigroup is a complete intersection affine semigroup if the
cardinality of any of its minimal presentations attains this lower bound.
It can be shown that an affine semigroup is a complete intersection if
and only if it is either isomorphic to Nt for some positive integer t or it
is the gluing of two complete intersection affine semigroups ([12]). This
result generalizes [23], which generalizes the classical result by Delorme
for numerical semigroups ([11]; actually, the definition of gluing was
inspired in that paper).

A numerical semigroup is a submonoid of N with finite complement
in N. It is easy to see that every numerical semigroup is finitely
generated (see, for instance, [26, Chapter 1]), and thus every numerical
semigroup is an affine semigroup. Let S be a numerical semigroup. The
largest integer not belonging to S is known as its Frobenius number,
F(S). By definition, F(S) + 1 + N ⊆ S. This is why the integer
F(S) + 1 is known as the conductor of S. Delorme [11] shows that the
conductor of a numerical semigroup, that is, a gluing, say S1+dS2, can
be computed in terms of the conductors of S1, S2 and d (we use d here
instead of d because in this setting d is an integer). Thus, a formula for
the Frobenius number of a numerical semigroup that is a gluing is easily
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derived (this idea is exploited in [4] to give a procedure for computing
the set of all complete intersection numerical semigroups with given
Frobenius number). One of the aims of this paper is to generalize this
formula for affine semigroups.

Let S be a numerical semigroup. An element g ∈ Z \ S is a pseudo-
Frobenius number if g + (S \ {0}) ⊆ S. In particular, F(S) is always
a pseudo-Frobenius number. The cardinality of the set of pseudo-
Frobenius numbers is known as the (Cohen-Macaulay) type of S, t(S).
A numerical semigroup is symmetric if its type is one (there are plenty
of characterizations of this property, see for instance, [26, Chapter
3]). Delorme in his above-mentioned paper [11] also proved that a
numerical semigroup that is a gluing S1 +d S2 is symmetric if and only
if S1 and S2 are symmetric. Nari [20, Proposition 6.6] proved that, for
a numerical semigroup of the form S1 +d S2,

t(S1 +d S2) = t(S1) t(S2)

(actually the definition of gluing for numerical semigroups is slightly
different and we have to divide S1 and S2 by their greatest common
divisors in order to get S1 and S2 numerical semigroups; see the para-
graph after Theorem 4.3). This formula can be seen as a generalization
of the fact that the gluing of symmetric numerical semigroups is again
symmetric, and it also shows that

• the gluing of pseudo-symmetric numerical semigroups (the only
pseudo-Frobenius numbers are the Frobenius number and its
half) cannot be pseudo-symmetric,

• the gluing of two nonsymmetric almost symmetric numerical
semigroup is not almost symmetric (S is almost symmetric if
the cardinality of N \ S equals (F(S) + t(S))/2).

Let S be an affine semigroup, and let s ∈ S \ {0}. The Apéry set of
s in S is the set

Ap(S, s) = {x ∈ S | x− s /∈ S}.

This set has, in general, infinitely many elements. If S is a numerical
semigroup and s ∈ S \ {0}, then Ap(S, s) has exactly s elements (one
for each congruent class modulo s). Let m be the least positive integer
belonging to S, which is known as the multiplicity of S, and assume
that S is minimally generated by {n1, . . . , nk}, with n1 < · · · < nk.
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Clearly, n1 = m and Ap(S,m) ⊆ {
∑k

i=2 aini | ai ≤ αi, i ∈ {2, . . . , k}},
with αi = max{k ∈ N | kni ∈ Ap(S,m)}. When the equality holds,
we say that the Apéry set of S is α-rectangular. Theorem 2.3 in [10]
shows that every numerical semigroup with α-rectangular Apéry set
other than N can be constructed by gluing a numerical semigroup with
the same property and a copy of N.

For a given affine semigroup S and a field K, the semigroup ring
K[S] is defined asK[S] =

⊕
s∈S Kts with t an indeterminate. Addition

is performed componentwise, and the product is calculated by using
distributive law and tsts

′
= ts+s′ for all s, s′ ∈ S. If S is a numerical

semigroup, then K[S] is a subring of K[t]. Recently ([13]), the
following property has been shown to be preserved under gluing of
numerical semigroups: for every relative I ideal of K[S] generated by
two monomials, I ⊗K[S] I

−1 has nontrivial torsion. This partly solves
a conjecture stated by Huneke and Wiegand (see [13] for details; also
the restriction of being generated by just two elements can be removed
if we take S2 as a copy of N).

If S is a numerical semigroup minimally generated by {n1, . . . , nk},
then m = (tn1 , . . . , tnk) is the unique maximal ideal of the power
series ring R = K[[tn1 , . . . , tnk ]] = K[[S]]. The Hilbert function
of the associated graded ring grm(R) =

⊕
n∈N mn/mn+1 is defined

as n 7→ dimK(mn/mn+1). In [2], it is shown that, if the Hilbert
functions of the associated graded rings of K[[S1]] and K[[S2]] are
nondecreasing, then so is the Hilbert function of the associated graded
ring ofK[[S1+dS2]] when the gluing is a “nice” gluing (see [2, Theorem
2.6] for details; this nice gluing has been also exploited in [16]).

Lastly, for T = ⟨an1, an2, an3, an4⟩ +ab ⟨b⟩, Barucci and Fröberg
have been able to compute the Betti numbers of the free resolution of
K[T ] in terms of that of K[S], with S = ⟨n1, n2, n3, n4⟩ ([5]).

2. Gluings and cones. Given an affine semigroup S ⊆ Nm, denote
by cone(S) the cone spanned by S, that is,

cone(S) =
{
q a | q ∈ Q≥0,a ∈ S

}
.

Observe that cone(S) is pointed (the only subspace included in it is
{0}), because S is reduced.
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Clearly, if A is finite and generates S, then

G(S) =

{∑
a∈A

zaa
∣∣∣ za ∈ Z for all a

}

and

cone(S) =

{∑
a∈A

qaa
∣∣∣ qa ∈ Q≥0 for all a

}
.

We will write aff(S) for the affine span of S, that is,

aff(S) = G(S)⊗Z Q.

As usual, we use the notation

⟨A⟩ =
{∑

a∈A

naa
∣∣∣na ∈ N for all a ∈ A

}
(all sums are finite, that is, if A has infinitely many elements, all but a
finite number of za, qa and na are zero).

Lemma 2.1. Let r1, . . . , rk, rk+1 and x ∈ cone(Nm) \ {0}, for some
positive integers m and k. If cone(r1, . . . , rk) = cone(r1, . . . , rk, rk+1),
then the following conditions are equivalent :

(i) There exist q1, . . . qk ∈ Q>0 such that x = q1r1 + · · ·+ qkrk.
(ii) There exist q′1, . . . , q

′
k+1 ∈ Q>0 such that x = q′1r1 + · · ·+ q′krk +

q′k+1rk+1.

Proof. Observe that, from the hypothesis, rk+1 ∈ cone(r1, . . . , rk),
and thus there exists t1, . . . , tk ∈ Q≥0 such that rk+1 = t1r1+· · ·+tkrk.
From this, it easily follows that (ii) implies (i).

Assume that there exist q1, . . . qk ∈ Q>0 such that x = q1r1 + · · ·+
qkrk. Let N ∈ N be such that, for all i ∈ {1, . . . , k}, ti/N < qi (this is
possible since qi > 0 for all i). Take q′i = qi − ti/N (which is a positive
rational number) for all i ∈ {1, . . . , k}, and q′k+1 = 1/N . Then, q′1r1 +
· · ·+q′krk+q′k+1rk+1 = q1r1+· · ·+qkrk−1/Nrk+1+1/Nrk+1 = x. �
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Given r1, . . . , rk ∈ cone(Nm) \ {0}, we define the relative interior of
cone(r1, . . . , rk) by

relint(cone(r1, . . . , rk)) =
{
q1r1 + · · ·+ qkrk | q1, . . . , qk ∈ Q>0

}
.

Observe that the relative interior of a cone, C, is the topological interior
of C in its affine span, aff(r1, . . . , rk), with the subspace topology.

For A ⊆ Nm, we say that F is a face of cone(A) if F ̸= ∅ and there
exists c ∈ Qm \ {0} such that

• F = {x ∈ cone(A) | c · x = 0} and
• c · y ≥ 0 for all y ∈ cone(A).

An element a ∈ A is an extremal ray of cone(A) if Q≥0a is a one-
dimensional face of cone(A).

Now, according to Lemma 2.1, if A is the minimal system of
generators of an affine semigroup S ⊆ Nm, then we can say that
x ∈ relint(cone(S)) if and only if x ∈ relint(cone(A)), even if A
contains elements that are not extremal rays. We get also the following
consequence.

Proposition 2.2. Let A be a nonempty subset of Nm, with m a positive
integer. Assume that A = A1 ∪A2 is a nontrivial partition of A. Then
relint(cone(A)) = relint(cone(A1)) + relint(cone(A2)).

Proof. Obviously, if xi ∈ relint(cone(Ai)), i ∈ {1, 2}, then x1 +x2 ∈
relint(cone(A)). Now, consider x ∈ relint(cone(A)). Without loss of
generality, we may assume that x =

∑
a∈A qaa with qa ∈ Q>0. Thus,

by taking xi =
∑

a∈Ai
qaa, we are done. �

Notice that, if S is the gluing of S1 and S2 by d, then

d /∈ relint(cone(S)) implies d /∈ relint(cone(S1)) ∩ relint(cone(S2)).

Otherwise, we may take xi = (1/2)d, i ∈ {1, 2}.

Proposition 2.3. Let A be a nonempty subset of Nm, with m a positive
integer. Assume that A = A1 ∪ A2 is a nontrivial partition of A. Let
F be a face of cone(A). Then every x ∈ F can be expressed as x1 + x2

with xi in a face of cone(Ai), i ∈ {1, 2}.
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Proof. Let x ∈ F . Then there exists c ∈ Qm \ {0} such that
c · x = 0 and c · y ≥ 0 for all y ∈ cone(A). Notice that cone(A) =
cone(A1)+cone(A2). Hence, there exists xi ∈ cone(Ai), i ∈ {1, 2}, such
that x = x1 + x2. As cone(Ai) ⊆ cone(A), c · yi ≥ 0, for i ∈ {1, 2} and
all yi ∈ cone(Ai). Hence, 0 = c·x = c·x1+c·x2 forces c·x1 = c·x2 = 0.
We conclude that xi is in the face {x ∈ Qn | c · x = 0} ∩ cone(Ai) of
cone(Ai), i ∈ {1, 2}. �

We end this section by giving an affine-geometric characterization
of gluings (Corollary 2.5). First we show how the cones in a gluing
intersect.

Proposition 2.4. Let S be an affine semigroup and d ∈ Nn \ {0}. If
S = S1 +d S2, then

cone(S1) ∩ cone(S2) = dQ≥0.

Proof. By definition, d ∈ S1 ∩ S2 and, clearly, dQ≥0 ⊆ cone(S1) ∩
cone(S2). If d

′ ∈ cone(S1)∩cone(S2), then d′ = (z1/t1)a1 = (z2/t2)a2,
with z1, z2, t1, t2 ∈ N, and ai ∈ Si, i ∈ {1, 2}. Hence, t1, t2d

′ ∈
G(S1) ∩G(S2) = dZ, that is, d′ ∈ dQ≥0. �

The above result may also be obtained as a consequence of [18,
Lemma 4.2].

Observe that the converse statement is not true, as the following
simple example shows. Let S be semigroup generated by the columns
of the matrix

A =

(
4 3 2 3 1 0
0 1 2 3 3 4

)
,

and let S1 and S2 be the semigroups generated by the three first and the
three last columns of A, respectively. In this case, d := (6, 6)⊤ ∈ S1∩S2

and cone(S1)∩ cone(S2) = dQ≥0. However, S1 and S2 cannot be glued
by d because G(S1) ∩ G(S2) has rank 2; indeed, 3(2, 2) = 2(3, 3) and
(0, 4) = −2(4, 0) + 2(3, 1) + (2, 2).

Corollary 2.5. Let S be an affine semigroup minimally generated by
A. Let A = A1 ∪ A2 be a nontrivial partition of A, and let Si = ⟨Ai⟩,
i ∈ {1, 2}. Set V = aff(S1) ∩ aff(S2). Then, S = S1 +d S2 for some
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d ∈ Nn \ {0}, if and only if V = dQ and S ∩V = (S1 ∩V )+d (S2 ∩V )
for some d ∈ Nn \ {0}.

Proof. If S = S1+dS2 for some d ∈ Nn\{0}, by an argument similar
to that given in the proof of Proposition 2.4, we have that V = dQ.
Now, since d ∈ (S1 ∩ V ) ∩ (S2 ∩ V ) and G(S1 ∩ V ) ∩ G(S2 ∩ V ) =
G(S1) ∩ G(S2) = dZ, we conclude that S ∩ V is the gluing of S1 ∩ V
and S2 ∩ V by d. Conversely, let V = dQ. Since G(S1) ∩ G(S2) =
G(S1 ∩ V ) ∩G(S2 ∩ V ) = dZ and d ∈ (S1 ∩ V ) ∩ (S2 ∩ V ) = S1 ∩ S2,
because G(S1) ∩G(S2) ⊂ V , we are done. �

Let S be the semigroup generated by the columns of the following
matrix

A =

 4 3 2 3 3 3
0 1 2 3 2 0
0 0 0 0 1 3

 ,

and let S1 (S2, respectively) be the semigroup generated by the three
first (last, respectively) columns of A. Clearly, V = aff(S1)∩ aff(S2) =
(1, 1, 0)⊤Q. Now, since S1∩V ∼= 2N, S2∩V ∼= 3N and S∩V ∼= 2N+63N,
in the light of the above corollary, we conclude that S = S1+dS2, with
d = (6, 6, 0)⊤.

3. Gluings and Frobenius vectors. Let S be an affine semigroup.
We say that S has a Frobenius vector if there exists f ∈ G(S) \ S such
that

f + relint(cone(S)) ∩G(S) ⊆ S \ {0} ⊆ S.

Notice that f + (relint(cone(S)) ∩ G(S)) ⊆ S \ {0} is equivalent to
(f+relint(cone(S)))∩G(S) ⊆ S\{0}, and thus we omit the parentheses
in the above condition.

We are going to prove that, if S1 and S2 have Frobenius vectors,
then so does S = S1 +d S2.

Theorem 3.1. Let S be an affine semigroup. Assume that S =
S1 +d S2. If S1 and S2 have Frobenius vectors, so does S. Moreover,
if f1 and f2 are, respectively, Frobenius vectors of S1 and S2, then

f = f1 + f2 + d

is a Frobenius vector of S.
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Proof. Let G1 = G(S1), G2 = G(S2) and G = G(S). Clearly
G = G1 +G2, since S = S1 + S2.

We start by proving that f ∈ G \ S. As f1 ∈ G1, f2 ∈ G2

and d ∈ G1 ∩ G2, we have f ∈ G. Assume that f ∈ S. Then
there exist s1 ∈ S1 and s2 ∈ S2 such that f = s1 + s2. Then
f1 + d − s1 = s2 − f2 ∈ G1 ∩ G2 = dZ. So, we can find k ∈ Z
such that f1 + d− s1 = s2 − f2 = kd. If k ≤ 0, then f2 = s2 − kd ∈ S2,
a contradiction. If k > 0, then f1 = s1 + (k − 1)d ∈ S1, which is also
impossible, and this proves that f /∈ S.

In order to simplify the notation, set C1 = relint(cone(S1)), C2 =
relint(cone(S2)) and C = relint(cone(S)). Now, let us prove that, for
all x ∈ C ∩ G, we have that f + x ∈ S. Since f + x ∈ G, there
must be g1 ∈ G1 and g2 ∈ G2 such that f + x = g1 + g2. In
light of Proposition 2.2, there exists x1 ∈ C1 and x2 ∈ C2 such that
x = x1 + x2. Then f + x = f1 + f2 + d + x1 + x2 = g1 + g2. Let
t ∈ Z>0 be such that s1 = tx1 ∈ S1 and s2 = tx2 ∈ S2. This yields
tf1+td+s1−tg1 = tg2−tf2−s2 = kd for some integer k. Assume that
k ≤ 0. Then tf1+s1+(t−k)d = tg1, and thus f1+(x1+(t− k)/td) = g1.
Observe that x1+(t− k)/td ∈ C1, which implies that g1 ∈ S1 because
f1 is a Frobenius vector for S1.

Let n be the maximum nonnegative integer such that g1 − nd ∈ S1.
Hence, g1 − (n + 1)d = f1 + x1 + (t− k/t)d − (n + 1)d /∈ S1, and
consequently tn+ k > 0, since otherwise (t− k/t)− (n+1) ≥ 0, which
leads to x1 + (t− k/t)d− (n+ 1)d ∈ C1, yielding g1 − (n+ 1)d ∈ S1,
a contradiction. Now, tg2 − tf2 − s2 + tnd = (tn + k)d, which means
that g2 + nd = f2 + x2 + (tn+ k/t)d. As x2 + (tn+ k/t)d ∈ C2 and
f2 is a Frobenius vector for S2, we deduce that g2 + nd ∈ S2. Finally,
f + x = g1 + g2 = (g1 − nd) + (g2 + nd) ∈ S1 + S2 = S.

If k ≥ 0, then tf2 + s2 + td − tg2 = tg1 − tf2 − s1 = −kd, and we
repeat the above argument by swapping g1 and g2. �

If A is a set of positive integers, and S = ⟨A⟩, then T = S/ gcd(A)
is a numerical semigroup, and F(T ) = max(N \ T ). It follows easily
that F(S) = gcd(A) F(T ). Recall that the conductor of T is defined as
the Frobenius number of T plus one. Hence, Theorem 3.1 generalizes
the well-known formula for the gluing of two submonoids of N ([11,
Proposition 10 (i)]).
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Lemma 3.2. Let S be an affine semigroup minimally generated by A.
If A is a set of linearly independent elements, then f = −

∑
a∈A a is a

Frobenius vector for S.

Proof. Let x ∈ relint(cone(S)) ∩ G(S). Then x =
∑

a∈A qaa =∑
a∈A zaa, with qa ∈ Q>0 and za ∈ Z for all a. Since the elements in

A are linearly independent, this forces za = qa for all a; in particular,
za − 1 ≥ 0 for all a. Hence f + x =

∑
a∈A(za − 1)a ∈ S. �

Since every complete intersection affine semigroup has either no
relations (free in the categorical sense, that is, its minimal set of
generators is a set of linearly independent vectors) or it is the gluing of
two affine semigroups ([12]), we get the following result.

Theorem 3.3. Let S be a complete intersection affine semigroup.
Then S has a Frobenius vector.

Remark 3.4. Let S = S1 +d S2 be the gluing of S1 and S2 by
d, and assume that S2 = ⟨v⟩. Hence, d = θv for some θ ∈ N.
Clearly −v is a Frobenius vector for S2 (Lemma 3.2), and, if S1 has
a Frobenius vector f1, then the formula of Theorem 3.1 implies that
f = f1 − v + θv = f1 + (θ − 1)v is a Frobenius vector of S. More
generally let v1, . . . ,ve be a set of Q linearly independent vectors of
Ne. Let S0 = ⟨v1, . . . ,ve⟩, and let ve+1, . . . ,ve+h be a set of vectors
of Ne ∩ cone(v1, . . . ,ve). Set Si = ⟨v1, . . . ,ve+i⟩ for all 1 ≤ i ≤ h,
and assume that Si = Si−1 +θivi ⟨vi⟩ (such semigroups are called
free semigroups). A Frobenius vector f0 of S0 being f0 = −

∑e
k=1 vk

(Lemma 3.2), it follows that

(3.1) fi =
i∑

j=1

(θj − 1)vj −
e∑

k=1

vk

is a Frobenius vector of Si. This formula has also been proved by
the first author in [3], who gave the following uniqueness condition:
this Frobenius vector f is minimal with respect to the order induced
by cone(S), that is, for every other Frobenius vector f ′ of S, f ′ ∈
f + cone(S).

We recall that a reduced affine semigroup S is said to be simplicial
if there are linearly independent elements a1, . . . ,an ∈ S such that
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cone(S) = cone(a1, . . . ,an). Under this hypothesis, conditions for the
existence and conditions for uniqueness of a Frobenius vector of S are
given in [1].

Formula (3.1) is a special case of the following general formula for a
Frobenius vector of a complete intersection affine semigroup.

Remark 3.5. Recall that, according to [12], any complete intersection
affine semigroup is either generated by a set of linearly independent vec-
tors or it is a gluing of two complete intersection numerical semigroups.
Thus, repeating this argument recursively, if S is a complete intersec-
tion affine semigroup A, then there exists a partition A1 ∪ · · · ∪At = A
such that Ai are sets of linearly independent vectors and

S = S1 +d1 S2 +d2 · · ·+dt−1 St,

with Si = ⟨Ai⟩. From Theorem 3.1 and Lemma 3.2, it follows that

(3.2)
t−1∑
i=1

di −
∑
a∈A

a

is a Frobenius vector for S.

Next, we show that this Frobenius vector is unique in the sense
defined above.

Proposition 3.6. Let S be a complete intersection affine semigroup,
and let f be defined as in (3.2). Then, for every face F of cone(S),
(f + F ) ∩ S is empty.

Proof. Since either S is free or the gluing of two complete intersection
affine semigroups S1 and S2, we proceed by induction. If S is free, then
Lemma 3.2 asserts that f = −

∑
a∈A a, with A the minimal generating

set of S. Clearly, in this case, the assertion is true.

Now assume that S = S1 +d S2 for some d ∈ S1 ∩ S2. From
Theorem 3.1, f = f1 + f2 + d, where fi, i ∈ {1, 2}, is also defined
by (3.2). By the induction hypothesis, for every face Fi of cone(Si),
i ∈ {1, 2}, (fi + Fi) ∩ Si = ∅.
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Assume, to the contrary, that there exists x ∈ F such that f1 +
f2 + d + x ∈ S. According to Proposition 2.3, there exists xi ∈ Fi,
i ∈ {1, 2}, such that x = x1 + x2, for some face Fi of cone(Si). Hence,
there are s1 ∈ S1 and s2 ∈ S2 such that f1 + f2 +d+x1 +x2 = s1 + s2.
Then f1 + x1 − s1 = s2 − f2 − d − x2 = kd for some integer k. As by
the induction hypothesis f1 + x1 /∈ S1, we deduce k < 0. Therefore,
f2 + x2 = s2 − (k + 1)d. But f2 + x2 /∈ S2, which forces k + 1 > 0, or
equivalently, k ≥ 0. But this is in contradiction with k < 0. �

Theorem 3.7. Let S be a complete intersection, and let f be as in (3.2).
Assume that f ′ is another Frobenius vector of S. Then f ′ ∈ f+cone(S).

Proof. Write f = a − b and f ′ = a′ − b′ with a,a′,b,b′ ∈ S, and
let c ∈ relint(cone(S)). Then x = f + b + a′ + c = f ′ + b′ + a + c ∈
(f + relint(cone(S))) ∩ (f ′ + relint(cone(S))).

Assume that f ′ /∈ f + cone(S). Then the segment joining f ′ and
x cuts some face of f + cone(S). Denote by f + F this face, and
let f + y be this intersection point (y ∈ F and F is a face of
cone(S)). There exists a positive integer k such that ky is in S,
and thus f + ky ∈ G(S) ∩ (f + F ). Notice that f + y = f ′ + y′

for some y′ ∈ relint(cone(S)). As y ∈ F , (k − 1)y ∈ cone(S), and
consequently f + ky = f ′ + (y′ + (k − 1)y) ∈ f ′ + relint(cone(S)).
Hence, f + ky ∈ (f ′ + relint(cone(S))) ∩ G(S) ⊆ S, in contradiction
with Proposition 3.6. �

4. Gluings and Hilbert series. The Hilbert series of S is the
Hilbert series associated to K[S]: H(S,x) =

∑
s∈S xs, where for

s = (s1, . . . , sm) ∈ Nm, xs = xs1
1 · · ·xsm

m . This map is sometimes
known in the literature as a generating function of S, and it has been
shown to be of the form g(S,x)/

∏
a∈A(1 − xa), with A the minimal

generating set of S (see [6, subsection 7.3]).

The next lemma is a straightforward generalization of (4) in [21].

Lemma 4.1. Let S be an affine semigroup, and let m ∈ S \{0}. Then

(4.1) H(S, x) =
1

1− xm

∑
w∈Ap(S,m)

xw.
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Proof. It follows directly from the definition of Ap(S,m), that for
every s ∈ S, there exist unique k ∈ N and w ∈ Ap(S,m) such that
s = km+w. Hence,

H(S,x) =
∑
k∈N

w∈Ap(S,m)

xkm+w =
∑
k∈N

(xm)k
∑

w∈Ap(S,m)

xw.

The proof follows by taking into account that
∑

k∈N(x
m)k = 1/(1 −

xm). �

The following result can also be understood as a generalization of (4)
in [21], since for simplicial affine semigroups that are Cohen-Macaulay,
the set

∩m
i=1 Ap(S,vi), with v1, . . . ,vm a set of extremal rays of S,

plays a similar role to the Apéry set of an element in a numerical
semigroup (compare [24, Theorem 1.5] and [26, Lemma 2.6]).

Proposition 4.2. Let S be a simplicial affine semigroup with extremal
rays v1, . . . ,vm. Then H(S,x) = P (x)/

∏m
i=1(1− xvi), with P (x) a

polynomial.

Proof. Let Ap =
∩m

i=1 Ap(S,vi). In view of [24, Section 1], this
set is finite. Moreover, from [24, Theorem 1.5], we know that every
element s in S can be expressed uniquely as s =

∑m
i=1 aivi +w with

a1, . . . , ad ∈ N and w ∈ Ap. Arguing as in Lemma 4.1,

H(S,x) =
∑
s∈S

xs =

∑
w∈Ap x

w∏m
i=1(1− xvi)

,

which concludes the proof. �

Theorem 4.3. Let S, S1 and S2 be affine semigroups, and let d ∈ S.
Assume that S = S1 +d S2. Then

H(S1 +d S2,x) = (1− xd)H(S1,x)H(S2,x).

Proof. From (4.1),

H(S,x) =
1

1− xd

∑
w∈Ap(S,d)

xw.
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From [22, Theorem 1.4], the mapping

(4.2) Ap(S1,d)×Ap(S2,d) −→ Ap(S,d), (x, y) 7→ x+ y,

is a bijection, and thus, Ap(S,d) = Ap(S1,d) + Ap(S2,d). Hence,∑
w∈Ap(S,d)

xw =
∑

w1∈Ap(S1,d)

∑
w2∈Ap(S2,d)

xw1+w2

=

( ∑
w1∈Ap(S1,d)

xw1

)( ∑
w2∈Ap(S2,d)

xw2

)
.

As

H(S1,x) =
1

1− xd

∑
w1∈Ap(S1,d)

xw1 ,

H(S2,x) =
1

1− xd

∑
w2∈Ap(S2,d)

xw2 ,

we get
H(S,x) = (1− xd)H(S1,x)H(S2,x). �

If S is a numerical semigroup (gcd(S) = 1), and it is a gluing of
M1 and M2, then S1 = M1/d1 and S2 = M2/d2 are also numerical
semigroups, with di = gcd(Mi), i ∈ {1, 2}. Hence, S = d1S1+d1d2

d2S2

and lcm (d1, d2) = d1d2. We say in this setting that S is a gluing of S1

and S2 at d1d2.

From the definition of the Hilbert series associated to a submonoid
M of N , it follows easily that, if k | gcd(M), then

(4.3) H(M/k, xk) = H(M,x).

We get the following corollary.

Corollary 4.4. Let S be a numerical semigroup. Assume that S =
d1S1 +d1d2 d2S2 is a gluing of the numerical semigroups S1 and S2.
Then

H(S, x) = (1− xd1d2)H(S1, x
d1)H(S2, x

d2).
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Example 4.5. Let S = ⟨a, b⟩ with a and b coprime positive integers.
Then S = aN+ab bN. Then, by Corollary 4.4,

H(⟨a, b⟩, x) = (1− xab)H(N, xa)H(N, xb) =
1− xab

(1− xa)(1− xb)
.

If we do this computation by using the formula

H(⟨a, b⟩, x) = 1

1− xa

∑
w∈Ap(⟨a,b⟩,a)

xw,

we obtain

H(⟨a, b⟩, x) = 1

1− xa

a−1∑
k=0

xkb =
1

1− xa

1− xab

1− xb
.

Observe that this is a particular case of [21, Proposition 2] (see also
[19, Theorem 4] for a relationship with inclusion-exclusion polynomi-
als).

This idea can be generalized to any complete intersection affine
semigroup. The base setting is the following.

Lemma 4.6. Let A ⊆ Nm be a set of linearly independent vectors.
Then

H(⟨A⟩,x) = 1∏
a∈A(1− xa)

.

Proof. Assume that A = {a1, . . . ,ak}, and write S = ⟨A⟩. Notice

that the map Nk → S, (n1, . . . , nk) 7→
∑k

i=1 niai is a monoid isomor-
phism. Hence,

∑
s∈S

xs =
∑

n1∈N,...,nk∈N
xn1a1+···+nkak =

k∏
i=1

∑
n∈N

(xai)n,

and the proof follows easily. �

Proposition 4.7. Let S be a free affine semigroup. Assume that

S = (· · · (⟨v1, . . . ,ve⟩+θe+1ve+1 ⟨ve+1⟩)+θe+2ve+2 · · · )+θe+hve+h
⟨ve+h⟩.
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Then,

H(S,x) =

∏h
i=1(1− xθe+ive+i)∏e+h

i=1 (1− xvi)
.

This is indeed a particular case of the following theorem.

Theorem 4.8. Let S be a complete intersection affine semigroup
minimally generated by A. Let d1, . . . ,dt−1 be as in Remark 3.5,

H(S,x) =

∏t−1
i=1(1− xdi)∏
a∈A(1− xa)

.

If S is a complete intersection, then any minimal system of gener-
ators {f1, . . . , ft−1} of the toric ideal associated to S forms a regular
sequence. With the same notation as in our Remark 3.5, Betti (S) =
{d1, . . . , dt−1}. So, we may assume that degS(fi) = di, i ∈ {1, . . . , t−1}
(repetitions may occur). Now, Theorem 4.8 also follows from [17, Ex-
ercise 5].

Remark 4.9. Observe that, if we subtract the degree of the numerator
and denominator of the formula given in Theorem 4.8, we obtain
formula (3.2).

Example 4.10. Let S = ⟨4, 5, 6⟩ = ⟨4, 6⟩+10 5N = (4N+12 6N)+10 5N.
Then

H(⟨4, 5, 6⟩, x) = (1− x10)(1− x12)

(1− x4)(1− x5)(1− x6)
.

The Frobenius number of S is 10 + 12− (4 + 5 + 6) = 7.
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8. S.T. Chapman, P.A. Garćıa-Sánchez, D. Llena, A. Malyshev and D. Steinberg,
On the Delta set and the Betti elements of a BF-monoid, Arab. J. Math. 1 (2012),

53–61.
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