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REES ALGEBRAS OF
SQUARE-FREE MONOMIAL IDEALS

LOUIZA FOULI AND KUEI-NUAN LIN

ABSTRACT. We determine the defining equations of the
Rees algebra of an ideal I in the case where I is a square-
free monomial ideal such that each connected component of
the line graph of the hypergraph corresponding to I has at
most 5 vertices. Moreover, we show in this case that the
non-linear equations arise from even closed walks of the line
graph, and we also give a description of the defining ideal of
the toric ring when I is generated by square-free monomials
of the same degree. Furthermore, we provide a new class of
ideals of linear type. We show that when I is a square-free
monomial ideal with any number of generators and the line
graph of the hypergraph corresponding to I is the graph of
a disjoint union of trees and graphs with a unique odd cycle,
then I is an ideal of linear type.

1. Introduction. The main problem of interest in this article is the
question of determining the defining equations of the Rees algebra of
a square-free monomial ideal in a polynomial ring over a field. Let R
be a Noetherian ring, and let I be an ideal. The Rees algebra, R(I), is
defined to be the graded algebra

R(I) = R[It] = ⊕
i≥0

Iiti ⊂ R[t],

where t is an indeterminate. The Rees algebra of an ideal encodes
many of the analytic properties of the variety defined by I, and it is
the algebraic realization of the blowup of a variety along a subvariety.
The blowup of Spec (R) along V (I) is the projective spectrum of the
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Rees algebra, R(I), of I. This important construction is the main tool
in the resolution of singularities of an algebraic variety.

From the algebraic point of view the Rees algebra of an ideal
facilitates the study of the asymptotic behavior of the ideal, and it
is essential in computing the integral closure of powers of ideals. The
Rees algebra of an ideal I in a Noetherian ring can be realized as
a quotient of a polynomial ring, and hence once the defining ideal
of R(I) is determined, it is straightforward to compute the integral

closure, R(I). It is well known that

R(I) =
⊕
i≥0

Iiti,

and one obtains Ii = [R(I)]i.

Another reason for exploring the Rees algebra of an ideal is to
determine the defining ideal of toric rings. Recall that a toric ideal
is the ideal of relations of a monomial subring of a polynomial ring,
see Section 2 for a detailed definition. For a Noetherian local ring R
and I an R-ideal the special fiber ring, F(I), of I is defined to be
F(I) = R(I)/IR(I) ⊗ k, where k is the residue field of R. When R
is a polynomial ring over a field k and I is generated by square-free
monomials of the same degree, then the defining ideal of the special
fiber ring F(I) is the toric ideal associated to I. Notice that in this
case F(I) = k[f1, . . . , fn], where f1, . . . , fn is a minimal monomial
generating set of I. There are many questions arising from the study
of toric varieties, as these have applications in combinatorics and in
geometry, for example, see [5, 7, 8, 27, 28]. Once we understand
R(I) then we can obtain a concrete description of the toric ring
corresponding to a square-free monomial ideal generated in the same
degree directly from R(I).

The problem of finding an explicit description of the defining ideal
of the Rees algebra has been addressed by many authors, see for
example, [2, 4, 9, 10, 11, 12, 13, 14, 21, 25, 26, 29, 34]. In
general, finding the generators for the defining ideal of the Rees algebra
of an ideal is difficult. Recently, Kustin, Polini, and Ulrich in [21]
studied the defining equations of the Rees algebra of certain height 2
ideals generated by forms of the same degree in k[x, y], where k is
any field. Recently, Lin and Polini have extended these results in
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[23]. Furthermore, in [6], Cox, et al. provide a detailed study of the
singularities of rational curves in P2 by studying the defining equations
of the Rees algebra.

We consider the following construction for the Rees algebra. Let
R be a Noetherian ring, and let I be an R-ideal. Let f1, . . . , fn
be a minimal generating set for I. Consider the polynomial ring
S = R[T1, . . . , Tn], where T1, . . . , Tn are indeterminates. Then there
is a natural map ϕ : S → R(I) = R[It] that sends Ti to fit. Let
J = kerϕ be the defining ideal of R(I). Then R(I) ≃ S/J and

J =
∞⊕
i=1

Ji

is a graded ideal. A minimal generating set for J is often referred to
as the defining equations of the Rees algebra. Also, J1 is known as
the ideal of linear relations as it is the defining ideal of the symmetric
algebra, Sym (I), of I and it is generated by linear forms in the Ti.
The generators of J1 arise from the first syzygies of I. When J = J1,
then I is called an ideal of linear type. In this case, R(I) ≃ Sym (I),
and the defining ideal of R(I) is well understood. Furthermore, if R is
a Noetherian local ring with residue field k or a k-algebra where k is
a field, then there is a homomorphism ψ : k[T1, . . . , Tn] → F(I) that
sends Ti to fi. Then F(I) ≃ k[T1, . . . , Tn]/H, where H = kerψ. An
ideal I is called an ideal of fiber type if the defining ideal J of R(I)
is obtained by the linear relations and the defining equations for the
special fiber ring, i.e., J = SJ1 + SH.

In the case of square-free monomial ideals generated in degree 2,
namely, edge ideals, Villarreal showed that they are all ideals of
fiber type, [35, Theorem 3.1]. Moreover, Villarreal gave an explicit
description of the defining equations of the Rees algebra of any edge
ideal, [35, Theorem 3.1]. It is also worth noting that Villarreal
exhibited an example to show that his techniques do not extend for
monomial ideals generated in degree higher than 2, [35, Example 3.1].
His example is a square-free monomial ideal generated in degree 3 that
is not of fiber type. We remark that, in general, a square-free monomial
ideal generated in degree greater than or equal to 3 is not necessarily
of fiber type. Therefore, as the degree of the generators exceeds 2, the
complexity of the problem increases.
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In Section 2, we develop a series of lemmas that allow us to determine
conditions under which an element in the defining ideal of the Rees
algebra becomes redundant and hence not needed in the defining
equations. We make use of a classic result by Taylor, in which she
determines a non-minimal generating set for the defining ideal of the
Rees algebra of any monomial ideal, [31]. We construct a graph
associated to monomial ideals, which is also known as the line graph
of the corresponding hypergraph. The monomial generators are the
vertices for this graph, and the edges are determined by the greatest
common divisor among the generators, see Construction 2.16. In
the main result in this section we show that when I is a square-
free monomial ideal such that the line graph of the corresponding
hypergraph is the disjoint union of graphs with at most 5 vertices,
then one can describe the defining equations of the Rees algebra of I,
Theorem 2.20. Furthermore, we show that the non-linear part of the
defining equations of R(I) arises from even closed walks of the line
graph of the corresponding hypergraph, Theorem 2.20. Moreover, in
Example 2.22, we give a concrete explanation of how one obtains the
defining equations for the ideal in [35, Example 3.1].

As mentioned already, one can determine the toric ideal of a square-
free monomial ideal generated in the same degree directly from the
defining equations of the Rees algebra. Villarreal provided a concrete
description of the toric ideal in the case of square-free monomials
generated in degree 2, [35, Proposition 3.1]. We are then able to give a
generalization of Villarreal’s result in the case of square-free monomial
ideals generated in any degree, Corollary 2.23.

In Section 3, we concentrate on the special class of ideals of linear
type. The first well-known class of ideals of linear type are complete
intersection ideals, [24]. Many authors have worked on establishing
other classes of ideals of linear type, see for example, [15, 16, 17,
19, 20, 33]. In the case of square-free monomial ideals generated in
degree 2, Villarreal gave a complete characterization of ideals of linear
type. More precisely, he showed that such an ideal I is of linear type
if and only if the graph of I is the disjoint union of graphs of trees
and graphs that have a unique odd cycle, [35, Corollary 3.2]. Inspired
by this result, we prove that when I is an ideal generated by square-
free monomials and the line graph of the hypergraph corresponding
to I is a disjoint union of graphs of trees and graphs with a unique
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odd cycle then I is an ideal of linear type, Theorem 3.4. In some
sense, these results extend the work of Villarreal, even though we do
not fully recover his results. Nonetheless, our techniques allow us to
consider square-free monomial ideals without any restrictions on the
degrees of the generators nor any restrictions on the number of minimal
generators.

We conclude with some final remarks. In [3], Conca and De Negri
introduced the notion of monomial ideals generated by M -sequences.
They showed that all ideals generated by an M -sequence are ideals of
Gröbner linear type and, in particular, of linear type. In [30], Soleyman
and Zheng introduced the class of monomial ideals of forest type and
showed that in the case of square-free monomial ideals the class of
monomial ideals of forest type coincides with the class of monomial
ideals generated by M -sequences. It is straightforward to see that an
ideal whose line graph is a graph of a forest is an ideal of forest type
and hence making it an ideal generated by an M -sequence. Hence, by
[3, Theorem 2.4], these ideals are of (Gröbner) linear type. However,
an ideal whose line graph is the graph of an odd cycle is not an ideal
of forest type, but nonetheless it is an ideal of linear type. Hence,
the class of ideals of linear type that we uncovered in Theorem 3.4
are not necessarily generated by M -sequences, and thus our result is
incomparable to the results of Conca and De Negri in [3].

2. The defining equations of the Rees algebra. Let R be a
polynomial ring over a field, and let I be a monomial ideal in R. Let
f1, . . . , fn be a minimal monomial generating set of I, and let R(I)
denote the Rees algebra of I. Then R(I) = R[f1t, . . . , fnt] ⊂ R[t], and
there is an epimorphism ϕ : S = R[T1, . . . , Tn] → R(I) induced by
ϕ(Ti) = fit. Let J = kerϕ. We note that

J =
∞⊕
i=1

Ji

is a graded ideal of S. As mentioned in the Introduction, a minimal
generating set for the ideal J is referred to as the defining equations of
the Rees algebra of I.

Definition 2.1. Let I be a monomial ideal in a polynomial ring R
over a field k. Let f1, . . . , fn be a minimal monomial generating set
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of I. Let Is denote the set of all non-decreasing sequences of integers
α = (i1, . . . , is) ⊂ {1, . . . , n} of length s. Then fα = fi1 · · · fis is the
corresponding product of monomials in I. We also let Tα = Ti1 · · ·Tis
be the corresponding product of indeterminates in S = R[T1, . . . , Tn].
For every α, β ∈ Is we consider the binomial

Tα,β =
fβ

gcd(fα, fβ)
Tα − fα

gcd(fα, fβ)
Tβ .

The following is in [31], and we cite it here for ease of reference.

Theorem 2.2. ([31]). Let R be a polynomial ring over a field, and let
I be a monomial ideal in R. Let f1, . . . , fn be a minimal monomial
generating set of I, and let R(I) be the Rees algebra of I. Then
R(I) ≃ S/J , where S = R[T1, . . . , Tn] is a polynomial ring, T1, . . . , Tn
are indeterminates, and

J = SJ1 + S ·
( ∞∪

i=2

Ji

)
such that Js = {Tα,β | for α, β ∈ Is}.

The following remark states some properties for the greatest common
divisor among square-free monomials. The proofs are omitted as they
are elementary.

Remark 2.3. Let a, b, c, d, b1, . . . , bs be square-free monomials in a
polynomial ring R over a field. Let n,m, l, r be positive integers. Then

(a) gcd(an, bm) = gcd(a, b)min{n,m},
(b) gcd(an, b1 · · · bs) = gcd(as, b1 · · · bs) for all n ≥ s,
(c) gcd(an, bmcl) = gcd(a, b)min{n,m} gcd(a, c)min{n,l}/C, for some C ∈

R.

The main goal in this section is to determine conditions under which
for sequences α, β of length s ≥ 2 we have

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
.
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In other words, we are interested in finding conditions on the sequences
α, β such that the generator Tα,β is redundant in the defining ideal
of the Rees algebra. The following two lemmas follow directly from
Definition 2.1.

Lemma 2.4. Let R be a polynomial ring over a field, and let I be
a monomial ideal in R. Let α, β ∈ Is be two sequences of length
s ≥ 2, where Is is as in Definition 2.1. Suppose that α = (a1, . . . , as),
β = (b1, . . . , bs), and suppose that ai = bj for some i and some j. Then

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
.

Proof. Without loss of generality, we may assume that a1 = b1.
Let α1 = (a2, . . . , as) and β1 = (b2, . . . , bs). Then gcd(fα, fβ) =
fa1 gcd(fα1 , fβ1) = fb1 gcd(fα1 , fβ1). Notice that fa1 = fb1 and
Ta1 = Tb1 . Then

Tα,β =
fβ

gcd(fα, fβ)
Tα − fα

gcd(fα, fβ)
Tβ

= Ta1

[
fβ1

gcd(fα1 , fβ1)
Tα1 −

fα1

gcd(fα1 , fβ1)
Tβ1

]
= Ta1 [Tα1,β1 ] ∈ SJ1 + S ·

( s−1∪
i=2

Ji

)
. �

Lemma 2.5. Let R be a polynomial ring over a field, and let I be a
monomial ideal in R. Let α, β ∈ Is be two sequences of length s ≥ 2,
where Is is as in Definition 2.1. Suppose that α = (α1, . . . , α1) and
β = (β1, . . . , β1), where α1, β1 ∈ Im and m ≤ s. Then

Tα,β ∈ SJ1 + S ·
( m∪

i=2

Ji

)
.

Proof. First we observe that s is a multiple of m. Let l be an integer
such that s = lm. Notice that fα = f lα1

and fβ = f lβ1
. Also, by Remark

2.3 (a), we have that gcd(fα, fβ) = gcd(fα1 , fβ1)
l. Let

a =
fβ1Tα1

gcd(fα1 , fβ1)
, b =

fα1Tβ1

gcd(fα1 , fβ1)
,
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and let A = (al−1 + al−2b + · · · + abl−2 + bl−1). Notice that a, b ∈ S,
and thus A ∈ S. Then

Tα,β =
fβ

gcd(fα, fβ)
Tα − fα

gcd(fα, fβ)
Tβ = al − bl

= (a− b)(al−1 + al−2b+ · · ·+ abl−2 + bl−1)

= Ta1,b1A ∈ SJ1 + S ·
( m∪

i=2

Ji

)
. �

We observe the following properties for greatest common divisors
among monomials. Again, we omit the proofs as they are elementary.

Remark 2.6. Let a, b, c, d, e, f be monomials in a polynomial ring R
over a field.

(a) gcd(a, bc) = gcd(a, b)gcd(a, c)/C, for some C ∈ R.
(b) Suppose that gcd(a, c) = 1. Then gcd(ab, c) = gcd(b, c).

The following lemma plays an important role in the rest of this article
as it allows us to show that certain expressions Tα,β are redundant in
the defining ideal of the Rees algebra.

Lemma 2.7. Let R be a polynomial ring over a field, and let I be
a monomial ideal in R. Let α, β ∈ Is be two sequences of length
s ≥ 2, where Is is as in Definition 2.1. Suppose α = (α1, . . . , αm) and
β = (β1, . . . , βm) with αi, βi ∈ Isi and s1+ · · ·+ sm = s. Suppose that,
for all 1 ≤ i ≤ m, there exist Ci ∈ R such that

gcd(fα, fβ)

= gcd

( i−1∏
j=1

fαj , fβ

)
gcd

( m∏
k=i

fαk
,

m∏
k=i+1

fβk

)
gcd

(
fαi , fβi

)/
Ci,

where empty products are taken to be 1. Then

Tα,β =
m∑
i=1

[
Ai

m∏
j=i+1

Tαj

i−1∏
k=1

Tβk

]
Tαi,βi ∈ SJ1 + S ·

( r∪
i=2

Ji

)
,

where r = max{s1, . . . , sm} and Ai ∈ R for all i.
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Proof. Notice that

fα =
m∏
i=1

fαi andfβ =
m∏
i=1

fβi .

Then we have

Tα,β =
fβ

gcd(fα, fβ)
Tα − fα

gcd(fα, fβ)
Tβ

=

m∑
i=1

[ Ci

i−1∏
j=1

fαj

m∏
k=i+1

fβk

m∏
j=i+1

Tαj

i−1∏
k=1

Tβk

gcd(
i−1∏
j=1

fαj
, fβ) gcd(

m∏
k=i

fαk
,

m∏
k=i+1

fβk
)(

fβi

gcd(fαi , fβi)
Tαi −

fαi

gcd(fαi , fβi)
Tβi

)]
.

Finally, we note that

Ai =

Ci

i−1∏
j=1

fαj

m∏
k=i+1

fβk

gcd(
i−1∏
j=1

fαj , fβ) gcd(
m∏
k=i

fαk
,

m∏
k=i+1

fβk
)

∈ R. �

Next we give a list of conditions that, when satisfied by two sequences
α, β, then the generator Tα,β is not a minimal generator in the defining
ideal of the Rees algebra of the corresponding ideal.

Proposition 2.8. Let R be a polynomial ring over a field, and let I be
a monomial ideal in R. Let α, β ∈ Is be two sequences of length s ≥ 2,
where Is is as in Definition 2.1. Let α = (a1, . . . , as), β = (b1, . . . , bs).
Suppose that, after some reordering, there exist integers k, l with 1 ≤ k,
l ≤ s − 1 such that gcd(fai , fbj ) = 1 for every 1 ≤ i ≤ l and every
k + 1 ≤ j ≤ s. We further assume that gcd(fau , fbv ) = 1, for every
l + 1 ≤ u ≤ s and every 1 ≤ v ≤ k. Then

Tα,β ∈ SJ1 + S ·
( r∪

i=2

Ji

)
,

where r = max{k, |k − l|, s− k, s− l}.
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Proof. Suppose that l = k, and write α = (α1, α2) and β = (β1, β2),
where α1 = (a1, . . . , ak), α2 = (ak+1, . . . , as), β1 = (b1, . . . , bk), and
β2 = (bk+1, . . . , bs). By our assumptions, we have gcd(fαi , fβj ) = 1 for
i ̸= j. Hence, by Remark 2.6, we have

gcd(fα, fβ) = gcd(fα, fβ1) gcd(fα, fβ2)/C1

= gcd(fα1 , fβ1) gcd(fα, fβ2)/C1,

gcd(fα, fβ) = gcd(fα1 , fβ) gcd(fα2 , fβ)/C2

= gcd(fα1
, fβ) gcd(fα2

, fβ2
)/C2.

The result follows from Lemma 2.7 with m = 2.

Without loss of generality, we may now assume that l < k. We
write α = (α1, α2, α3) and β = (β1, β2, β3), with α1 = (a1, . . . , al),
α2 = (al+1, . . . , ak), α3 = (ak+1, . . . , as), β1 = (b1, . . . , bl), β2 =
(bl+1, . . . , bk), and β3 = (bk+1, . . . , bs). Then gcd(fα1 , fβ3) = 1 and
gcd(fαi , fβj ) = 1 for i = 2, 3 and j = 1, 2. Hence by Remark 2.6, we
have

gcd(fα, fβ) = gcd(fα, fβ1) gcd(fα, fβ2fβ3)/C1

= gcd(fα1 , fβ1) gcd(fα, fβ2fβ3)//C1,

gcd(fα, fβ) = gcd(fα1 , fβ) gcd(fα2fα3 , fβ)/C2

= gcd(fα1 , fβ) gcd(fα2fα3 , fβ3) gcd(fα2fα3 , fβ1fβ2)/C
′
2

= gcd(fα1 , fβ) gcd(fα2fα3 , fβ3) gcd(fα2fα3 , fβ2)/C
′
2

= gcd(fα1 , fβ) gcd(fα2fα3 , fβ3) gcd(fα2 , fβ2)/C
′
2,

and

gcd(fα, fβ) = gcd(fα1fα2 , fβ) gcd(fα3 , fβ)/C3

= gcd(fα1fα2 , fβ) gcd(fα3 , fβ3)/C3.

Therefore, we may apply Lemma 2.7 with m = 3. �

The next three lemmas deal with possible repetitions in the se-
quences α, β ∈ Is and how that affects the term Tα,β .

Lemma 2.9. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal in R. Let α, β ∈ Is be two sequences
of length s ≥ 2, where Is is as in Definition 2.1. Suppose that
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α = (a1, . . . , a1) and β = (b1, . . . , bs). Then

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
.

Proof. Notice that fα = fsa1
and fβ = fb1 · · · fbs . Let β1 =

(b2, . . . , bs). We also note that gcd(fsa1
, fb1) = gcd(fa1 , fb1), by Remark

2.3 (a). Then

gcd(fα, fβ) = gcd(fsa1
, fb1) gcd(f

s
a1
, fβ1)/C

= gcd(fa1
, fb1) gcd(f

s−1
a1

, fβ1
)/C,

for some C ∈ R, by Remark 2.3 (b) and (c) . Hence,

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
,

by Lemma 2.7. �

Lemma 2.10. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal in R. Let α, β ∈ Is be two sequences
of length s ≥ 2, where Is is as in Definition 2.1. Suppose that
α = (a1, . . . , a1, a2, . . . , a2) and β = (b1, . . . , b1, b2, . . . , b2). Then
Tα,β ∈ SJ1 + SJ2.

Proof. We will proceed by induction on s. If s = 2, then there is
nothing to show. Suppose that s > 2. Suppose that there are li distinct
copies of ai in α and ki distinct copies of bi in β for i = 1, 2. Then
fα = f l1a1

f l2a2
and fβ = fk1

b1
fk2

b2
. For simplicity, we write α = (al11 , a

l2
2 )

and β = (bk1
1 , b

k2
2 ). If k1 = k2 and l1 = l2, then the result follows

from Lemma 2.5. Thus, we may assume without loss of generality that
k1 > k2 and l1 ≥ l2. We will show

gcd(fα, fβ) = gcd(f l1−1
a1

f l2a2
, fk1

b1
fk2

b2
) gcd(fa1 , fb1)/G

= gcd(f l1−1
a1

f l2a2
, fk1−1

b1
fk2

b2
) gcd(f l1a1

f l2a2
, fb1)/H

for some G,H ∈ R. Then Tα,β ∈ SJ1 ∪ SJ2, by Lemma 2.7 and the
induction.
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Notice that we have the following equalities:

gcd(fα, fβ)

= gcd(f l1−1
a1

f l2a2
, fk1

b1
fk2

b2
) gcd(fa1 , f

k1

b1
fk2

b2
)/C

= gcd(f l1−1
a1

f l2a2
, fk1

b1
fk2

b2
) gcd(fa1 , f

k1−1
b1

fk2

b2
) gcd(fa1 , fb1)/CD,

gcd(fα, fβ)

= gcd(f l1a1
f l2a2

, fk1−1
b1

fk2

b2
) gcd(f l1a1

f l2a2
, fb1)/E

= gcd(f l1−1
a1

f l2a2
, fk1−1

b1
fk2

b2
) gcd(fa1 , f

k1−1
b1

fk2

b2
) gcd(f l1a1

f l2a2
, fb1)/EF ,

for some C,D,E, F ∈ R by Remark 2.6 (a). We will show that,

for any integer t and any variable x ∈ R, if xt | gcd(fa1 , f
k1

b1
fk2

b2
),

then xt | CD and xt | EF . This is equivalent to showing that,

for any variable x ∈ R and any integer u, if x | gcd(fa1 , f
k1

b1
fk2

b2
)

and xu | gcd(fα, fβ) then xu | gcd(f l1−1
a1

f l2a2
, fk1

b1
fk2

b2
) gcd(fa1 , fb1) and

xu |gcd(f l1−1
a1

f l2a2
, fk1−1

b1
fk2

b2
) gcd(f l1a1

f l2a2
, fb1). This follows immediately

since s = l1 + l2 = k1 + k2 > l1 and l1 ≥ s/2 > k2. �

Lemma 2.11. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal in R. Let α, β ∈ Is be two sequences
of length s ≥ 4, where Is is as in Definition 2.1. Suppose that
α and β are of the form α = (a1, . . . , a1, a2, . . . , a2, a3, . . . , a3) and
β = (b1, . . . , b1, b2, . . . , b2). Then Tα,β ∈ SJ1 + S · (J2 ∪ J3).

Proof. We will show

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
,

and by induction on s ≥ 4, we conclude that Tα,β ∈ SJ1+S · (J2 ∪J3).
Suppose that there are li distinct copies of ai in α and ki distinct copies
of bi in β. Then l1+l2+l3 = k1+k2 = s ≥ 4. Without lost of generality,
we assume that l1 ≥ l2 ≥ l3 ≥ 1 and k1 ≥ k2 ≥ 1. Since s ≥ 4, we have
l1 ≥ 2 and k1 ≥ 2. We write α = (al11 , a

l2
2 , a

l3
3 ) and β = (bk1

1 , b
k2
2 ). We

then have three possible scenarios. We claim the following
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(i) If l1 + l2 > k1, then

gcd(fα, fβ) = gcd(fa1fa2 , fb1fb2) gcd(fα1 , fβ)/A

= gcd(fα, fb1fb2) gcd(fα1 , fβ1)/B,

for someA,B ∈ R, and α1 = (al1−1
1 , al2−1

2 , al33 ), β1 = (bk1−1
1 , bk2−1

2 ).
(ii) If l1 > k2, then

gcd(fα, fβ) = gcd(fa1 , fb1) gcd(fα1 , fβ)/C

= gcd(fα, fb1) gcd(fα1
, fβ1

)/D,

for some C,D ∈ R, and α1 = (al1−1
1 , al22 , a

l3
3 ), β1 = (bk1−1

1 , bk2
2 ).

(iii) If l1 + l2 ≤ k1 and l1 ≤ k2, then

gcd(fα, fβ) = gcd(fs/3a1
fs/3a2

fs/3a3
, f

2s/3
b1

f
s/3
b2

)

= (gcd(fa1fa2fa3 , f
2
b1fb2))

s/3.

Once we obtain the above claims then the result will follow by
Lemma 2.7.

To establish claim (i), we notice that we have the following equalities:

gcd(fα, fβ) = gcd(fa1fa2 , fβ) gcd(fα1 , fβ)/E

= gcd(fa1fa2 , fb1fb2) gcd(fa1fa2 , fβ1) gcd(fα1 , fβ)/EF,

= gcd(fα, fb1fb2) gcd(fα, fβ1)/G

= gcd(fα, fb1fb2) gcd(fα1
, fβ1

) gcd(fa1
fa2

, fβ1
)/GH,

for some E,F,G,H ∈ R. It is enough to show that for any variable
x ∈ R and any positive integer t if xt | gcd(fa1fa2 , fβ1), then x

t | EF
and xt | GH. This is equivalent to showing that if xu | gcd(fα, fβ)
and x | gcd(fa1fa2 , fβ1), then x

u | gcd(fa1fa2 , fb1fb2) gcd(fα1 , fβ) and
xu | gcd(fα, fb1fb2) gcd(fα1 , fβ1) for any positive integer u. But this
follows immediately since l1 + l2 > k1 ≥ k2 and l1 + l2 < l1 + l2 + l3 =
s = k1 + k2.

For claim (ii) we notice that we have the following equalities:

gcd(fα, fβ) = gcd(fa1 , fβ) gcd(fα1 , fβ)/K

= gcd(fa1 , fb1) gcd(fa1 , fβ1) gcd(fα1 , fβ)/KL,

= gcd(fα, fb1) gcd(fα, fβ1)/M

= gcd(fα, fb1) gcd(fα1 , fβ1) gcd(fa1 , fβ1)/MN,
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for some K,L,M,N ∈ R. The claim follows since l1 > k2.

Finally to establish the last claim we note that the assumption
l1 ≤ k2 is equivalent to l2 + l3 ≥ k1, and thus l2 + l3 ≥ k1 ≥ l1 + l2.
Hence, l3 ≥ l1 ≥ l2 ≥ l3 which implies li = s/3 and 2s/3 ≤ k1.
Furthermore, s/3 ≥ k2 ≥ s/3 and hence k2 = s/3 and k1 = 2s/3. �

The next theorem is one of the main results of this section. We will
use all the information we obtained about how various conditions on
two sequences α, β ∈ Is affect the term Tα,β to obtain a bound on the
relation type of I as well as a description of the defining equations of
the Rees algebra. Recall that the relation type of an ideal I is defined
to be

rt (I) = min

{
s
∣∣∣ J =

s⊕
i=1

Ji

}
,

where J is the defining ideal of R(I). In other words, the relation type
of I is the largest degree (in the Ti) of any minimal generator of J . In
particular, when I is of linear type, the relation type is 1. The relation
type of an ideal has been explored in various articles, see for instance
[1, 18, 22, 32, 36].

Theorem 2.12. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal generated by n square-free monomials in
R. When n ≤ 5, then R(I) = S/J , where S = R[T1, . . . , Tn] and

J = SJ1 + S ·
( n−2∪

i=2

Ji

)
.

In particular, rt(I) ≤ n− 2.

Proof. By Theorem 2.2, it suffices to show that, given two sequences
α, β ∈ Is of length s > n− 2, then

Tα,β ∈ SJ1 + S ·
( n−2∪

i=2

Ji

)
.

Suppose that there are li distinct copies of ai in α and ki distinct copies
of bi in β and write α = (al11 , . . . , a

lm
m ), and β = (bk1

1 , . . . , b
kt
t ).
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By Lemma 2.4 we may assume ai ̸= bj for all i,j. Also by Lemma 2.9,
we may assume 1 < m ≤ 3 and 1 < t ≤ 2, since n ≤ 5. We are now
left with the following cases:

(i) Suppose that α = (al11 , a
l2
2 ) and β = (bk1

1 , b
k2
2 ), where l1 + l2 =

k1 + k2 ≥ 3. The result follows from Lemma 2.10.
(ii) Suppose that α = (al11 , a

l2
2 , a

l3
3 ) and β = (bk1

1 , b
k2
2 ), where l1 + l2 +

l3 = k1 + k2 ≥ 4. The result follows from Lemma 2.11. �

The following example provides a class of square-free monomial
ideals generated by n > 4 square-free monomials for which the relation
type is at least 2n− 7. Notice that when n = 5 one has 2n− 7 = n− 2.
In particular, this establishes that the bound given in Theorem 2.12 is
sharp. We also note that the ideals in the following example are not of
fiber type.

Example 2.13. Let R = k[x1, x2, . . . , xn−2, u1, u2, . . . , un−2] be a
polynomial ring over a field k with n a positive integer such that n > 4.
Let I = (f1, . . . , fn), where

f1 =

( n−2∏
i=2

xi

)
u1, fi = xix1

( n−2∏
j=2,j ̸=i

uj

)
for all i = 2, . . . , n− 2,

fn−1 =

( n−2∏
i=2

xi

)
x1, and fn =

( n−2∏
i=2

ui

)
u1.

Consider

F = Tn−4
1

n−2∏
i=2

Ti − Tn−3
n−1 T

n−4
n and G = u1T

n−5
1

n−2∏
i=2

Ti − yTn−5
n−1 Tn.

It is clear that F and G are in the defining ideal of the Rees algebra of
I. Moreover, F and G are irreducible, and thus

F ∈ SJ2n−7

\
S ·

( 2n−8∪
i=1

Ji

)
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and

G ∈ SJ2n−8

\
S ·

( 2n−9∪
i=1

Ji

)
.

Hence, the relation type of I is at least 2n − 7. Finally, we note that
G is not in the defining ideal of the special fiber of I and therefore I is
not an ideal of fiber type.

The next lemma establishes conditions for when various generators
of the defining ideal of the Rees algebra as in Theorem 2.12 are
irredundant.

Lemma 2.14. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal in R. Let α, β ∈ Is be two sequences
of length s ≥ 4, where Is is as in Definition 2.1. Suppose that
α = (a1, . . . , as), β = (b1, . . . , b1, b2), where ai ̸= bj for all i, j. Suppose
that, for all i, there exists a variable xi ∈ R such that xi | faj

for all
j ̸= i and xi | fb1 , xi - fai , and xi - fb2 . Furthermore, suppose that for
all i there exists a variable zi ∈ R such that zi | gcd(fai

, fb2), zi - faj

for all j ̸= i and zi - fb1 . Then

Tα,β ∈ SJs

\
S ·

( s−1∪
i=1

Ji

)
.

Proof. We write

fai = zihi

( s∏
j=1,j ̸=i

xj

)
for all i = 1, . . . , s,

fb1 = k1

( s∏
i=1

xi

)
, and fb2 = k2

( s∏
i=1

zi

)
,

for some square-free monomials h1, . . . , hs, k1, k2 ∈ R such that xi - hj ,
xi - kl, zi - hj , and zi - kl for all i, j, l. Then we have

fα =
s∏

i=1

xs−1
i

s∏
i=1

zi

s∏
i=1

hi and fβ = ks−1
1 k2

( s∏
i=1

xs−1
i

s∏
i=1

zi

)
.
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Let

M =
fα

gcd(fα, fβ)
=

s∏
i=1

hi

gcd(
s∏

i=1

hi, k
s−1
1 k2)

and

N =
fβ

gcd(fα, fβ)
=

ks−1
1 k2

gcd(
s∏

i=1

hi, k
s−1
1 k2)

.

One can observe immediately that xi - M and zi - N for all i. Let α′

and β′ be any proper subsequences of α and β. Then there exists either
xi or zj such that

xi

∣∣∣ fα′

gcd(fα′ , fβ′)
or zj

∣∣∣ fα′

gcd(fα′ , fβ′)

by our assumptions. Therefore,

fα′

gcd(fα′ , fβ′)
-M,

and similarly,
fβ′

gcd(fα′ , fβ′)
- N.

This shows that

Tα,β ∈ SJs

\
S ·

( s−1∪
i=1

Ji

)
. �

The following theorem establishes precisely the defining equations
for the Rees algebra of a square-free monomial ideal with up to five
generators.

Theorem 2.15. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal generated by n square-free monomials in
R. Suppose that n ≤ 5. Suppose that there does not exist a pair of
sequences α, β ∈ Is of length s ≥ 2 as in Definition 2.1, such that the
conditions of Lemma 2.14 are satisfied. Then I is an ideal of linear
type.



42 L. FOULI AND K.N. LIN

Proof. Consider a pair of sequences α, β as in Definition 2.1 of length
s ≥ 2 such that α = (a1, . . . , as), β = (b1, . . . , b1, b2), where ai ̸= bj for
all i, j. Suppose that one of the following conditions is not satisfied:
For all i, there exists a variable xi ∈ R such that xi | faj

for all j ̸= i,
xi | fb1 , xi - fai , and xi - fb2 , and for all i there exists a variable zi ∈ R
such that zi | gcd(fai , fb2), zi - faj for all j ̸= i and zi - fb1 .

We will show that

Tα,β ∈ SJ1 + S ·
( s−1∪

i=1

Ji

)
and by induction Tα,β ∈ SJ1. By Theorem 2.12 and Lemmas 2.4
and 2.9 it is enough to consider sequences of length 2 or 3, i.e., either
α = (a1, a2) and β = (b1, b2) or α = (a1, a2, a3) and β = (b1, b1, b2).
The proof for the first case can be treated as a special case of the
second and thus we will only consider the case with α = (a1, a2, a3)
and β = (b1, b1, b2). Without lost of generality, we will show that
if there does not exist a variable x ∈ R such that x | gcd(fa2 , fa3),
x | fb1 , x - fa1 , and x - fb2 then

gcd(fa1fa2fa3 , f
2
b1fb2) = gcd(fa1 , fb1) gcd(fα, fb1fb2)/A

= gcd(fa1 , fβ) gcd(fa2fa3 , fb1fb2)/B,

for some A,B ∈ R.

Similarly, if there does not exist a variable z ∈ R such that

z | gcd(fa1
, fb2), z - faj

for j = 2, 3 and z - fb1 then

gcd(fa1fa2fa3 , f
2
b1fb2) = gcd(fa1 , fb1) gcd(fa2fa3 , fβ)/C

= gcd(fα, fb1) gcd(fa2fa3 , fb1fb2)/D,

for some C,D ∈ R. Hence, we may apply Lemma 2.7 to obtain the
result.

For the first part, we notice that

gcd(fa1fa2fa3 , f
2
b1fb2)

= gcd(fα, fb1) gcd(fα, fb1fb2)/E

= gcd(fa1 , fb1) gcd(fa2fa3 , fb1) gcd(fα, fb1fb2)/EF ,

gcd(fa1fa2fa3 , f
2
b1fb2)
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= gcd(fa1 , fβ) gcd(fa2fa3 , fβ)/G

= gcd(fa1 , fβ) gcd(fa2fa3 , fb1) gcd(fa2fa3 , fb1fb2)/GH,

for some E,F,G,H ∈ R. It is enough to show for any variable
x ∈ R if x | gcd(fa2fa3 , fb1), then x | EF and x | GH. This is
equivalent to showing that for any integer u if xu | gcd(fα, fβ) then
xu| gcd(fa1 , fb1) gcd(fα, fb1fb2) and x

u | gcd(fa1 , fβ) gcd(fa2fa3 , fb1fb2).
This is straightforward to verify and the only case that is not trivial is
when x - fa1 and x | gcd(fa2 , fa3). Then x | fb2 by assumption. Hence,
x2 | gcd(fα, fb1fb2) and x2 | gcd(fa2fa3 , fb1fb2).

We can use a similar argument for the second part, and the only
case that is not trivial is when x | gcd(fa1

, fb1fb2) and x - fb1 . Then
x | fb2 and x | fa2 or x | fa3 by assumption. Hence, x2 - gcd(fα, fβ),
x | gcd(fa2

fa3
, fβ) and x | gcd(fa2

fa3
, fb1fb2). �

We now introduce a construction that is also known as the line graph
of the hypergraph corresponding to a monomial ideal.

Construction 2.16. Let R be a polynomial ring over a field, and let
I be a monomial ideal in R. Let f1, . . . , fn be a minimal monomial

generating set of I. We construct the following graph G̃(I) For each
fi we associate a vertex yi to it. The edges of this graph are {yi, yj},
where gcd(fi, fj) ̸= 1. We call the graph G̃(I) the line graph of I.

The purpose of introducing the line graph of the hypergraph corre-
sponding to a monomial ideal is to utilize the graph structure in or-
der to determine combinatorial conditions that determine the defining
equations of the Rees algebra. We first observe the following.

Remark 2.17. With the same assumptions as in Lemma 2.14 the

sequences α, β correspond to an even closed walk in G̃(I). Indeed, the
following

{yb1 , {yb1 , ya1}, ya1 , {ya1 , yb1}, yb1 , {yb1 , ya2}, ya2 , {ya2 , yb1}, yb1 , . . . ,
yb1 , {yb1 , yas−1}, yas−1 , {yas−1 , yb2}, yb2 , {yb2 , yas}, yas , {yas , yb1}, yb1}
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is an even closed walk and

Tα,β ∈ SJs \ S ·
( s−1∪

i=1

Ji

)
.

We now introduce the notion of a subgraph induced by two se-
quences.

Definition 2.18. Let R be a polynomial ring over a field, and let I be
a monomial ideal in R. Let α, β ∈ Is be two sequences of length s ≥ 2,
where Is is as in Definition 2.1. Let α = (al11 , a

l2
2 , . . . , a

lm
m ) and β =

(br11 , . . . , b
rt
t ), where li and ri are the number of distinct copies of ai and

bi, respectively. Let α1 = (a1, . . . , am) and β1 = (bi1 , . . . , bir ), where
{bi1 , . . . , bir} = {b1, . . . , bt} \ {a1, . . . , am}. The last condition ensures
that ai ̸= bik for all i, ik. Consider K = (fa1 , . . . , fam , fbi1 , . . . , fbir )

and the line graph G̃(K) of K. Notice that K ⊂ I and that G̃(K) is a

subgraph of G̃(I), since ai ̸= bik for all i, ik. We call G̃(K) the graph
induced by α and β.

Remark 2.19. Let R be a polynomial ring over a field, and let I be a
monomial ideal in R. Let α, β ∈ Is be two sequences of length s ≥ 2,
where Is is as in Definition 2.1. Let G be the graph induced by α and
β. If G is a disconnected graph, then

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
,

by Proposition 2.8.

The following theorem is an extension of Theorem 2.12. We use the
line graph to give a description for the defining equations of the Rees
algebra.

Theorem 2.20. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal generated by n square-free monomials in
R. Suppose that the line graph of I is the disjoint union of graphs with
at most 5 vertices. Let R(I) = S/J , where S = R[T1, . . . , Tn]. Then
J = SJ1 + S · (J2 ∪ J3) and in particular, rt(I) ≤ 3. Furthermore, if
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Tα,β ∈ S · (J2 ∪ J3) \ SJ1, then the subgraph induced by α, β is an even

closed walk of G̃(I).

Proof. By Remark 2.19, we may assume that G̃(I) is connected.
Then the first part follows immediately by Theorem 2.12. The last
part follows from Theorem 2.15, Lemma 2.14 and Remark 2.17. �

The next example illustrates the result of Theorem 2.20.

Example 2.21. Let R = k[x1, . . . , x7] be a polynomial ring over a
field k. Let I = (f1, . . . , f5), where f1 = x1x2x3, f2 = x1x2x4x7,
f3 = x2x3x6, f4 = x4x5x6, and f5 = x1x3x5. Let R(I) = S/J , where
S = R[T1, . . . , T5]. Let α = (1, 1, 4) and β = (2, 3, 5). The subgraph
induced by α, β is the even closed walk

{y1,{y1, y2}, y2,{y1, y2}, y1,{y1, y3}, y3,{y3, y4}, y4,{y4, y5}, y5,{y1, y5}}

of the line graph of I shown below

.

.

.

y2 = x1x2x4x7

.

.

y1 = x1x2x3

.

.

y5 = x1x3x5.

.

y4 = x4x5x6

.

.

y3 = x2x3x6

Then by Theorem 2.20 we have that Tα,β = T2T3T5 − x7T
2
1 T4 ∈

SJ3 \ (SJ1 + SJ2), since it is irreducible.

The following example comes from [35, Example 3.1]. Villarreal
used this example to show that his methods do not extend in the case
of square-free monomial ideals generated in degree higher than 2. In
light of Theorem 2.20 we now give an explicit description of the defining
equations of the Rees algebra for this example.

Example 2.22. Let R = k[x1, . . . , x7], where k is a field, and let I be
an ideal of R generated by f1 = x1x2x3, f2 = x2x4x5, f3 = x5x6x7,
f4 = x3x6x7. Then the defining ideal of R(I) is minimally generated
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by the binomials

x3T3 − x5T4, x6x7T1 − x1x2T4, x6x7T2 − x2x4T3, x4x5T1

− x1x3T2, x4T1T3 − x1T2T4.

Notice that the only binomial that is not linear is x4T1T3−x1T2T4 and

it comes from the unique even cycle of G̃(I), which in this case is the
graph of a square.

Before concluding this section, we turn our attention to toric ideals.
Recall that a toric ideal is the ideal of relations of a monomial subring
of a polynomial ring. Let A = {a1, . . . , an} ∈ Nc \ {0}, and let A be
a matrix with columns ai and suppose that A has rank c. Let k be
a field, and let S = k[T1, . . . , Tn] be a polynomial ring over k. Let
ϕ : S → k[t1, . . . , tc] be a map defined by ϕ(xi) = tai . Then kerϕ is a
prime ideal and it is called the toric ideal associated to A. In particular,
when I is generated by square-free monomials of the same degree, then
the defining ideal of the special fiber ring F(I) = R(I)⊗ k is the toric
ideal associated to I. Notice that in this case F(I) = k[f1, . . . , fn],
where f1, . . . , fn is a minimal monomial generating set of I. In light of
Theorem 2.20 we can give a concrete description of such toric ideals.

Corollary 2.23. Let R be a polynomial ring over a field k, let
f1, . . . , fn be square-free monomials of the same degree, and let I =
(f1, . . . , fn). Suppose that the line graph of I is the disjoint union of
graphs with at most 5 vertices. Let F(I) = k[f1, . . . , fn] be the mono-
mial subring of R generated by f1, . . . , fn. Then F(I) ≃ k[T1, . . . , Tn]/J
and the toric ideal J corresponding to I is generated by

{Tα − Tβ | α, β ∈ Is, with s = 2, 3, and fα = fβ ,

where α, β induce an even closed walk in G̃(I)}.

3. Square-free monomial ideals of linear type. In this section
we turn our attention to ideals of linear type. Villarreal showed that
when I is the edge ideal of a graph then I is of linear type if and only
if the graph of I is the disjoint union of graphs of trees and graphs
that have a unique odd cycle, [35, Corollary 3.2]. Inspired by this
result, we use the line graph associated to any monomial ideal as in
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Construction 2.16 in order to obtain similar results as Villarreal for
any square-free monomial ideal without restrictions on the degrees of
the generators. A natural first class to consider is ideals with line graph
the graph of a forest.

Proposition 3.1. Let R be a polynomial ring over a field and let I
be a square-free monomial ideal in R. We further assume that the line
graph of I is the graph of a forest. Then I is an ideal of linear type.

Proof. Let f1, . . . , fn be a minimal monomial generating set for I.
We show that for all sequences α, β ∈ Is of length s ≥ 2, where Is is
as in Definition 2.1, we have

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
,

and by induction it follows that Tα,β ∈ SJ1.

Since G̃(I) is the graph of a forest, then every subgraph of G̃(I) is

also a forest. By Remark 2.19, we may assume that G̃(I) is connected,
i.e., it is the graph of a tree. Notice that for every graph of a tree there
exists a vertex that is only connected to one other vertex.

Suppose that s ≥ 2. Let α = (al11 , a
l2
2 , . . . , a

lm
m ) and β =

(br11 , . . . , b
rt
t ), where li and ri are the number of distinct copies of ai

and bi, respectively. Notice that, if ai = bj for some i and some j, then
the result follows by Lemma 2.4 and the induction hypothesis. Hence,
we may assume that ai ̸= bj for all i, j. Let α1 = (a1, . . . , am) and
β1 = (b1, . . . , bt). Then the graph G′ induced by α1, β1 is a subgraph

of G̃(I), by Definition 2.18. Hence G′ is the graph of a forest. If G′ is
disconnected, then the result follows by Remark 2.19 and the induction
hypothesis. Therefore, we may assume that G′ is connected and hence
the graph of a tree. Thus, without loss of generality, we may assume
that ya1 is only connected to yb1 .

If l1 ≥ r1, then gcd(fa1 , f
r2
b2

· · · frtbt ) = 1, and hence

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
,
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by Proposition 2.8. So we may assume that l1 < r1. Then we claim
that

(a) gcd(fα, fβ) = gcd(f l1a1
, f l1b1) gcd(f

l2
a2

· · · f lmam
, fβ),

(b) gcd(fα, fβ) = gcd(fα, f
l1
b1
) gcd(f l2a2

· · · f lkam
, fr1−l1

b1
fr2b2 · · · frtbt )/A,

for some A ∈ R. Notice that, by the claim and Lemma 2.7, it follows
that

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
.

Therefore, it remains to prove the claim.

For part (a), notice that

gcd(fα, fβ) = gcd(f l1a1
, fβ) gcd(f

l2
a2

· · · f lmam
, fβ)

= (f l1a1
, f l1b1) gcd(f

l2
a2

· · · f lmam
, fβ),

where the equalities follow from the fact that

gcd(fa1 , fai) = gcd(fa1 , fbj ) = 1

for any i > 1, j > 1,

and Remark 2.6 (b).

For part (b), notice that

gcd(fα, fβ)

= gcd(fα, f
l1
b1
) gcd(fα, f

r1−l1
b1

fr2b2 · · · frtbt )/B

= gcd(fα, f
l1
b1
)gcd(f l1a1

,fr1−l1
b1

fr2b2 · · ·f
rt
bt
)gcd(f l2a2

· · ·f lmam
, fr1−l1

b1
fr2b2 · · ·f

rt
bt
)/BC

= gcd(fα, f
l1
b1
) gcd(f l1a1

, fr1−l1
b1

) gcd(f l2a2
· · · f lmam

, fr2b2 · · · frtbt )/BC,

for some B,C ∈ R, since gcd(f l1a1
, fr2b2 · · · frtbt ) = 1. It is enough to show

that gcd(f l1a1
, fr1−l1

b1
) | BC, i.e., for any variable x ∈ R and any integer v

if xv | gcd(f l1a1
, fr1−l1

b1
), then xv | BC. This is equivalent to showing that

for any variable x ∈ R if x | gcd(f l1a1
, fr1−l1

b1
) and xu | gcd(fα, fβ) for

some integer u, then xu | gcd(fα, f l1b1) gcd(f
l2
a2

· · · f lmam
, fr1−l1

b1
fr2b2 · · · frtbt ).

If x | gcd(f l1a1
, fr1−l1

b1
) and xu | gcd(fα, fβ), then u ≤ l1 by the

fact that ya1 is only connected to yb1 and l1 < r1. Therefore,

xu | gcd(fα, f l1b1). �
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The following lemma allows us to handle the induction step in the
case of odd cycles, in order to prove that when the line graph of a
square-free monomial ideal is the graph of an odd cycle, then the ideal
is of linear type.

Lemma 3.2. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal in R. Let α, β ∈ Is be two sequences of
length s ≥ 4, where Is is as in Definition 2.1. Let α = (al11 , a

l2
2 , . . . , a

lm
m )

and β = (br11 , . . . , b
rt
t ), where li and ri are the number of distinct copies

of ai and bi, respectively. Suppose that l1 < r1, l2 < r2, and that the

graph G̃(I) is the graph of an odd cycle of length at least 5. We further
assume that ya1 is connected to yb1 and ya2 only, and ya2 is connected
to ya1 and yb2 only. Then

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
.

Proof. Let α′ = (al33 , . . . , a
lm
m ) and β′ = (br1−l1

1 , br2−l2
2 , br33 , . . . , b

rt
t ).

Using Remarks 2.3 and 2.6 we have that

gcd(fα, fβ) = gcd(f l1a1
f l2a2

, fβ) gcd(fα′ , fβ)

= gcd(f l1a1
f l2a2

, f l1b1f
l2
b2
) gcd(fα′ , fβ),

since l1 < r1 and l2 < r2.

We claim that gcd(fα, fβ) = gcd(fα, f
l1
b1
f l2b2)(fα′ , fβ′)/C, for some

C ∈ R. Then the result will follow by Lemma 2.7. Notice that

gcd(fα, fβ) = gcd(fα, f
l1
b1
f l2b2) gcd(fα, fβ′)/D

= gcd(fα, f
l1
b1
f l2b2) gcd(fα′ , fβ′) gcd(f l1a1

f l2a2
, fβ′)/DE

= gcd(fα, f
l1
b1
f l2b2)gcd(fα′ , fβ′)gcd(f l1a1

f l2a2
, fr1−l1

b1
fr2−l2
b2

)/DE,

where D,E ∈ R and the third equality follows from the fact that
ya1 and ya2 are only connected to yb1 and yb2 , respectively. It is
enough to show that for any variable x ∈ R and any integer v if
xv | gcd(f l1a1

f l2a2
, fr1−l1

b1
fr2−l2
b2

), then xv | DE. This is equivalent to

showing that if x | gcd(f l1a1
f l2a2

, fr1−l1
b1

fr2−l2
b2

) and xu | gcd(fα, fβ), then
xu | gcd(fα, f l1b1f

l2
b2
) gcd(fα′ , fβ′). If x | gcd(f l1a1

f l2a2
, fr1−l1

b1
fr2−l2
b2

), then

x cannot divide both fa1 and fa2 , since otherwise {ya1 , ya2 , yb1} or
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{ya1 , ya2 , yb2} will form a 3-cycle in G̃(I). Similarly, x cannot divide
both fb1 and fb2 . Therefore, without loss of generality we may assume
x | fa1 and x | fb1 . Since l1 < r1 and ya1 is not connected to yai for
all i > 2, we obtain that if xu | gcd(fα, fβ), then u ≤ l1. Therefore,

xu | gcd(fα, f l1b1f
l2
b2
). �

In the next proposition we are able to handle the case where each of
the connected components of the line graph has a unique odd cycle.

Proposition 3.3. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal in R. We further assume that line graph

G̃(I) of I is the disjoint union of graphs with a unique odd cycle. Then
I is an ideal of linear type.

Proof. By Remark 2.19, it suffices to consider the connected com-

ponents of G̃(I). Hence, we may assume that G̃(I) is connected and
it has a unique odd cycle. We show that for all sequences α, β ∈ Is of
length s ≥ 2, where Is is as in Definition 2.1, we have

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
.

By induction it will follow that Tα,β ∈ SJ1.

Let α = (al11 , a
l2
2 , . . . , a

lm
m ) and β = (br11 , . . . , b

rt
t ), where li and ri

are the number of distinct copies of ai and bi, respectively. Using
Lemma 2.4 we may assume without loss of generality that ai ̸= bj for
all i and j. Let α1 = (a1, . . . , am) and β1 = (b1, . . . , bt). Then the graph

G′ induced by α1 and β1 is a subgraph of G̃(I), by Definition 2.18. By
Remark 2.19, we may assume that G′ is a connected graph. Notice
that if there exists a vertex yi that is only connected to one of the yj
then

Tα,β ∈ SJ1 + S ·
( s−1∪

i=2

Ji

)
by the proof of Proposition 3.1. Hence, we may assume that G′ is the
graph of an odd cycle. Therefore, every vertex is only connected to two
other vertices.
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Let l = m + t. Since G′ is the graph of an odd cycle then l is odd

and hence m ̸= t. We proceed by induction on l. If l = 3, then G̃(I) is
the graph of a triangle and the result follows from Lemmas 2.4 and 2.9.
Suppose that l ≥ 5. Using Lemma 2.9, we may assume that m ≥ 2 and
t ≥ 2. Notice that ya1 is connected to two other vertices. Without loss
of generality, we may assume that we have the following possible cases

(i) ya1 is connected only to ya2 and ya3 ,
(ii) ya1 is connected only to ya2 and yb1 ,
(iii) ya1 is connected only to yb1 and yb2 .

For case (i), we note that since ya1 is connected only to ya2 and ya3 ,
then using k = l1 in Proposition 2.8 and induction we obtain the result.

For case (ii), suppose that ya1 is connected only to ya2 and yb1 . If
l1 ≥ r1, then using k = l1 in Proposition 2.8 and induction we obtain
the result. If l1 < r1, then we consider ya2 . Notice that ya2 cannot be
connected to yb1 since then {ya1 , ya2 , yb1} will form a triangle, which is
a contradiction since l ≥ 5. Hence, either ya2 is connected to ya3 , or
ya2 is connected to ybi for some i ≥ 2. If ya2 is connected to ya3 , then
case (i) yields the result.

Suppose that ya2 is connected to ybi for some i ≥ 2. Without loss
of generality, suppose that i = 2. If l2 ≥ r2, then we may use k = l2 in
Proposition 2.8 and induction. If l2 < r2 and since l1 < r1 we can use
Lemma 3.2 and induction.

Finally, for case (iii), suppose that ya1 is connected only to yb1 and
yb2 . If every yai is connected to ybi1 and ybi2 for i1, i2 ̸= 1, 2, then
either m = t, which is impossible since l is odd or there exist i ̸= j such
that ybi is connected to ybj . Then by switching the role of α and β we
are in either case (i) or case (ii). �

We are now ready to state the main theorem of this section.

Theorem 3.4. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal in R. We further assume that the line
graph of I is the disjoint union of graphs of trees and graphs with a
unique odd cycle. Then I is an ideal of linear type.

Proof. The result follows immediately by Proposition 2.8, Proposi-
tion 3.1 and Proposition 3.3. �
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We conclude this article with the following remark.

Remark 3.5. Let R be a polynomial ring over a field, and let I be
a square-free monomial ideal generated by 3 square-free monomials in
R. Then the fact that I is of linear type is already known, but it also
follows immediately from Proposition 3.1 and Proposition 3.3.
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