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NON-SIMPLICIAL DECOMPOSITIONS OF BETTI
DIAGRAMS OF COMPLETE INTERSECTIONS
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CLAUDIU RAICU, BRANDEN STONE AND BRYAN WHITE

ABSTRACT. We investigate decompositions of Betti di-
agrams over a polynomial ring within the framework of
Boij-Söderberg theory. That is, given a Betti diagram, we
decompose it into pure diagrams. Relaxing the requirement
that the degree sequences in such pure diagrams be totally
ordered, we are able to define a multiplication law for Betti
diagrams that respects the decomposition and allows us to
write a simple expression of the decomposition of the Betti
diagram of any complete intersection in terms of the degrees
of its minimal generators. In the more traditional sense,
the decomposition of complete intersections of codimension
at most 3 are also computed as given by the totally or-
dered decomposition algorithm obtained from [3]. In higher
codimension, obstructions arise that inspire our work on an
alternative algorithm.

1. Introduction. Algebraists have long accepted that it is useful
to discard structure and work with numerical invariants; the new
insight arising from Boij-Söderberg theory is that focusing on numerical
invariants up to rational multiple can also yield information about
modules. Thinking of Betti diagrams as integral points on rays in
a rational vector space produces a convex polytope with a simplicial
structure (as first conjectured in [1, Conjectures 2.4, 2.10]), and this
structure leads to Algorithm 2.2 for decomposing Betti diagrams into
nonnegative rational combinations of pure diagrams that are linearly
independent [3, Decomposition Algorithm]. Recent results harness the
power of Algorithm 2.2; examples include a proof of the multiplicity
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conjecture of Herzog, Huneke and Srinivasan (see [1, subsection 2.2]),
finding a polynomial bound on the regularity of an ideal in terms of half
its syzygies [6] and obtaining a structural result for decompositions of
Betti diagrams of a class of Gorenstein ideals [7, Theorem 5.4].

However, Algorithm 2.2 clashes with some algebraic structures like
the tensor product, and the output of the algorithm can be hard to
predict even for seemingly simple objects like complete intersections.
In this paper, we will consider an alternative decomposition of Betti
diagrams where the required ordered chain condition of Algorithm 2.2
is relaxed. The following example compares two decompositions of a
Betti diagram; we refer the reader to Section 2 for some of the necessary
background and notation. Let S = Q[x, y, u, v], and consider the
complete intersection M = Q[x, y, u, v]/(x, y2, u4, v8) as an S-module.
Then, decomposing the Betti table of M over S via Algorithm 2.2, we
obtain the sum:

(1.1)

β(M) = 168π(0, 1, 3, 7, 15) + 60π(0, 2, 3, 7, 15)

+ 210π(0, 2, 5, 7, 15) + 30π(0, 4, 5, 7, 15)

+ 60π(0, 4, 6, 7, 15) + 240π(0, 4, 6, 11, 15)

+ 240π(0, 4, 9, 11, 15) + 60π(0, 8, 9, 11, 15)

+ 30π(0, 8, 10, 11, 15) + 210π(0, 8, 10, 13, 15)

+ 60π(0, 8, 12, 13, 15) + 168π(0, 8, 12, 14, 15).

In this decomposition, there is no obvious relationship between the
coefficients or degree sequences and the degrees of the forms in the ideal
definingM . We pursue this theme in Section 4, where we illustrate that
there is not a simple closed formula for such decompositions of complete
intersections. However, if we are willing to relax the requirement of
Algorithm 2.2 that the corresponding degree sequences form an ordered
chain, then there is a simple decomposition of β(M) determined by the
degrees of the forms in the ideal defining M (see Section 5):
(1.2)

β(M)=(1·2·4·8)
∑

σ∈Perm({1,2,4,8})

π(0, σ(1), σ(1)+σ(2), σ(1)+σ(2)+σ(4), 15).

In contrast with the formula from (1.1), it is easy to parametrize the
degree sequences that arise in (1.2). Even better, the coefficients are
uniform: each coefficient equals the multiplicity of M . On the other
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hand, equation (1.2) involves 24 summands, whereas equation (1.1)
only involves 12. The decomposition in (1.2) has origins in [1, Sec-
tion 4]; we prove that a natural generalization of the formula in (1.2)
holds in general. We further prove that (1.2) follows immediately from
a natural multiplication law for Betti diagrams that is induced by the
tensor product of free complexes (see Section 5). From this perspec-
tive, equation (1.2) is simply the expanded version of a product of pure
Betti diagrams:

(1.3) β(M) = π(0, 1) · π(0, 2) · π(0, 4) · π(0, 8).

In our view, the most interesting aspect of this work is the insight
that there are cases where the coefficients in a decomposition behave
better when the decomposition does not respect the partial order.
From this perspective, the uniqueness of the decomposition provided
by Algorithm 2.2 is, at times, a handicap instead of a boon. Once we
adopt this perspective, the multiplication law for pure diagrams and
its corresponding formula are actually quite elegant. We obtain the
following:

Corollary 5.7. Suppose that S/I is a complete intersection where
I = (f1, . . . , fn) and E = (e1, . . . , en) such that fi is of degree ei.
Writing Sn for the group of permutations of {1, . . . , n}, one has the
following decomposition of β(S/I) as a nonnegative rational sum of
pure diagrams:

β(S/I) = e1 · e2 · · · en ·
∑

σ∈Sn

π(0, eσ1 , eσ1 + eσ2 , . . . , eσ1 + · · ·+ eσn).

This result provides evidence that alternative decompositions of
Betti diagrams may be simpler and easier to compute than the decom-
positions produced by Algorithm 2.2. When we expand our outlook
to include other types of decompositions, several new questions arise.
For example, beyond complete intersections, what modules have a sim-
ple decomposition when we no longer require that the diagrams in the
decomposition respect the partial order? Do the diagrams or coeffi-
cients appearing in such decompositions convey algebraic information
about the modules they decompose? By extending the natural product
structure on Betti diagrams to a product on sums of pure diagrams, we
endow the Boij-Söderberg cone with additional algebraic structure. In
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so doing, what extra insight might we glean about the global structure
of syzygies?

In Section 2, we develop the necessary background and notation.
Section 3 demonstrates the difficulty in predicting the outcome of Al-
gorithm 2.2, even in low codimension. Even so, a simply closed formula
is given for complete intersections of codimension at most three. We
investigate further difficulties in Section 4 for the codimension four
case. In Section 5 we show how to write multiplication pure diagrams
in terms of pure diagrams and give applications in the complete inter-
section case, relaxing the requirement that degree sequences be totally
ordered.

2. Basic definitions and notation. Let S = k[x1, . . . , xn] be a
polynomial ring over a field k. We view S = ⊕∞

i=0 Si as a graded ring
with the standard grading. For a graded S-module M and any integer
t, we denote the twist of M by t as the module M(t) whose graded
pieces are defined by M(t)i = Mi+t.

Given M an S-module of finite length, it has a minimal graded free
resolution of the form

0 Moo
⊕
j

S(−j)β0,joo
⊕
j

S(−j)β1,joo · · ·oo
⊕
j

S(−j)βc,joo 0oo

The number c is an invariant ofM and is called the projective dimension
of M , denoted pd(M). The integer βij is the number of degree j
generators of a basis of the free module in the ith step of the resolution.
These βij are independent of the choice of minimal free resolution, and
we call these invariants the graded Betti numbers. The Betti diagram
of M is defined to be

β(M) =



...
...

... . .
.

β0−1 β10 β21 · · ·
β00 β11 β22 · · ·
β01 β12 β23 · · ·
...

...
...

. . .

 .

In this paper, we consider β(M) as an element of the vector space
V = ⊕n

i=0 ⊕j∈Z Q. If D ∈ V , then we say that D is a diagram.
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Viewing β(M) as a diagram, we would like to decompose it into
a combination of “pure diagrams.” We say d ∈ Zn+1 is a degree
sequence if di < di+1 for all i and that d 6 d′ if di 6 d′i for
all i. A chain of degree sequences is a totally ordered collection
{· · · < d0 < d1 < · · · < ds < · · · }. We say that M has a pure
resolution if β(M) has at most one non-zero entry in each column. For
example, if S = k[x, y, z] and M = k[x, y, z]/(x2, xy, y2, xz) then

β(M) =

(
1 − − −
− 4 4 1

)
gives a pure resolution. If M has a pure resolution, then for each
nonnegative integer i ≤ pd(M) there exists an integer di for which
βij(M) ̸= 0 if and only if j = di. In this case we say that M has a
pure resolution of type d = (d0, d1, . . . , dn). Further, if d is a degree
sequence, then we can construct a diagram π(d) ∈ V by

π(d)ij =

{∏
k ̸=i

1
|di−dk| j = di

0 j ̸= di.

For example, if d = (0, 2, 3, 4), then

π(d) =

(
1/24 − − −
− 1/4 1/3 1/8

)
.

In proving the conjectures of Boij and Söderberg [2], Eisenbud and
Schreyer show there is a unique decomposition of Betti tables in terms
of π(d) [3].

Theorem 2.1 ([1, 3]). Let S = k[x1, . . . , xn] and M be an S-module
of finite length. Then there is a unique chain of degree sequences
{d0 < · · · < ds} and a unique set of scalars ai ∈ Q such that

β(M) =
s∑

i=0

aiπ(d
i).

The unique decomposition in Theorem 2.1 respects the partial order
(see [2, Definition 2]) of the di’s and is obtained by applying the greedy
algorithm to a special chain of degree sequences. As defined in [1],
the maximal shifts and minimal shifts of degree i of a module M
are di(M) = max{j | βij(M) ̸= 0} and di(M) = min{j | βij(M) ̸= 0},
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respectively. If M is Cohen-Macaulay, then the sequences defined by
d = (d0, d1, . . . , dc) and d = (d0, d1, . . . , dc) are degree sequences.

Algorithm 2.2 (Totally Ordered Decomposition Algorithm [3]). Let
S be k[x1, . . . , xn] and M a finitely generated S-module of finite length.
Set β = β(M).

Step 1. Identify the minimal degree sequence d of β;
Step 2. Choose q > 0 ∈ Q maximal such that β − qπ(d) has non-

negative entries;
Step 3. Set β = β − qπ(d);
Step 4. Repeat Steps 1–3 until β is a pure diagram;
Step 5. Write β(M) as a sum of the qπ(d) obtained in the above steps.

We note that our choice of π(d) differs from the choices used in
[1, 3]. In [1], they choose the pure diagram with β0 = 1; in [3],
they choose the smallest possible pure diagram with integral entries.
Since the pure diagrams with degree sequence d form a one-dimensional
vector space, this different choice only affects the coefficients that arise
in the algorithm. As we will note in Remark 5.5, one advantage to our
choice is certain uniform formulas.

Let D ∈ V = ⊕n
i=0 ⊕j∈Z Q be a diagram. Define the dual of D,

denoted D∗, via the formula

(D∗)ij = Dn−i,−j ,

and define twist D(r) via the formula

D(r)ij = Di,r+j .

These definitions mimic the functors HomS(−, S) = −∗ and − ⊗ S(r)
for modules; one may check that β(M∗) = β(M)∗ and β(M(r)) =
(β(M))(r). In particular, if M is a Gorenstein module of finite length,
the Betti diagram will be self-dual up to shift by reg(M).

Theorem 2.3 (Symmetric Decomposition [4, 7]). Let S=k[x1,. . . , xn],
and let M be a Gorenstein S-module of finite length. Then the decom-
position of β(M) via Algorithm 2.2 is symmetric, i.e.,

β(M) = a0π(d
0) + a1π(d

1) + · · ·+ a1π(d
1)∗(r) + a0π(d

0)∗(r)

where r = reg(M).
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3. Complete intersections in low codimension. Let S = k[x1,
. . . , xd] be a polynomial ring over a field k, and let f1, . . . , fd be a
homogeneous regular sequence. If I = (f1, . . . , fd), then the ring S/I
is called a complete intersection. The Koszul complex on f1, . . . , fd
provides a minimal resolution of S/I over S, so the Betti table, hence
also the Boij-Söderberg decomposition, of S/I is completely determined
by the degrees ei, i.e., the type (e1, . . . , ed) of the complete intersection
S/I. In this section, we investigate the following question concerning
the decomposition of Betti tables arising from complete intersections.

Question 3.1. Let S = k[x1, . . . , xd] and I = (f1, . . . , fd) be an ideal
of S generated by a homogeneous regular sequence with deg(fi) = ei.
How does the Betti table decomposition from Algorithm 2.2 depend on
the degrees ei? Can we describe this relationship by a simple formula?

In codimension at most three, we are able to answer this, as the
decomposition behaves uniformly. When the codimension is larger than
three, a fundamental complication arises in the bookkeeping, leaving
Question 3.1 unanswered.

Proposition 3.2. Let S = k[x1, . . . , xd] and I = (f1, . . . , fd) be an
ideal generated by a homogeneous regular sequence with deg(fi) = ei
where ei ≤ ei+1 for all i. If d 6 3, then the Betti table decomposition
obtained from Algorithm 2.2 is completely determined by the degrees
e1, . . . , ed. In particular, we have the following.

If d = 1:
β(S/I) = e1 · π(0, e1).

If d = 2:

β(S/I) = e1e2 · π(0, e1, e1 + e2) + e1e2 · π(0, e2, e1 + e2).

If d = 3:

β(S/I) =e1e2(e2 + e3) · π(0, e1, e1 + e2, e1 + e2 + e3)

+ e1e2(e3 − e1) · π(0, e2, e1 + e2, e1 + e2 + e3)

+ 2e1e2(e1 + e3 − e2) · π(0, e2, e1 + e3, e1 + e2 + e3)

+ e1e2(e3 − e1) · π(0, e3, e1 + e3, e1 + e2 + e3)
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+ e1e2(e2 + e3) · π(0, e3, e2 + e3, e1 + e2 + e3).

Proof. For codimension 1, we have S = k[x1] and f1 is a nonzero
homogeneous element of degree e1. The Betti table of S/(f1) is already
pure so no decomposition is needed. Hence, we have β(S/(f1)) =
e1 · π(0, e1).

For the codimension 2 case, let S = k[x, y], and let f, g be a homo-
geneous regular sequence of type (e1, e2). If we apply Algorithm 2.2 to
S/(f, g), we obtain the following decomposition:

β(S/(f, g)) = e1e2 · π(0, a, a+ b) + e1e2 · π(0, b, a+ b).

In the codimension 3 case, let B denote the sum of pure diagrams
appearing in the statement of the theorem. Note that the set of pure
diagrams appearing in B forms a chain, and the sum is symmetric in
the sense of Theorem 2.3. Namely,

π(0, e3, e2+e3, e1+e2+ e3)=π(0, e1, e1+e2, e1+e2+e3)
∗(reg(S/I));

π(0, e3, e1+e3, e1+e2+e3)=π(0, e2, e1+e2, e1+e2+e3)
∗(reg(S/I)).

Since S/I is Gorenstein, Theorem 2.3 applies to show that the Boij-
Söderberg decomposition is symmetric. We only need to check that the
0th and first columns of β(S/I) and B are equal, for then the entire
tables are equal and the uniqueness of the Boij-Söderberg decomposi-
tion shows that the sum B is the result of Algorithm 2.2. One verifies
in column zero:

B00 =
1

e1 + e2 + e3

(
e1e2(e2 + e3)

e1(e1 + e2)
+

e1e2(e3 − e1)

e2(e1 + e2)

+
2e1e2(e1 + e3 − e2)

e2(e1 + e3)
+

e1e2(e3 − e1)

e3(e1 + e3)
+

e1e2(e2 + e3)

e3(e2 + e3)

)
=

1

e1 + e2 + e3

(
e2 + e3 − e1 + 2e1 −

2e1e2
e1 + e3

+
2e1e2
e1 + e3

)
= 1,

and all other B0j are zero.

In column one, the only nonzero entry of π(0, e1, e1+e2, e1+e2+e3)
is in row e1, with value

e1e2(e2 + e3)

e1e2(e2 + e3)
= 1.



DECOMPOSITIONS OF BETTI DIAGRAMS 197

The diagrams π(0, e2, e1+e2, e1+e2+e3) and π(0, e2, e1+e3, e1+e2+e3)
have their only nonzero entry in column one at row e2. The total
contribution there is

e1e2(e3 − e1)

e1e2(e2 + e3)
+

2e1e2(e1 + e3 − e2)

e2(e1 + e3)(e1 + e3 − e2)
=

e3 − e1
e1 + e3

+
2e1

e1 + e3
= 1.

The remaining diagrams have in column one nonzero entry only at row
e3. The value there is

e1e2(e3 − e1)

e1e3(e1 + e2)
+

e1e2(e2 + e3)

e2e3(e1 + e2)
=

e2e3 + e1e3
e3(e1 + e2)

= 1.

Thus, B has nonzero entries B1j only for j = e1, e2, e3 with B1j equal
to the number of ei equal to j. So, B agrees with β(S/I) in columns
zero and one, as required. �

4. Examples in codimension four. As seen in Proposition 3.2,
for codimension up to three, the decomposition via Algorithm 2.2 of a
complete intersection behaves uniformly. That is, the coefficients can
always be determined by a single formula in terms of the degrees. This
is not the case in codimension four or greater. The main point we want
to make in this section is that one cannot express the Boij-Söderberg
decomposition of a codimension four (or greater) complete intersection
by a simple formula in terms of the degrees. To help us articulate this
point, we create the following definition.

Definition 4.1. Given a diagram D ∈ V , its elimination table has
as its (i, j)th entry the integer k such that the kth iteration of Algo-
rithm 2.2 applied to D is the first iteration such that the (i, j)th entry
of D becomes zero.

The elimination table is a means of recording the elimination order
of the row and column position according to Algorithm 2.2. Given
any diagram D ∈ V , the sequence of pure diagrams appearing in the
Boij-Söderberg decomposition of D can be obtained recursively from
the elimination table. Indeed, in Algorithm 2.2, the degree sequence
of the pure diagram corresponding to the tth iteration is given by the
sequence of least degrees in each column after t − 1 eliminations. We
may read this in the elimination table as entries of least degree in each
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column (i.e., highest up on the page) among those with value at least
t.

One consequence of Proposition 3.2 is that there is only one form of
the elimination table for any complete intersection of codimension at
most three. This form is defined by the degree sequences in the simple
closed formulas. As we see below, this is not the case for codimension
four since we are able to find multiple degree sequences whose forms
are incompatible.

Example 4.2. Let S = k[x, y, u, v]. We work with the Betti diagrams
of S modulo each of the following ideals: I1 = (x3, y4, u5, v7), I2 =
(x, y2, u4, v8) and I3 = (x4, y5, u7, v9). In each case, every nonzero Betti
number is 1, so we only display the elimination tables in Figure 1.



12 . . . .

. . . . .

. 2 . . .

. 5 . . .

. 8 . . .

. . 1 . .

. 12 3 . .

. . 6 . .

. . 9 . .

. . 11 4 .

. . 12 . .

. . . 7 .

. . . 10 .

. . . 12 .

. . . . .

. . . . 12





12 1 . . .

. 3 2 . .

. . . . .

. 7 4 . .

. . 6 5 .

. . . . .

. . . . .

. 12 8 . .

. . 10 9 .

. . . . .

. . 12 11 .

. . . 12 12





8 . . . .

. . . . .

. . . . .

. 1 . . .

. 3 . . .

. . . . .

. 6 . . .

. . 1 . .

. 8 . . .

. . 2 . .

. . 4 . .

. . 6 . .

. . 7 . .

. . . 2 .

. . 8 . .

. . . 5 .

. . . . .

. . . 7 .

. . . 8 .

. . . . .

. . . . .

. . . . 8


Figure 1. Elimination tables of S/I1, S/I2 and S/I3 respectively.

For S/I1, the first elimination in this example occurs in column 2,
and the subsequent eliminations switch between columns. For S/I2,
the first elimination occurs in column 1, and again the subsequent
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eliminations switch between columns without any multiple eliminations
(besides the final one). However, applying Algorithm 2.2 to S/I3, we
see multiple eliminations on the first, second, sixth, seventh and final
iteration. Notice that, since only eight eliminations occur, the Boij-
Söderberg decomposition of S/I3 has only eight distinct pure diagrams
occurring.

This example displays the difficulty in identifying a chain of degree
sequences, and thus a formula for the coefficients in the codimension
four case. Indeed, one can verify by hand that for I the complete
intersection (xa, yb, uc, vd), with a <b <c <d, then the first elimination
of S/I occurs in column 1 if a(b+ 2c+ d) > c(c+ d), in column 2 if
a(b+ 2c+ d) < c(c+ d), and multiple elimination occurs in the first
step if a(b+ 2c+ d) = c(c+ d). Any formula for the coefficients thus
breaks into cases depending on how the terms a(b+2c+d) and c(c+d)
compare, and indeed into further nested cases to determine later steps
in the order of elimination of the columns in the elimination table.

By focusing on examples without multiple eliminations, the authors
found eight examples with different sequences of elimination in codi-
mension four. Thus, any formula for the Boij-Söderberg decomposition
of a codimension four Koszul complex necessarily breaks into at least
eight distinct cases. Some of the special cases have been explored in [8].
Experiments in Macaulay2 have provided more than 300 different elim-
ination sequences without multiple eliminations in codimension five.

5. Tensor products of diagrams. The cone of Betti diagrams has
a natural multiplication operation induced by the tensor product oper-
ation on complexes. In this section, we give a formula for decomposing
the product of two diagrams β and β′ into a sum of pure diagrams,
given the corresponding decompositions for β and β′, respectively.

Definition 5.1. Let β and β′ be Betti diagrams. The tensor product
of β and β′ is the diagram β · β′ defined by

(β · β′)i,j =
∑

i1+i2=i
j1+j2=j

βi1,j1 · β′
i2,j2 .
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Note that if C• and C ′
• are complexes and Tot (C• ⊗C ′

•) is the total
complex of the double complex C• ⊗ C ′

•, then we have

(5.1) β(Tot (C• ⊗ C ′
•)) = β(C•) · β(C ′

•).

Note also that the tensor product of Betti diagrams is bilinear, i.e.,

β · (β′ + β′′) = β · β′ + β · β′′ and (β′ + β′′) · β = β′ · β + β′′ · β.

It follows that, in order to give a decomposition of β ·β′ as a sum of
pure diagrams, it suffices to do so in the cases when β and β′ are pure.
Theorem 5.2 below explains how this can be done. We first introduce
some notation.

Given a degree sequence d = (d0, d1, . . . , dn), its first difference is
defined as the sequence

∆(d) = (d1 − d0, d2 − d1, . . . , dn − dn−1).

If, furthermore, e is an integer, we let

Σ(d, e) = (e, e+ d0, e+ d0 + d1, . . . , e+ d0 + d1 + · · ·+ dn).

Observe that
Σ(∆(d), d0) = d.

Given an ordered set (sequence) S = (s1, . . . , sr), we let Perm (S)
denote the set of permutations of S. We can identify Perm (S) with
the set Sr of permutations of {1, . . . , r}, by identifying a permutation
σ ∈ Sr with the sequence (sσ(1), . . . , sσ(r)). Given disjoint ordered sets
A and B, we write A⊔B for their concatenation. We define the shuffle
product Sh (A,B) to be the subset of Perm (A ⊔ B) that preserves the
order of the elements of each of A and B. More generally, if A1, . . . , An

are ordered sets, we can define Sh (A1, . . . , An) to be the set of order
preserving permutations of A1 ⊔ · · · ⊔ An. Note that if each Ai = (si)
is a singleton, then Sh (A1, . . . , An) = Perm (S).

Theorem 5.2. Let c = (c0, . . . , cm) and d = (d0, . . . , dn) be degree
sequences. Letting A = ∆(c), B = ∆(d), we have

(5.2) π(c) · π(d) =
∑

σ∈Sh(A,B)

π(Σ(σ, c0 + d0)).
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More generally, for degree sequences d1, . . . ,dr, and Ai = ∆(di), we
have

r∏
i=1

π(di) =
∑

σ∈Sh(A1,...,Ar)

π(Σ(σ, d10 + · · ·+ dr0)).

Example 5.3. Let c = (0, 3, 5), d = (0, 1, 6) so that ∆(c) = (3, 2) and
∆(d) = (1, 5). Then

π(c) · π(d) = π(0, 3, 5, 6, 11) + π(0, 3, 4, 6, 11)

+ π(0, 3, 4, 9, 11) + π(0, 1, 4, 6, 11)

+ π(0, 1, 4, 9, 11) + π(0, 1, 6, 9, 11).

Before proving Theorem 5.2, we need a preliminary lemma. In
the statement of this lemma, we will write Prod (S) for the product
s1 · (s1 + s2) · · · (s1 + s2 + · · ·+ sr), where S = (s1, . . . , sr).

Lemma 5.4. Let A = (e1, . . . , em) and B = (f1, . . . , fn) be ordered
sets. We have∑

σ∈Sh(A,B)

1

σ(1) · (σ(1) + σ(2)) · · · (σ(1) + σ(2) + · · ·+ σ(m+ n))

=
1

e1 · (e1 + e2) · · · (e1 + · · ·+ em) · f1 · (f1 + f2) · · · (f1 + · · ·+ fn)
.

In terms of Prod (S), the above formula can be rewritten as∑
σ∈Sh(A,B)

Prod (A) · Prod (B)

Prod (σ)
= 1.

More generally, if A1, . . . , Ar are ordered sets, then∑
σ∈Sh(A1,A2,...,Ar)

Prod (A1) · Prod (A2) · · ·Prod (Ar)

Prod (σ)
= 1.

Proof. The general statement for A1, . . . , Ar follows from the one for
A,B by induction, so it suffices to treat the latter.

Note that, for any σ ∈ Sh (A,B) we either have σ(m + n) = em or
σ(m+ n) = fn. We can identify the set of σ with σ(m+ n) = em with
Sh (A\em, B) and likewise, identify the set of σ with σ(m+n) = fn with



202 GIBBONS, ET AL.

Sh (A,B\fn). Observe also that Prod (A) = Prod (A\em)·(e1+· · ·+em)
and similarly for Prod (B) and Prod (σ).

The preceding remarks allow us to write∑
σ∈Sh(A,B)

Prod (A) · Prod (B)

Prod (σ)

=

∑
i ei∑

i ei +
∑

j fj
·

∑
σ∈Sh(A\em,B)

Prod (A \ em) · Prod (B)

Prod (σ)

+

∑
j fj∑

i ei +
∑

j fj
·

∑
σ∈Sh(A,B\fn)

Prod (A) · Prod (B \ fn)
Prod (σ)

.

By induction,

∑
σ∈Sh(A\em,B)

Prod (A \ em) · Prod (B)

Prod (σ)

=
∑

σ∈Sh(A,B\fn)

Prod (A) · Prod (B \ fn)
Prod (σ)

= 1,

so we have∑
σ∈Sh(A,B)

Prod (A) · Prod (B)

Prod (σ)
=

∑
i ei∑

i ei +
∑

j fj
+

∑
j fj∑

i ei +
∑

j fj
= 1. �

Proof of Theorem 5.2. The more general statement follows from the
case of two degree sequences by induction, so we focus on the latter.

Shifting degrees, we may assume that c0 = d0 = 0. We write
∆(c) = (e1, . . . , em) and ∆(d) = (f1, . . . , fn). In what follows, we
will treat the ei’s and fj ’s as indeterminates (in particular, we think
of the rows of the Betti diagrams as being indexed by polynomials in
ei, fj), and the conclusion of the theorem will follow by specializing
these indeterminates to integer values. It is enough to check that, for
any 1 ≤ k ≤ m and 1 ≤ l ≤ n, the terms in (5.2) agree in position
(k + l, ck + dl) = (k + l, e1 + · · ·+ ek + f1 + · · ·+ fl).

If we let A(k) = (ek, . . . , e1), A′(k) = (ek+1, . . . , em), B(l) =
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(fl, . . . , f1) and B′(l) = (fl+1, . . . , fn), then

π(c)k,ck =
1

Prod (A(k)) · Prod (A′(k))
,

and

π(d)l,dl
=

1

Prod (B(l)) · Prod (B′(l))
.

It follows that

(π(c) · π(d))k+l,ck+dl

=
1

Prod (A(k)) · Prod (A′(k))
· 1

Prod (B(l)) · Prod (B′(l))
.

Turning attention to the right hand side of (5.2), we observe that
in order for π(Σ(σ, 0))k+l,ck+dl

to be nonzero, we must have that
σ(k+ l) = ck + dl. It follows that we can identify σ with a pair (τ, τ ′),
where τ ∈ Sh (A(k), B(l)) and τ ′ ∈ Sh (A′(k), B′(l)). It is then easy to
see that

π(Σ(σ, 0))k+l,ck+dl
=

1

Prod (τ) · Prod (τ ′)
,

so the entry of the right hand side of (5.2) in position (k+ l, ck + dl) is
equal to

∑
τ∈Sh(A(k),B(l))

τ ′∈Sh(A′(k),B′(l))

1

Prod (τ) · Prod (τ ′)

=

( ∑
τ∈Sh(A(k),B(l))

1

Prod (τ)

)
·
( ∑

τ ′∈Sh(A′(k),B′(l))

1

Prod (τ ′)

)
Lemma 5.4

=
1

Prod (A(k)) · Prod (B(l))
· 1

Prod (A′(k)) · Prod (B′(l))
,

which is what we wanted to prove. �

Remark 5.5. In Theorem 5.2, we see the advantage of our choice of
pure diagrams: no new coefficients appear on the right-hand side.
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Corollary 5.6. Let S = k[x1, . . . , xn]. Suppose that we have an S-
module M and a decomposition of its Betti table

β(M) =
∑
k

ak π(d
k)

into pure diagrams. Let f ∈ S be a homogeneous element of degree e
that is regular on M . Then

β(M/(f)) = e
∑
k

ak

[ ∑
σ∈Perm (∆(dk)∪e)

π(Σ(σ, dk0))

]
.

Proof. Write K•(f) for the Koszul complex on f . Note that
β(K•(f)) = π(0, e). The hypothesis now implies that β(M/(f)) =
β(M) · π(0, e). We now apply Theorem 5.2 and bilinearity to express
β(M/(f)) as a sum of pure diagrams.

We have used that Sh(∆(dk), {e}) = Perm (∆(dk)∪ e) to obtain the
form above. �

Corollary 5.7. Suppose that S/I is a complete intersection where
I = (f1, . . . , fn) and E = (e1, . . . , en) such that fi is of degree ei. One
has the following decomposition of β(S/I) as a nonnegative rational
sum of pure diagrams:

β(S/I) = e1 · e2 · · · en
∑

σ∈Perm (E)

π(Σ(σ, 0)).

Remark 5.8. Using the notation in Corollary 5.7, notice that the
multiplicity of S/I (denoted e(S/I)) is given by e(S/I) =

∏n
i=1 ei.

Hence, Corollary 5.7 tells us that

β(S/I) = e(S/I)
∑

σ∈Perm (E)

π(Σ(σ, 0)).

We combine Corollaries 5.6, 5.7 and Proposition 3.2 to produce even
more decompositions of Betti diagrams of complete intersections into
pure diagrams.

Example 5.9. Let R = k[x, y, u, v] and I = (x2, y3, u4, v7). Let
M = R/(x2, y3, u4), and observe that v7 is regular on M . Using
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Proposition 3.2, we find that

β(M) = 42π(0, 2, 5, 9) + 12π(0, 3, 5, 9)

+ 36π(0, 3, 6, 9) + 12π(0, 4, 5, 9) + 42π(0, 4, 7, 9).

Applying Corollary 5.6, we have

β(R/I) = 294π(0, 7, 9, 12, 16) + 84π(0, 7, 10, 12, 16)

+ 252π(0, 7, 10, 13, 16) + 84π(0, 7, 11, 12, 16)

+ 294π(0, 7, 11, 14, 16).

Alternatively, by Corollary 5.7, we express

β(R/I) = 168
∑

σ∈Perm {2,3,4,7}

π(Σ(σ, 0)),

a sum of 24 pure diagrams with the same coefficient.
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