
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 5, Number 4, Winter 2013

INDECOMPOSABLE INJECTIVE MODULES OF FINITE
MALCEV RANK OVER LOCAL COMMUTATIVE RINGS

FRANÇOIS COUCHOT

ABSTRACT. It is proven that each indecomposable injec-
tive module over a valuation domain R is polyserial if and only

if each maximal immediate extension R̂ of R is of finite rank
over the completion R̃ of R in the R-topology. In this case,
for each indecomposable injective module E, the following in-
variants are finite and equal: its Malcev rank, its Fleischer
rank and its dual Goldie dimension. Similar results are ob-
tained for chain rings satisfying some additional properties.
It is also shown that each indecomposable injective module
over local Noetherian rings of Krull dimension one has finite
Malcev rank. The preservation of the finiteness of Goldie di-
mension by localization is investigated too.

0. Introduction and preliminaries. In this paper all rings are
associative and commutative with unity and all modules are unital.
First we give some definitions.

Definition 0.1. An R-module M is said to be uniserial if its set of
submodules is totally ordered by inclusion and R is a chain ring1 if it
is uniserial as R-module. A chain domain is a valuation domain. In
the sequel, if R is a chain ring, we denote by P its maximal ideal, N
its nilradical, Z its set of zero-divisors (Z is a prime ideal) and we put
Q = RZ . Recall that a chain ring R is said to be Archimedean if P is
the sole non-zero prime ideal.

A module M is said to be finitely cogenerated if its injective hull is a
finite direct sum of injective hulls of simple modules. The f.c. topology
on a module M is the linear topology defined by taking as a basis
of neighborhoods of zero all submodules G for which M/G is finitely
cogenerated (see [17]). This topology is always Hausdorff. We denote

by M̃ the completion of M in its f.c. topology. When R is a chain ring
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which is not a finitely cogenerated R-module, the f.c. topology on R
coincides with the R-topology which is defined by taking as a basis of
neighborhoods of zero all non-zero principal ideals. A chain ring R is
said to be (almost) maximal if R/A is complete in its f.c. topology for
any (non-zero) proper ideal A.

In 1959, Matlis proved that a valuation domain R is almost maximal
if and only if Q/R is injective, and in this case, for each proper ideal A
of R, E(R/A) ∼= Q/A, see [15, Theorem 4]. Since Q is clearly uniserial
and Q/R ∼= Q/rR for each non-zero element r ∈ P , we can also say
that R is almost maximal if and only if E(R/rR) is uniserial, if and
only if each indecomposable injective module is uniserial. This result
was extended to any chain ring in 1971 by Gill, see [11, Theorem]:
a chain ring R is almost maximal if and only if E(R/P ) is uniserial,
if and only if each indecomposable injective module is uniserial. By
using [2, Proposition 14], if R is a chain ring, it is easy to check that
E(R/rR) is uniserial if and only if so is E(R/P ). Let us observe that
any indecomposable injective module is uniserial if and only if each
finitely generated uniform module is cyclic.

Definition 0.2. If M is a finitely generated module we denote by
genM its minimal number of generators. If M is a module over a
valuation domain R the Fleischer rank of M , denoted by FrM , is
defined to be the minimum rank of torsion-free modules having M
as an epimorphic image.

In the book “Modules over valuation domains” by Fuchs and Salce [9,
Proposition IX.3.1] (1985), it is proven that genM ≤ FrE(R/P ), for
each finitely generated uniform module M over a valuation domain R.
However, it remains to give a characterization of valuation domains R
for which FrE(R/P ) is finite.

In 2005 [3, Proposition 2], if R is an Archimedean chain ring, the
author proved that there exists an integer p > 0 such that genM ≤ p
for each finitely generated uniform module M if and only if R is almost
maximal, i.e., p = 1.

Definition 0.3. An exact sequence 0 → F → E → G → 0 is pure
if it remains exact when tensoring it with any R-module. In this case
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we say that F is a pure submodule of E. We say that a module M is
polyserial if it has a pure-composition series

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M,

i.e., Mk is a pure submodule of M and Mk/Mk−1 is a uniserial module
for each k = 1, . . . , n. If the submodules Mk are no longer to be
assumed pure in M , then we say M weakly polyserial.

The Malcev rank of a module M is defined as the cardinal number

MrM = sup{genX | X finitely generated submodule of M}.

For each module M over a valuation domain we have MrM ≤ FrM .

An R-module F is pure-injective if for every pure exact sequence

0 −→ A −→ B −→ C −→ 0

of R-modules, the following sequence

0 −→ HomR(C,F ) −→ HomR(B,F ) −→ HomR(A,F ) −→ 0

is exact. An R-module B is a pure-essential extension of a submodule
A if A is a pure submodule of B and, if for each submodule K of B,
either K ∩ A �= 0 or (A + K)/K is not a pure submodule of B/K.
We say that B is a pure-injective hull of A if B is pure-injective and
a pure-essential extension of A. By [19] or [10, Chapter XIII] each
R-module M has a pure-injective hull and any two pure-injective hulls
of M are isomorphic. In the sequel, for each R-module M , M̂ is its
pure-injective hull.

In this paper we give a characterization of two classes of chain rings.
The first is the class of chain rings R for which each indecomposable
injective module is polyserial (Theorem 2.4). These rings are exactly
the chain rings R which satisfies the following two conditions:

(1) Mr
R̃
R̂ <∞2;

(2) each indecomposable injective module contains a pure uniserial
submodule.3
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The first condition holds if and only if any indecomposable injective
module is weakly polyserial. It is also equivalent to the following:
there is a non-zero prime ideal L such that RL is almost maximal
and the valuation domain R/L has a maximal immediate extension of

finite rank which is equal to Mr
R̃
R̂. These rings are almost maximal

by stages, i.e., there exists a finite descending chain of prime ideals
(Li)0≤i≤n, with L0 = P such that (R/Li+1)Li is almost maximal for i =
0, . . . , n− 1 and RLn is maximal. Moreover, for each finitely generated

uniform module M , genM ≤ Mr
R̃
R̂, and for each indecomposable

injective module E, MrRE ≤ Mr
R̃
R̂, the equalities hold for some M

and E. If R is not a domain, then Mr R̂ < ∞. A description of such
chain rings R is given, and this description is similar to the one of
valuation domains with a maximal immediate extension of finite rank
([7, Theorem 10 and Proposition 11]).

The second class is the one of chain rings R for which each localization
of any R-module of finite Goldie dimension has finite Goldie dimension
too. These rings are exactly the chain rings R for which R/L has a
maximal immediate extension of finite rank for each non-zero prime
ideal L. So, the first class is contained but strictly in the second one,
and some examples are given.

It is also shown that the completion R̃ of any chain ring R in its f.c.
topology is Gaussian, and R̃ is a chain ring if and only if R is either
complete or a domain.

For each local Noetherian ring R of Krull dimension one it is proven
that there exists a positive integer m such that MrE ≤ m for every
indecomposable injective R-module E. Moreover, for each integer
m > 1 we give an example of a local Noetherian domain D of Krull
dimension one satisfying genM ≤ m for each finitely generated uniform
D-module M . However, if R is a chain ring with such an upper bound
m then m is a prime power.

Definition 0.4. Let M be a non-zero module over a ring R. We set:

M� = {s ∈ R | ∃0 �= x ∈M such that sx = 0}
and

M � = {s ∈ R | sM ⊂M}.
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Then R \M� and R \M � are multiplicative subsets of R.

IfM is a module over a chain ring R, thenM� andM � are prime ideals
and they are called the bottom and the top prime ideal, respectively,
associated with M .

We say that an R-module E is FP-injective if Ext1R(F,E) = 0, for
every finitely presentedR-module F . A ringR is called self FP-injective
if it is FP-injective as R-module. Recall that a module E is FP-injective
if and only if it is a pure submodule of every overmodule.

If L is a prime ideal of a chain ring R, as in [8], we define the total
defect at L, dR(L), the completion defect at L, cR(L), as the rank

of the torsion-free R/L-module R̂/L and the rank of the torsion-free

R/L-module R̃/L, respectively.

1. Relations between R̂ and R̃. Given a ring R, an R-module M
and x ∈ M , the content ideal c(x) of x in M , is the intersection of all
ideals A for which x ∈ AM .

When R is a chain ring, the breadth ideal B(x) of an element x in R̂ is

defined by B(x) = c(x+R) (x+R ∈ R̂/R). So, B(x) = 0 if x ∈ R. Since

R̂ = R + PR̂ by [5, Proposition 1] then B(x) = {r ∈ R | x /∈ R + rR̂}
if x ∈ R̂ \R.

The following lemma will often be used in the sequel.

Lemma 1.1 [5, Proposition 20 and Lemma 21]. Let R be a chain
ring. Then:

(1) R/A is not complete in its f.c. topology if and only if A = B(x)

for some x ∈ R̂ \R;

(2) if x = r+ay where r, a ∈ R and x, y ∈ R̂\R, then B(y) = (B(x) :
a).

Proposition 1.2. Let R be a chain ring. Then:

(1) R̃ is a local ring;

(2) R̂ has a structure of R̃-module which extends its structure of R-
module;
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(3) R̃ is isomorphic to the submodule of R̂ whose elements x satisfy
B(x) = 0;

(4) for each non-zero prime ideal L of R there exists a prime ideal L′

of R̃ such that R̃/L′ ∼= R/L and L′R̂ = LR̂;

(5) R̃/R is a Q/Z-vector space;

(6) each element a of R̃ ∩ (1 + PR̂) is invertible.

Proof. (1) R̃ is local because it is the inverse limit of a system of local
rings with local connecting homomorphisms.

(2) If R is finitely cogenerated, then R̃ = R. If not we have

∩r∈R\{0}rP = 0. Let a ∈ R̃ and x ∈ R̂. Let (ar + rP )r∈R\{0} be the
family of cosets of R which defines a. If r ∈ sR, then (ar − as) ∈ sP ,

and it follows that (arx−asx) ∈ sP R̂. By [5, Proposition 4] the family

F = (arx+ rP R̂)r∈R\{0} has a non-empty intersection. By [5, Lemma

19] ∩r∈R\{0}rP R̂ = 0, whence the intersection of the family F contains
a unique element that we define to be ax. Now it is easy to complete
the proof.

(3) We do as in (2) by taking x = 1. So, for each a ∈ R̃ corresponds

a unique element y ∈ R̂ such that B(y) = 0. It is easy to check that we

get a monomorphism from R̃ into R̂.

(4) We may assume that R is not finitely cogenerated. Since each non-

zero ideal is open in the f.c.topology of R, we have R̃ ∼= lim←−A∈I
R/A,

where I is the set of non-zero ideals of R. So, there exists a surjection
φ : R̃ → R/L. We put L′ = kerφ. Let 0 �= a ∈ L′ and 0 �= x ∈ R̂,
and let (ar + rR)r∈R\{0} be the family of cosets of R which defines
a. There exists r ∈ L such that ar ∈ L \ rR. We set a′ = ar. Let
s ∈ rR. Since (as − a′) ∈ rR ⊂ a′R then as = a′us for some us ∈ R.
If t ∈ sR, then a′(us − ut) ∈ sR, whence (us − ut) ∈ (sR : a′). The

family (usx + (sR : a′)R̂)s∈Ra′\{0} has a non-empty intersection. Let

y be an element of this intersection. Since (a′y − asx) ∈ sR̂ for each

s ∈ a′R \ {0}, it follows that (a′y − ax) ∈ ∩s∈a′R\{0}sR̂ = 0. Hence,
ax = a′y.

(5) Let x ∈ R̃ and s ∈ R\Z. Suppose that sx = 0. By [5, Proposition

1] x = r + rpy for some r ∈ R, p ∈ P and y ∈ R̂. Since R is a pure
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submodule of R̂, there exists t ∈ R such that sr(1 + pt) = 0. We
successively deduce that sr = 0, r = 0 and x = 0. Now, suppose that
sx ∈ R. Then there exists t ∈ R such that sx = st, whence x = t. So,
the multiplication by s in R̃/R is injective. Since B(x) = 0, x = a+ sy

for some a ∈ R and y ∈ R̂. But B(y) = (0 : s) = 0, so y ∈ R̃.

We conclude that the multiplication by s in R̃/R is bijective. Now let
a ∈ Z. Then (0 : a) contains a non-zero element b. From B(x) = 0

we deduce that x = r + bz for some r ∈ R and z ∈ R̂. It follows that
ax ∈ R.

(6) We have a = 1 + px for some p ∈ P and x ∈ R̂. First
suppose Z �= P . We may assume that p /∈ Z. So, by Lemma 1.1
B(x) = (0 : p) = 0, whence x ∈ R̃ and a is a unit since R̃ is local.
Now, suppose Z = P and let 0 �= t ∈ (0 : p) ∩ Rp. From B(a) = 0,

we deduce that a = u + ty for some u ∈ R and y ∈ R̂. It follows
that (u − 1) ∈ pR̂ ∩ R = pR (R pure submodule of R̂). Hence u
is a unit. We have a(u−1 − u−2ty) = 1 − u−2(ty)2. By using (2),
(ty)2 = t(ty)y = (t2y)y = 0. Hence a is a unit.

A local ring R is called Gaussian4 if, for any ideal A generated by
two elements a, b, in R, the following two properties hold:

(1) A2 is generated by a2 or b2;

(2) if A2 is generated by a2 and ab = 0, then b2 = 0.

Theorem 1.3. Let R be a chain ring. The following assertions hold:

(1) R̃ is a local Gaussian ring;

(2) the following conditions are equivalent:

(a) R̃ is a chain ring;

(b) R is either complete or a domain;

(c) R̃ is a pure R-submodule of R̂;

(d) R̃ is a flat R-module.

Proof. (1) We may assume that R is not finitely cogenerated. Let a

and b be two elements of R̃. By [5, Proposition 1] there exist a′, b′ ∈ R

and x, y ∈ 1+PR̂ such that a = a′x and b = b′y. We may assume that
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b′ = ra′ for some r ∈ R. First suppose that a′ /∈ Z. By Lemma 1.1 (2)

B(x) = (0 : a′) = 0, whence x ∈ R̃, and B(y) = (0 : ra′) = (0 : r). By

Proposition 1.2 x is a unit. Since B(ry) = 0, ry ∈ R̃, so b = x−1(ry)a.
If ab = 0, it follows that (ry)a2 = 0, whence b2 = 0. Now, assume that
0 �= a′ ∈ Z. Let 0 �= t ∈ (0 : a′) ∩ b′P . Then a = c+ tz and b = d+ tw

for some c, d ∈ R and z, w ∈ R̂. So, c − a′ ∈ a′PR̂ ∩ R = a′PR (R

pure submodule of R̂), whence c = ua′ for some unit u ∈ R. In the
same way d = vb′ for some unit v ∈ R. Since a′t = 0, it follows that
a2 = u2a′2, ab = uvra′2 = u−1vra2 and b2 = v2r2a′2 = u−2r2v2a2. If
ab = 0, then ra′2 = 0, whence b2 = 0.

(2) It is well known that (b) implies the other three conditions.

Assume that R is neither complete nor a domain. Let a ∈ R̃ \R and

0 �= r ∈ Z. Since B(a) = 0 then a = s+ rx for some s ∈ R and x ∈ R̂.

So rx ∈ R̃ \ R. If rx = ry, then y /∈ R and B(y) = (0 : r) �= 0 by

Lemma 1.1 (2), whence rx /∈ rR̃ and R̃ is not a pure submodule of R̂.

Now suppose that r ∈ R̃rx, whence r = brx for some b ∈ R̃. From
r(bx−1) = 0 and the flatness of R̂ we deduce that bx−1 = sy for some

s ∈ (0 : r) and y ∈ R̂. Then b is a unit, else, from Proposition 1.2 (4)

we get that 1 ∈ PR̂ ∩ R = P . It follows that rx = rb−1 ∈ rR̃. This is
false. So, R̃ is not a chain ring. Hence, (a) ⇒ (b) and (c) ⇒ (b).

(d) ⇒ (b). Since R is a pure submodule of R̃, R̃/R is flat. By
Proposition 1.2 it is a semisimple Q-module. It follows that either
R̃/R = 0 or Q is a field. We conclude that condition (b) holds.

Proposition 1.4. Let R be a chain ring. Assume (0 : a) = Z for

some a ∈ R. Then Mr R̃ = cR(Z).

Proof. Let R′ = R/Z. We shall prove that R̃′/R′ and R̃/R are

isomorphic. Since R̃′ ⊆ R̂′ ∼= R̂/ZR̂, R̃′/R′ is isomorphic to the

submodule of R̂/(R+ZR̂) whose elements x+(R+ZR̂) satisfy B(x) = Z

(it is easy to check that B(x′) = B(x) if x′ ∈ x + (R + ZR̂) and

x /∈ R + ZR̂). On the other hand, R̃ ⊆ R + aR̂, whence R̃/R is

isomorphic to a submodule of (R + aR̂)/R. For each x ∈ R̂ we put

φ(x+ (R+ ZR̂)) = ax+R. It is easy to check that φ is a well defined

epimorphism from R̂/(R + ZR̂) into (R + aR̂)/R. If ax ∈ R, then
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ax = ad for some d ∈ R because R is a pure submodule of R̂. From
a(x−d) = 0 and the flatness of R̂ we deduce that (x−d) ∈ ZR̂. So, φ is
an isomorphism. By Lemma 1.1 (2) B(x) = Z if and only if B(ax) = 0.

Consequently, the restriction of φ to R̃′/R′ is an isomorphism onto

R̃/R.

2. Polyserial injective modules. The following proposition is a
slight generalization of [3, Proposition 2].

Proposition 2.1. Let R be an Archimedean chain ring. Assume
that there exists a non-zero injective module E such that E� = P and
MrE <∞. Then R is almost maximal.

Proof. It is an immediate consequence of [3, Proposition 2] and
its proof. The existence of an injective module E with MrE < ∞
(ν(E) <∞)5 is used to show that R is almost maximal.

Lemma 2.2. Let R be a maximal chain ring and let M be a flat
module such that M/PM is finitely generated. Then M is a free module
of rank genM/PM .

Proof. Let p = genM/PM . By [6, Proposition 21] M contains a
pure-essential free submodule F of rank p. Since R is maximal F is
pure-injective. So, F = M .

We say that a module M is singly projective if, for any cyclic
submodule G, the inclusion map G→M factors through a free module
F . The following theorem generalizes [7, Theorem 10 and Proposition
11].

Theorem 2.3. Let R be a chain ring. The following conditions are
equivalent:

(1) R̂ is a polyserial module;

(2) Mr R̂ <∞.
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In this case there exists a finite family of prime ideals

P = L0 ⊃ L1 ⊃ · · · ⊃ Lm−1 ⊃ Lm ⊇ N

such that (R/Lk+1)Lk
is almost maximal, for all k, 0 ≤ k ≤ m−1, and

RLm is maximal.

Moreover,

(a) R̂ has a pure-composition series S

0 = F0 ⊂ R = F1 ⊂ · · · ⊂ Fm ⊂ Fm+1 = R̂

where Fj+1/Fj is a free RLj -module of finite rank, for all j, 0 ≤ j ≤ m;

(b) Mr R̂ = dR(Lm) =
∏k=m

k=1 cR(Lk);

(c) R̃ is polyserial and Mr R̃ = cR(Z).

Proof. By [10, Lemma XII.1.4] (1) ⇒ (2).

(2) ⇒ (1). When R is a valuation domain each torsion-free module
of finite rank is polyserial. So, we may assume that R is not a domain.

First we will show that RN is maximal. Since each non-unit of RN

is a zero-divisor, RN is self FP-injective. From [5, Proposition 1] it is

easy to deduce that R̂ is singly projective. By [6, Proposition 6] (R̂)N
is singly projective over RN . By [6, Proposition 3] (R̂)N is FP-injective
and by [5, Proposition 5] it is pure-injective, whence it is an injective

module. It is easy to check that Mr (R̂)N < ∞. By Proposition 2.1
and [11, Proposition 1] we conclude that RN is maximal.

Now we shall build the pure composition series S. By [5, Theorem

2.4 (2)] R̂/N = R̂/NR̂. Hence rank R̂/N = Mr R̂/N < ∞. We apply
[7, Theorem 10 and Proposition 11] to R/N . There exists a finite family
of prime ideals

P = L0 ⊃ L1 ⊃ · · · ⊃ Lm−1 ⊃ Lm ⊇ N

such that (R/Lk+1)Lk
is almost maximal, for all k, 0 ≤ k ≤ m− 1, and

(R/N)Lm is maximal. Moreover, R̂/N has a pure-composition series
S ′

0 = F ′
0 ⊂ R/N = F ′

1 ⊂ · · · ⊂ F ′
m ⊂ F ′

m+1 = R̂/N
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where F ′
j+1/F

′
j is a free (R/N)Lj -module of finite rank, for all j, 0 ≤ j ≤

m. We proceed by induction on j. Obviously F1 = R. Suppose that

Fj is built and that Fj/NFj
∼= F ′

j . If M = R̂/Fj and M ′ = R̂/N/F ′
j ,

then M/NM ∼= M ′. So, M � = Lj , whence M is a module over RLj .
Moreover,M/LjM andM ′/LjM

′ have the same rank pj over (R/Lj)Lj

which is equal to the rank of F ′
j+1/F

′
j over (R/N)Lj . By [6, Proposition

21] M contains a pure free RLj -submodule G of rank pj . Moreover,
G/NG ∼= F ′

j+1/F
′
j and Lj(M/G) = M/G. Let Fj+1 be the inverse

image of G by the natural map R̂ → M . Hence Fj+1/NFj+1
∼= F ′

j+1.

Now, let H = R̂/Fm+1. Thus H is flat and NH = H because

F ′
m+1 = R̂/NR̂. By [6, Proposition 19] H is a module over RN . It

is obvious that (Fm+1)N is a free RN -module of finite rank equal to

gen (R̂)N/N(R̂)N . By Lemma 2.2 (Fm+1)N = (R̂)N . So, H = HN = 0

and Fm+1 = R̂. The maximality of (R/N)Lm and RN implies that
RLm is maximal if Lm �= N (see [5, Theorem 22]).

(b) We apply the last assertion of [7, Theorem 10] to R/N .

(c) We have Mr R̃ ≤ Mr R̂ < ∞. So, by Proposition 1.2 R̃/R

is a finite direct sum of modules isomorphic to Q/Z, whence R̃ is
polyserial. If A is a non-zero proper ideal it is easy to check that
A� = {s ∈ R | A ⊂ (A : s)}. So, if we take this definition of top
prime ideal for each proper ideal of R we have 0� = Z, and for each
0 �= t ∈ R, (0 : t)� = Z. We shall show that there exists a ∈ Z
such that Z = (0 : a). First assume that N ⊂ Z. If t ∈ Z \ N ,
then 0 �= (0 : t) ⊂ N . It follows that N ⊂ Rt ⊆ (0 : s) for some

0 �= s ∈ (0 : t). By Lemma 1.1 (1) there exists x ∈ R̂ \ R such that
B(x) = 0 if R is not complete. Then x = r + sy for some r ∈ R

and y ∈ R̂, and B(y) = (0 : s). Consequently, by using again Lemma
1.1 (1) we deduce that R/(0 : s) is not complete. If R′ is a valuation

domain with R̂′ of finite rank, then, by [7, Theorem 10 and Proposition
11] and their proofs, R′/A is not complete if and only if A is a proper
ideal isomorphic to A� and this prime ideal is one of the list (Li). We
apply this result to R/N , and we get that (0 : s)/N = bZ/N for some
b ∈ R \ N . It follows that (0 : s) = bZ, whence Z = (0 : bs). Now,
suppose that Z = N . If Z is faithful, then ∩a �=0aZ = 0, so, since RN

is maximal, as in the proof of [7, Proposition 4] we prove that R is
complete. Hence, if R is not complete, Z = (0 : a) for some a ∈ Z. We
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conclude by Proposition 1.4.

For each module M we denote by A(M) its set of annihilator ideals,
i.e., an ideal A belongs to A(M) if there exists 0 �= x ∈ M such that
A = (0 : x). If E is an indecomposable injective module over a chain
ring R, then, for any A, B ∈ A(E), A ⊂ B there exists r ∈ R such
that A = rB and B = (A : r).

Recall that a module M has Goldie dimension n (or GdM = n) if its
injective hull is a direct sum of n indecomposable injective modules.

Theorem 2.4. Let R be a chain ring. Consider the following
conditions:

(1) there exists an indecomposable injective module E such that E� =
P and MrE <∞;

(2) there exists a prime ideal L such that dR(L) < ∞ and RL is
almost maximal;

(3) Mr R̂ < ∞ if R is not a domain, and R̂ is the extension of a
reduced torsion-free module of finite rank with a divisible torsion-free
module when R is a domain;

(4) the Malcev rank of R̂ over R̃ is finite;

(5) MrE <∞ for each indecomposable injective module E;

(6) there exists a positive integer n such that genM ≤ n for each
finitely generated uniform R-module M ;

(7) there exists a positive integer n such that genM ≤ nGdM for
each finitely generated R-module M ;

(8) each indecomposable injective module is weakly polyserial;

(9) there exists an indecomposable injective module E such that E� =
P which is weakly polyserial;

(10) each indecomposable injective module is polyserial;

(11) there exists an indecomposable injective module E such that
E� = P which is polyserial.

Then:

(a) the first nine conditions are equivalent and they are implied by
the last two conditions. Moreover, if each indecomposable injective
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module contains a pure uniserial submodule then the eleven conditions
are equivalent.

(b) For each indecomposable injective module E, either MrE = 1

if J ⊆ L or MrE = dRJ (LJ ) = dR(L)/dR(J) = Mr
R̃J

R̂J if L ⊂ J ,

where J = E� and L is a prime ideal for which RL is almost maximal.
Moreover, MrE is the maximum of genR M where M runs over all
finitely generated R-submodules of uniform RJ -modules.

Proof. (a) It is obvious that (8) ⇒ (9), (10) ⇒ (11), (11) ⇒ (9),
(6) ⇒ (5), (7) ⇒ (6) and (5) ⇒ (1), and (9) ⇒ (1) by [10, Corollary
XII.1.5].

(1) ⇒ (2). By [2, Corollary 28] E is faithful or it is annihilated
by a simple ideal if P = Z. So, for each non-zero prime ideal
J there exists A ∈ A(E) such that A ⊂ J . By [2, Lemma 26]

A� = E� = P and by [5, Proposition 1] R̂/AR̂ is an essential extension
of R/A, whence it is isomorphic to a submodule of E. We deduce that

dR(J) = Mr R̂/JR̂ ≤ Mr R̂/AR̂ ≤ MrE < ∞. Let p be the maximum
of dR(J) where J runs over all non-zero prime ideals of R and let L be
the maximal prime ideal for which dR(L) = p. By Theorem 2.3 (R/I)L
is maximal for each I ∈ A(E). We deduce that RL is almost maximal.
Let us observe that dR(L) ≤ MrE.

(2)⇒ (3) and (4). We do as in the proof of Theorem 2.3: from a pure

composition series of R̂/L we deduce a pure submodule F of R̂ with

MrF = dR(L) and if H = R̂/F , then LH = H . If R is not a domain

then, as in the proof of Theorem 2.3, we show that H = 0, whence R̂
is polyserial. It is easy to check that Mr

R̃
R̂ ≤ MrRR̂. If R is a domain

then, for each a ∈ L, a �= 0, (R/aR)L is maximal. In the same way

we get that H = aH , whence H is divisible. Since R̃/LR̃ = R/L then

d
R̃
(LR̃) = dR(L) and (R̃)L is maximal. So, R̂ is the extension of a

torsion-free R̃-module F of rank dR(L) with a divisible torsion-free R̃-

module H . By Lemma 2.2 FL = (R̂)L because FL is free over (R̃)L and

(R̃)L is maximal. Hence H = HL = 0 and F = R̂. So, Mr
R̃
R̂ = dR(L).

(4) ⇒ (2). Let J be a non-zero prime ideal of R. By Proposition 1.2

there exists a prime ideal J ′ of R̃ such that R̃/J ′ = R/J and J ′R̂ = JR̂.

So, MrR R̂/J ≤ Mr
R̃
R̂. Now, we do as in (1) ⇒ (2) to complete the

proof.
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(3) ⇒ (6). Let M be a finitely generated uniform module and E its
injective hull. Then E is indecomposable. Let J = E�. Then E is a
module over RJ . If J ⊆ L then E is uniserial, so MrE = 1. We may
assume that L ⊂ J and it is easy to check that RJ also satisfies (3).
There exists A ∈ A(E) such that M ⊆ (0 :E A). Let E′ = (0 :E A).

By [2, Lemma 26] A� = J , so, by [5, Theorem 6] E′ ∼= R̂J/AR̂J . If R is
a domain, let F be a pure reduced torsion-free RJ -submodule of finite
rank of R̂J such that R̂J/F is divisible. Then (R̂J/F )⊗RJ (R/A)J = 0.
So, in this case E′ ∼= (F/AF )J and MrE′ ≤ rankF . If R is not a

domain, then MrE′ ≤ Mr R̂J . We deduce that genM ≤ rankF or
genM ≤ Mr R̂J .

(6) ⇒ (7). Let M be a finitely generated module and E its injective
hull. By [9, Corollary IX.2.2] GdM ≤ genM . So, E = ⊕1≤j≤pEj

where Ej is indecomposable for j = 1, . . . , p. Let πj : E → Ej be
the natural projection and Mj = πj(M). Then M is isomorphic to a
submodule of ⊕1≤j≤pMj . By (6) gen (⊕1≤j≤pMj) ≤ np. Since each
finitely generated ideal is principal, we conclude that genM ≤ np by
[20, Lemma 1.3].

(3) ⇒ (10). Let E be an indecomposable injective module. We
assume that E contains a pure uniserial submodule U . If J = E�, then

E ∼= R̂J ⊗R U by [5, Corollary 11.(4)]. If R is not a domain, then R̂J

is polyserial by Theorem 2.3. If R is a domain, we may assume that
J �= 0. Let F be a pure reduced torsion-free R-submodule of finite rank
of R̂J such that R̂J/F is divisible. Then (R̂J/F )⊗RU = 0, E ∼= F⊗RU
and we know that F is polyserial. So, in the two cases, from a pure
composition series of R̂J or F with uniserial factors, we deduce a pure
composition series of E with uniserial factors. Hence E is polyserial.

(2)⇒ (8). Let E be an indecomposable injective module and J = E�.
If J ⊆ L then E is a module over RL. So, E is uniserial since RL is
almost maximal. Now, assume that L ⊂ J . We denote by K and I the
kernel and the image of the natural map E → EL. Since L ⊂ J , then
L /∈ A(E). So, K ∼= HomR(R/L,E), whence K is an indecomposable
injective module over R/L. Since (2) ⇒ (3) ⇒ (10) and any injective
module over a valuation domain contains a pure uniserial module, we
get that K is polyserial. On the other hand, by using Theorem 5.4 in
Section 5 and the fact that RL is almost maximal, we deduce that I is a
submodule of a finite direct sum of uniserial modules. By [9, Theorem
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IX.5.5] I is polyserial too. Hence E is weakly polyserial.

(b) The second assertion is also proven.

Lemma 2.5. Let R be a chain ring and let E be an indecomposable
injective module such that Z ⊂ E�. Assume that E contains a pure
uniserial submodule. Then each indecomposable injective module G for
which Z ⊂ G� contains a pure uniserial submodule.

Proof. After replacing R by RE�
we may assume that E� = P . First

we shall prove that E(R/Z) contains a pure uniserial submodule. If Q
is coherent, it is a consequence of [2, Corollary 22]. We assume that Q
is not coherent. So, Z is flat by [2, Theorem 10]. By [4, Theorem 3]
EZ is injective, EZ �= 0, and it contains a pure uniserial submodule U
and an injective hull of U . Let A ∈ A(E), A ⊂ Z. Since A� = E� = P ,
there exists s ∈ P \ Z such that A ⊂ (A : s). Let t ∈ (A : s) \ A.
Then Z ⊂ (A : t). So, (A : t)Z = Q. It follows that AZ = tQ. Hence
E(U) ∼= E(Q/tQ). From [2, Proposition 14], we deduce that E(R/Z)
contains a pure uniserial submodule V . Let x ∈ E(R/Z) such that
Z = (0 : x). If G is an indecomposable injective module such that
Z ⊂ G�, A(G) contains a faithful ideal B. By [2, Proposition 6], V/Bx
is a pure uniserial submodule of G.

Let us observe that condition (10) of Theorem 2.4 implies that each
indecomposable injective module contains a pure uniserial submodule.

Proposition 2.6. Let R be a chain ring and let E be an indecompos-
able injective module such that P = E�. Assume that E is polyserial.
Then:

(1) each indecomposable injective module G for which Z ⊂ G� is
polyserial;

(2) for each prime ideal L ⊆ Z, E(R/L) and E(RL/aRL) are
polyserial, where a ∈ L with 0 �= aRL.

Proof. (1) holds by Lemma 2.5 and Theorem 2.4.

(2) holds by [2, Corollary 22] and Theorem 2.4.
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Remark 2.7. If R is a chain ring which is not a domain, satisfying
MrRR̂ <∞, then MrRR̂ = Mr

R̃
R̂ even if R ⊂ R̃.

3. Fleischer rank and dual Goldie dimension of indecompos-
able injective modules.

Remark 3.1. If M is a torsion-free module of finite rank over a
valuation domain, it is easy to check that its Malcev rank is equal
to its rank. So, if M is a module over a chain ring R, then FrM can
be defined to be the minimum Malcev rank of flat modules having M
as an epimorphic image. Obviously MrM ≤ FrM for each module M .

Proposition 3.2. Let R be a chain ring and let E be an inde-
composable injective module such that E� ⊆ Z. Then E is flat if
A(E) �= {qQ | 0 �= q ∈ Z}.

Proof. If A(E) = {rZ | r ∈ R} then E is flat by [2, Proposition 8].
So, we may assume that A is not of the form rZ if A ∈ A(E). By [2,
Lemma 26] A� = E� for each A ∈ A(E), so A is an ideal of Q. It is
easy to check that (0 : I) is also an ideal of Q for each ideal I of R.
In the sequel we apply [12, Proposition 1.3] to Q: (0 : (0 : A)) �= A if
and only if A = qZ and (0 : (0 : A)) = qQ for some q ∈ Z. Let r ∈ R
and x ∈ E such that rx = 0. Then r ∈ A where A = (0 : x). Since
rQ ⊂ A, then (0 : A) ⊂ (0 : r). Let a ∈ (0 : r) \ (0 : A). It follows
that (0 : a) ⊆ (0 : (0 : A)) = A. The injectivity of E implies that there
exists y ∈ E such that x = ay. So, E is flat.

Proposition 3.3. Let R be a chain ring. Assume that dR(L) < ∞
and RL is almost maximal for a non-zero prime ideal L, and that
E(R/Z) contains a pure uniserial submodule U . Then MrE = FrE
for each indecomposable injective module E.

Proof. Let E be an indecomposable injective module and J = E�.
Since MrE ≤ FrE it is enough to show that E is an epimorphic
image of a flat module G with MrE = MrG. First we assume that
J ⊆ Z. If Q is coherent then E is flat. If Q is not coherent and if
E � E(Q/qQ), where 0 �= q ∈ Z, then E is flat by Proposition 3.2. If
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E = E(Q/qQ), then by [2, Proposition 14] there exists an epimorphism
E(Q/Z) → E whose kernel is a simple Q-module. It is easy to check
that MrE = MrE(Q/Z), and E(Q/Z) is flat. Now, we assume that

Z ⊂ J . In this case, E ∼= R̂J⊗R(U/Ax) where A is a faithful annihilator
ideal of E and x ∈ U with Z = (0 : x). Moreover, U is flat because

so is E(R/Z). Hence E is an epimorphic image of R̂J ⊗R U which

is flat. If R is not a domain then MrE = Mr R̂J ⊗R U = Mr R̂J by
Theorem 2.4 (b). If R is a domain, by Theorem 2.4 R̂J contains a pure

submodule F of rank equal to Mr
R̃
R̂J such that R̂J/F is a divisible

module. In this case we take U = Q and x = 1. Since Q/A is a torsion
module we have E ∼= F ⊗R Q/A. So, E is a homomorphic image of

F ⊗R Q and MrE = Mr
R̃
R̂J = MrF ⊗R Q = dRJ (L) by Theorem

2.4 (b).

We say that a submodule K of a module M is superfluous if the
equality K + G = M holds only when G = M . A module M is
co-uniform if each of its proper submodules is superfluous. We say
that M has dual Goldie dimension n (or dGM = n) if there exists an
epimorphism φ from M into a direct sum of n co-uniform modules such
that kerφ is superfluous.

Proposition 3.4. Let R be a chain ring. Then dGM ≤ MrM for
each R-module M .

Proof. Let n a positive integer such that n ≤ dGM . Then there exists
an epimorphism φ : M → ⊕n

i=1Mi where Mi is a non-zero R-module
for i = 1, . . . , n. For each i, 1 ≤ i ≤ n, let xi be a non-zero element of
Mi and let yi ∈M such that xi = φ(yi). If Σ

n
i=1aiyi = 0 where ai ∈ R

for i = 1, . . . , n, we successively deduce that Σn
i=1aixi = 0, aixi = 0

and ai ∈ P for i = 1, . . . , n. It follows that MrM ≥ n for each integer
n ≤ dGM . So, dGM ≤ MrM .

Proposition 3.5. Let R be a chain ring. Suppose there exists a
non-zero prime ideal L such that Z ⊆ L, dR(L) <∞ and RL is almost
maximal. Then each indecomposable injective module E is polyserial
and MrE = dGE.
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Proof. Let H be the injective hull of R/Z. Then, since H is an
RZ-module and RZ is almost maximal, H is uniserial. Let E be an
indecomposable injective module and let J = E�. If J ⊆ Z, then E
is uniserial. If Z ⊂ J we do as in the proof of Lemma 2.5 to show
that E contains a pure uniserial submodule U . By Theorem 2.4 E is a
polyserial module. If V is a uniserial factor of a pure composition series
of R̂J , then by Theorem 2.3 V ∼= RL′ for some prime ideal L′ ⊇ L. It
follows that EL

∼= Ud
L where d = dRJ (LJ) = MrE. Since Z ⊆ L,

EL is a homomorphic image of E. So, dGE ≥ d. By Proposition 3.4
dGE = d.

We say that a chain ring is strongly discrete if L2 �= L for each non-
zero prime ideal L.

Proposition 3.6. Let R be a chain ring such that Q is strongly
discrete. Then each indecomposable injective module contains a pure
uniserial submodule. For such a ring the 11 conditions of Theorem 2.4
are equivalent.

Proof. Let E be an indecomposable injective module and let J = E�.
Then E is an RJ -module. If A ∈ A(E) then A� = J by [2, Lemma 26].
If J ⊆ Z, since J �= J2 then JRJ = cRJ for some c ∈ J \ J2, and since
ARJ �= cARJ then ARJ = aRJ for some a ∈ ARJ \ cARJ . On the
other hand, since Z = sQ for some s ∈ Z \ Z2, (0 : Z) = (0 : s) �= 0.
So, [2, Corollary 22] can be applied to show that E contains a pure
uniserial submodule.

Corollary 3.7. Let R be a valuation domain. Then the 11 conditions
of Theorem 2.4 are equivalent. Moreover, for each indecomposable
injective module E, MrE = FrE = dGE = Mr

R̃J
R̂J where J = E�.

Example 3.8. It is possible to build examples of chain rings
satisfying the 11 equivalent conditions of Theorem 2.4 by using [8,
Example 6 and Theorem 8]. These examples are strongly discrete (and

Henselian). If R is such an example then Mr
R̃

R̂ = pm, where p is a
prime number and m a non-negative integer. By [18, Remark, page

16] Mr
R̃
R̂ is always a prime power.
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4. Indecomposable injective modules over local Noetherian
rings of Krull dimension one. From a result by Marie-Paule
Malliavin we deduce Theorem 4.1. If M is a module of finite length,
we denote by �(M) its length.

Theorem 4.1. Let R be a local Noetherian ring of Krull dimension
one at most. There exists a positive integer n such that MrE ≤ n for
each indecomposable injective R-module E.

Proof. By [13, Théorème 1.4.2] MrR is finite. We put m = MrR.
Let E be an indecomposable injective module. Then there exists a
prime ideal L such that E = E(R/L). First we assume that L is a
minimal prime. It follows that E is a module of finite length over RL

by [14, Theorem 3.11 (2)] since RL is Artinian. In this case E has a
composition series whose factors are isomorphic to RL/LRL. It is easy
to see that MrRL/LRL = MrR/L ≤ m. Now, by induction on the
length of E over RL and by using [10, Lemma XII.1.4] we get that
MrE < ∞. Now we assume that L = P the maximal ideal of R. Let
M be a finitely generated submodule of E and A = (0 : M). Since E is
Artinian then M is a module of finite length and R/A is Artinian. By
[1, Proposition 1.2] M is injective over R/A and R/A = EndR(M). Let
B be the ideal of R such that B/A is the socle of R/A. If p = �(B/A)
then p = genB ≤ m. So, there is an exact sequence 0 → R/A → Mp

and by applying the functor HomR/A(−,M) to this sequence, we get
that M is a homomorphic image of (R/A)p. So, MrE ≤ m. Since the
set of prime ideals of R is finite the theorem is proven.

Example 4.2. Let R be a local ring of maximal ideal P such
that P 2 = 0. If genP = n where n > 0 it is easy to check that
MrE(R/P ) ≤ n.

In the sequel, for each integer n > 1 we shall give an example of a
local Noetherian domain D of Krull dimension one all whose finitely
generated uniform modules are generated by at most n elements.

Example 4.3. Consider the Noetherian domain R defined in the
following way. Let K be a field, K[X,Y ] the polynomial ring in two
variables X and Y , and f = Y n −Xn(1 +X). By considering that f
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is a polynomial in one variable Y with coefficients in K[X ], it follows
from Eisenstein’s criterion that f is irreducible. Then

D =
K[X,Y ]

fK[X,Y ]

is a domain. Let x and y be the images of X and Y in D by the natural
map and P ′ the maximal ideal of D generated by {x, y}. Let R = DP ′

and P = P ′R.

Then MrR = n and MrE = n for each indecomposable injective
R-module E.

Proof. There are only two types of indecomposable injective modules:
E(R/P ) and Q the quotient field of D and R. Let M be a finitely
generated submodule of Q. Then M is isomorphic to an ideal of R. As
a module over K[X ], D is generated by n elements 1, y, y2, . . . , yn−1.
Since K[X ] is a principal ideal domain, by [20, Lemma 1.3] eachK[X ]-
submodule ofD is generated by at most n elements. It follows that each
ideal of D and each ideal of R is generated by at most n elements. Let
us observe that genPm = n for each m ≥ n−1. So, MrR = MrQ = n.
As in the proof of Theorem 4.1 we show that MrE(R/P ) ≤ n, and since
genPn−1 = n we have genHomR(R/Pn, E(R/P )) = n. The proof is
now complete.

5. Goldie dimension and localization. At the beginning of this
section R is not necessarily a chain ring.

Proposition 5.1. Let R be a ring satisfying one of the following two
conditions:

(1) RP is a domain of Krull dimension one for each maximal ideal
P ;

(2) RP is Noetherian for each maximal ideal P .

Then, S−1M has finite Goldie dimension for each R-module M of finite
Goldie dimension and for each multiplicative subset S of R.

Proof. If GdM < ∞ then M is a submodule of a finite direct
sum of indecomposable injective modules (Ei)1≤i≤n. It follows that
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GdS−1M < ∞ if and only if GdS−1Ei < ∞ for i = 1, . . . , n. So,
we may assume that M is injective and indecomposable. On the other
hand, since EndR(M) is a local ring, there exists a maximal ideal P
such that M is a module over RP . So, we may assume that R is local
of maximal ideal P .

If R satisfies (1), then S = R \ {0}. Either M is torsion-free and
S−1M = M , or M is torsion and S−1M = 0.

If R satisfies (2), we may assume that M = E(R/P ) and S ∩P �= ∅.
Let φ be the natural map M → S−1M . Since M is artinian by [14,
Corollary 3.4] then so is the image of φ. It follows that S−1M is an
essential extension of a semisimple module X . But, for each s ∈ S ∩P ,
sX = 0. We conclude that S−1M = 0.

Proposition 5.2. Let R be a ring of Krull dimension zero. Then
dGS−1M < ∞ for each module M with dGM < ∞ and for each
multiplicative subset S of R.

Proof. Since the natural maps R → S−1R and M → S−1M are
surjective then dGS−1M ≤ dGM .

Example 5.3. Let R be a local UFD of Krull dimension two, p
a prime element of R and S = {pn | n ∈ N}. Then dGR = 1 and
dGS−1R =∞.

Proof. The first equality is obvious. Let Φ be the set of prime elements
of R. If P is the maximal ideal of R, then P = ∪q∈ΦRq. So, Φ is
not finite, else, by a classical lemma P = Rq for some q ∈ Φ that is
impossible. Let n be a positive integer, let q1, . . . , qn be n distinct
elements of Φ\{p} and let a = q1×· · ·× qn. By the Chinese remainder
theorem S−1R/aS−1R ∼= S−1R/q1S

−1R × · · · × S−1R/qnS
−1R. So,

dGS−1R ≥ n for each n > 0.

Theorem 5.4. Let R be a chain ring. The following conditions are
equivalent:

(1) For each module M of finite Goldie dimension and for each prime
ideal L, ML has finite Goldie dimension;

(2) for each prime ideal L �= 0, dR(L) is finite.
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Proof. (1) ⇒ (2). By way of contradiction suppose there exists a
non-zero prime ideal L with dR(L) =∞. Then, for each integer n > 0,

R̂/LR̂ contains a torsion-free R/L- module F of rank n. Let A be an

ideal such that A� = P and A ⊂ L. By [5, Proposition 1.(2)] R̂/AR̂ is
isomorphic to a submodule of the injective hull E of R/A. Since FL is a

(R/L)L-vector space of dimension n contained in (R̂/LR̂)L, we deduce

from [6, Proposition 21], applied to (R̂/AR̂)L, that EL contains a free
(R/A)L-module of rank n. So, GdEL ≥ n for each integer n.

(2) ⇒ (1). It is sufficient to show that GdEL < ∞ for each
indecomposable injective module E and each non-zero prime ideal L.
Let J = E�. If J ⊆ L, then E is a module over RJ , whence EL = E.
If L ⊂ J , since dRJ (LJ) ≤ dR(L), after replacing RJ by R, we may
assume that J = P . If L = 0 (in the case where R is a domain) then
EL = 0. By [2, Corollary 28] E is either faithful or annihilated by a
simple ideal. So, if L �= 0, there exists A ∈ A(E) such that A ⊂ L.
We put E′ = (0 :E A). First we show that E′

L is essential in EL. Let
x ∈ E such that x/1 /∈ E′

L. Then x /∈ E′. So, (0 : x) = rA where
r ∈ P . It follows that (0 : rx) = A. We conclude that r(x/1) ∈ E′

L and

r(x/1) �= 0. Let d = dR(L). Then (R̂)L/L(R̂)L ∼= (R/L)dL. Since P/A
is the set of zero-divisors of R/A then (R/A)L is self FP-injective by [2,

Theorem 11 (2)]. From [5, Proposition 1] it is easy to deduce that R̂/A

is singly projective over R/A. By [6, Proposition 6] (R̂/A)L is singly
projective over (R/A)L. By [6, Propositions 24 and 21] E′

L (which is

isomorphic to (R̂/A)L) contains an essential free (R/A)L-submodule of
rank d. We conclude that GdEL = d <∞.

Corollary 5.5. Let R be a chain ring and let J be the intersection of
all non-zero prime ideals. Then J is prime (= N if R is not a domain)
and the following assertions hold:

(1) if J �= 0 then Goldie dimension finiteness is preserved by localiza-
tion if and only if dR(J) is finite;

(2) if J = 0 and if 0 is a non countable intersection of non-zero
prime ideals then the finiteness of Goldie dimension is preserved by
localization if and only if there exists a non-zero prime ideal L such
that dR(L) is finite and RL is almost maximal.
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Proof. (1) is an immediate consequence of Theorem 5.4.

(2) First we will show that there exists a positive integer p such that
dR(L) ≤ p for each non-zero prime ideal L. By way of contradiction
suppose there exists a non-zero prime ideal Ln such that dR(Ln) ≥ n,
for each integer n > 0. Let H = ∩n>0Ln. Then H is a non-zero prime
ideal and dR(H) ≥ n for each integer n > 0. We get a contradiction
by Theorem 5.4. Let p be the maximum of dR(I) where I runs over
all non-zero prime ideals of R and let L be the maximal prime ideal
for which dR(L) = p. If L′ is a non-zero prime ideal, L′ ⊂ L, then

Mr R̂/L′ = p. By Theorem 2.3 RL/L
′ is maximal. We conclude that

RL is almost maximal.

Let us observe that the following conditions:

(1) each indecomposable injective R-module is polyserial;

(2) the finiteness of Goldie dimension is preserved by localization;

are equivalent if R is a valuation domain such that 0 is a non countable
intersection of non-zero prime ideals. But, generally these two condi-
tions are not equivalent. For instance, if J �= 0, dR(J) < ∞ and RJ

not almost maximal, where J is the intersection of all non-zero prime
ideals, then R satisfies condition (2) but not condition (1). Another
example of a chain ring satisfying condition (2) but not condition (1)
is the following:

Example 5.6. Let R be a strongly discrete valuation domain whose
set of non-zero prime ideals is {Ln | n ∈ N} with L0 = P and
Ln+1 ⊂ Ln for each n ∈ N. Moreover we assume that cR(Ln) = p
for each 0 �= n ∈ N, where p is a prime integer. Such a ring R exists
by [8, Theorem 8]. For each integer n > 0, dR(Ln) = pn. So, condition
(2) is satisfied by Theorem 5.4. But condition (1) doesn’t hold because
there is no non-zero prime ideal L with RL almost maximal.

ENDNOTES

1. We prefer “chain ring ” to “valuation ring” to avoid confusion with
“Manis valuation ring.”

2. We shall see that R̂ can be viewed as a R̃-module by Proposi-
tion 1.2 (2).
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3. This condition holds for each valuation domain and other classes
of chain rings but we don’t know if it is verified by any chain ring.

4. This definition is equivalent to the usual one when R is local, see
[16].

5. The Malcev rank of E is denoted by ν(E) in [3].
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