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THE EVENTUAL STABILITY OF
DEPTH, ASSOCIATED PRIMES

AND COHOMOLOGY OF A GRADED MODULE

MARC CHARDIN, JEAN-PIERRE JOUANOLOU AND AHAD RAHIMI

1. Introduction. The asymptotic stability of several homological
invariants of graded pieces of a graded module has attracted quite a lot
of attention over the last decades. An early important result was the
proof by Brodmann of the eventual stabilization of associated primes
of the powers of an ideal in a Noetherian ring ([1]).

We provide in this text several stability results together with esti-
mates of the degree from which it stabilizes. One of our initial goals
was to obtain a simple proof of the tameness result of Brodmann in
[2] for graded components of cohomology over rings of dimension at
most two. This is achieved in the last section and gives a slight gen-
eralization of what is known, as our result (Theorem 7.4) applies to
Noetherian rings of dimension at most two that are either local or the
epimorphic image of a Gorenstein ring. Recall that Cutkosky and Her-
zog provided examples in [3] showing that tameness does not hold over
rings of dimension three (even over such nice local rings).

Besides this result, we establish, for a graded module M over a poly-
nomial ring S (in finitely many variables, with its standard grading)
over a commutative ring R, stability results for the depth and cohomo-
logical dimension of graded pieces with respect to a finitely generated
R-ideal I. It follows from our results that the cohomological dimension
ofMμ with respect to I is constant for μ > reg (M), and the depth with
respect to I is at least equal to its eventual value for μ > reg (M) and
stabilizes when it reaches this value for some Mμ with μ > reg (M).
See Propositions 3.1 and 4.9 for more precise results.

Recall that reg (M) ∈ Z when M �= 0 is finitely generated and R is
Noetherian.
When R is Noetherian, p ∈ Spec (R) is associated to Mμ for some μ

if and only if p = P ∩ R for P associated to M in S, and the sets of
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associated primes of Mμ are non decreasing for μ > reg (M). It implies
that this set eventually stabilizes when M is finitely generated.

Before we establish these regularity results in Sections 4 and 5, we
prove several facts about depth and cohomological dimension with
respect to a finitely generated ideal and about Castelnuovo-Mumford
regularity of a graded module. Our definition of depth agrees with
the one introduced by Northcott. These results are stated in a quite
general setting, and self-contained proofs are given. Our arguments are
often at least as simple as the ones proposed under stronger hypotheses
in classical references. We are in particular careful about separating
statements where a finiteness hypothesis is needed (notably in terms
of finite generation, finite presentation, or Noetherianity) from others
that do not require it. We show that several basic results on regularity
hold without any finiteness hypothesis, and that many results on the
asymptotic behaviour hold for modules of finite regularity.

In Section 6, we give fairly general duality statements that encapsu-
late the Herzog-Rahimi spectral sequence we use in the last section to
derive tameness from our previous stability results.

1. Local cohomology and depth. Let A be a commutative
ring (with unit) and M an A-module. If a = (a1, . . . , ar) is an r-
tuple of elements of A, K•(a;M) is the Koszul complex and Hi(a;M)
its ith cohomology module. Also, C•

a(M) is the Čech complex. This
complex is isomorphic to lim−→n

K•(an1 , . . . , a
n
r ;M). If a and b generates

two ideals with same radical, then Hi(C•
a(M)) � Hi(C•

b (M)) for all i.
Moreover this isomorphism is graded (of degree 0) if A, M and the
ideals generated by a and b are graded. This, for instance, follows
from [7, 1.2.3 and 1.4.1]. It can also be proved in an elementary
way as follows: first notice that it is sufficient to prove that, if
y ∈

√
(x1, . . . xt), thenHi(C•

(x1,...xt)
(M)) � Hi(C•

(x1,...xt,y)
(M)), second

show that C•
(x1,...xt)

(My) is acyclic if y ∈
√
(x1, . . . xt), and conclude

using that C•
(x1,...xt,y)

(M) is the mapping cone of the natural map

C•
(x1,...xt)

(M) → C•
(x1,...xt)

(My).

We will denote by Hi
I(M) the ith homology module of Hi(C•

a(M)),
if a generates the ideal I.

The ith right derived functor of the left exact functor H0
I coincides

with the functor T i( ) := lim−→n
ExtiA(A/I

n, ). It coincides with Hi
I if



DEPTH, ASSOCIATED PRIMES AND COHOMOLOGY 65

and only if Hi
I(N) = 0 whenever i > 0 and N is injective, and this

holds if A is Noetherian or I is generated by a regular sequence.

If X := Spec (A) and Y := V (I) ⊂ X , one has an isomorphism

Hi
I(M) � Hi

Y (X, M̃).

Indeed, the Serre affineness theorem and the Cartan-Leray theorem
(see, e.g., [9, 14], and [6, 5.9.1]) provide isomorphisms

(1) Hi
Y (X, M̃) � Hi(C•

(a1,...ar)
(M)) � Hi(M ⊗L

A C•
(a1,...ar)

(A)),

as C•
(a1,...ar)

(A) is a complex of flat modules. These isomorphisms show

that the functor M 	→ Hi
I(M) commutes with direct sums and filtered

inductive limits and provide a spectral sequence

(2) Ep,q
2 = TorA−p(M,Hq

I (A)) =⇒ Hp+q
I (M).

Also notice that the isomorphism Hi
I(M) � lim−→n

Hi(an1 , . . . , a
n
r ;M)

shows that any element of Hi
I(M) is annihilated by a power of the

ideal I.

Definition 1.1. If I is a finitely generated A-ideal and M an A-
module, we set

depthI(M) := max{p ∈ N ∪ {+∞} | Hi
I(M) = 0, for all i < p},

and

cdI(M) := max{p ∈ N ∪ {−∞} | Hp
I (M) �= 0}.

In case there might be an ambiguity on the ring over which I and M
are considered, we will use the notations depthAI (M) and cdAI (M).

Notice that, for any A-module M , cdI(M) is bounded above by the
minimal number of generators of any ideal J such that

√
J =

√
I (this

number is called the arithmetic rank of I in A, araA(I)).
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Lemma 1.2. If I is generated by a = (a1, . . . , ar),

depthI(M) = max{p ∈ N ∪∞ | Hi(a;M) = 0, for all i < p}.

Proof. Let d := max{p | Hi(a;M) = 0, for all i < p}. Recall
that, for positive integers li, Hi(al11 , . . . , a

lr
r ;M) = 0 if and only if

Hi(a;M) = 0. It follows that Hi
I(M) = lim−→n

Hi(an1 , . . . , a
n
r ;M) = 0

if Hi(a;M) = 0. Notice that d = ∞ if and only if d > r, in which
case Hi(a;M) = Hi

I(M) = 0 for all i. Hence depthI(M) ≥ d. We now
assume d < ∞. As I annihilates Hi(a;M) for any i, the totalization
of the complex C•

IK
•(a;M) has cohomology isomorphic to the one of

K•(a;M). It provides a spectral sequence

′Ep,q
1 = Hq

IK
p(a;M) =⇒ Hp+q(a;M).

As Hq
IK

p(a;M) = 0 for q < d, this in turn provides a natural into map
Hd(a;M) → Hd

I (M) which shows that depthI(M) ≤ d.

Corollary 1.3. If I is a finitely generated A-ideal, then for any
A-module M ,

depthI(M) = min
p∈V (I)

{depthIp(Mp)}.

To show that this notion agrees with the one introduced by Northcott,
we first prove a lemma.

Lemma 1.4. Let N be an A-module and a ∈ I a non zero divisor
on N . Then

depthI(N/aN) = depthI(N)− 1.

Proof. Consider the exact sequence

0 −→ N
×a−→ N −→ N/aN −→ 0

and the induced long exact sequence on cohomology with support in I,

· · · → Hi−1
I (N) → Hi−1

I (N/aN) → Hi
I(N)

×a→ Hi
I(N) → · · · ,
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and let r := depthI(N). The above sequence shows that depthI(N/aN)
≥ r − 1. Furthermore, if r < ∞, Hr−1

I (N/aN) = 0 if and only if the
multiplication by a is injective on Hr

I (N). But this does not hold since
any element of Hr

I (N) is annihilated by a power of a and Hr
I (N) �= 0

by definition.

We will also use a version of the Dedekind-Mertens lemma, that we
now recall in its general form, together with immediate corollaries that
are useful in this text.

Theorem 1.5 (Generalized Dedekind-Mertens lemma) [8, 3.2.1]. Let
A be a ring, M be a A-module and T a set of variables. For P ∈ A[T ]
and Q ∈ M [T ], let c(P ) be the A-ideal generated by the coefficients of
P , c(Q) the submodule of M generated by the coefficients of Q and �(Q)
the number of non zero coefficients of Q.

Then one has the equality

c(P )�(Q)−1c(PQ) = c(P )�(Q)c(Q).

In particular, the kernel of the multiplication by P in M [T ] is supported
in V (c(P )).

Corollary 1.6. Let A be a ring, I = (a0, . . . , ap) an A-ideal and M
an A-module. Set ξ := a0 + a1T + · · ·+ apT

p ∈ A[T ]. Then

ker (M [T ]
×ξ−→ M [T ]) ⊂ H0

I (M [T ]) = H0
I (M)[T ].

Let S = R[X1, . . . , Xn] be a polynomial ring over a commutative ring
R, and set S+ := (X1, . . . , Xn).

Corollary 1.7. Let M be a graded S-module. Set � := T1X1 + · · ·+
TnXn with degTi = 0. Then the kernel of the map,

M [T1, . . . , Tn]
×�−→ M [T1, . . . , Tn](1)

is a graded S[T1, . . . , Tn]-submodule of H0
S+

(M)[T1, . . . , Tn].
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Corollary 1.8. Consider indeterminates (Ui,j)1≤i,j≤n, ξi :=
∑

1≤j≤n

Ui,jXj, Δ := det (Ui,j)1≤i,j≤n and R′ := R[(Ui,j)1≤i,j≤n]Δ. Let
S′ := R′[X1, . . . , Xn], and set M ′ := M ⊗R R′ for any S-module M .
Then (ξ1, . . . , ξn) is M ′-regular off V (S+

′) = V (ξ1, . . . , ξn).

The following proposition shows that the above definition of depth
agrees with the one introduced by Northcott in [10].

Proposition 1.9. Let r ≥ 1 be an integer and I a finitely generated
A-ideal. The following are equivalent:

(1) depthI(M) ≥ r,

(2) There exists a faithfully flat extension B of A and a regular
sequence f1, . . . , fr on B ⊗A M contained in IB,

(3) There exists a polynomial extension B of A and a regular sequence
f1, . . . , fr on B ⊗A M contained in IB,

(4) There exists a regular sequence f1, . . . , fr on M [T1, . . . , Tr], where
the Ti’s are variables, contained in IA[T1, . . . , Tr].

Proof. The implications (4) ⇒ (3) ⇒ (2) are trivial. Furthermore,
(2) implies that Hi

IB(B ⊗A M) = 0 for i < r using Lemma 1.4, which
in turn implies (1) since Hi

IB(B ⊗A M) � B ⊗A Hi
I(M) because B is

flat over A.

Finally, (1) implies (4) by induction on r, using Lemma 1.4 and
Corollary 1.6.

Remark 1.10. Let r ≥ 1 be an integer and I a finitely generated
A-ideal. If depthI(M) ≥ r and f1, . . . , fs ∈ IB is a regular sequence
on B⊗AM for some flat extension B of A, then s ≤ r and there exists
a faithfully flat extension C of B and fs+1, . . . , fr ∈ IC such that
f1, . . . , fr is regular on C ⊗A M .

2. Castelnuovo-Mumford regularity. Let S be a finitely gener-
ated standard graded algebra over a commutative ring R. Recall that,
for a graded S-module M ,

reg (M) := sup{μ | ∃i, Hi
S+

(M)μ−i �= 0},
with the convention that sup∅ = −∞.
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Lemma 2.1. Let M be a graded S-module. Consider the following
properties:

(i) Mμ = 0 for μ � 0,

(ii) M = H0
S+

(M),

(iii) Hi
S+

(M) = 0 for i > 0.

Then (i) ⇒ (ii) ⇒ (iii), (ii) ⇒ (i) if M is finitely generated or
reg (M) < ∞, and (iii) ⇒ (ii) if Mμ = 0 for μ � 0.

Proof. (i) ⇒ (ii) is clear since any homogeneous element in M is
killed by a power of any element of S+ if (i) holds. If (ii) holds, then
Mx = 0 for any x ∈ S+; hence, the Čech complex on generators of S1

(as an R-module) is concentrated in homological degree 0, which shows
(iii).

If (ii) holds, any element in M is killed by a power of S+; hence, if M
is finitely generated by (mt)t∈T , any generator mt is killed by SNt

+ , for
some Nt ∈ N. It then follows that any element in M of degree bigger
than maxt∈T {deg (mt) + Nt} is 0. If reg (M) < ∞, (ii) ⇒ (i) follows
trivially from the definition of reg (M).

If (iii) holds, set N := M/H0
S+

(M). The exact sequence 0 →
H0

S+
(M) → M → N → 0 gives rise to a long exact sequence in local

cohomology showing that Hi
S+

(N) = 0 for all i. As depthS+(N) = +∞,
Lemma 1.2 shows that N = S+N . This implies that N = 0 as Nμ = 0
for μ � 0.

The following two propositions extend classical results on regularity.

Proposition 2.2. Let � ≥ 1 and m be integers, and let M be a
graded S-module.

If Hi
S+

(M)m−i = 0 for i ≥ �, then Hi
S+

(M)μ−i = 0 for μ ≥ m and
i ≥ �.

Assume that Hi
S+

(M)m−i = 0 for all i, and let μ ≥ m. Then

Hi
S+

(M)μ−i = 0 for i > 0 and H0
S+

(M)μ = Mμ/S1Mμ−1.

Proof. We may assume that S = R[X1, . . . , Xn] is a polynomial ring
over R. We then prove the assertion by induction on n.
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When n = 0, M = H0
S+

(M) and Hi
S+

(M) = 0 for i �= 0, and the
claim follows in both cases.

Next assume that n ≥ 1, and the assertion is true for n− 1 over any
commutative ring. Let

ξ := X1T
n−1 + · · ·+Xn−1T +Xn ∈ R[T,X1, . . . , Xn].

The Dedekind-Mertens Lemma implies that

ker (ξ : M [T ](−1) −→ M [T ]) ⊂ H0
S+

(M [T ]),

by Corollary 1.6. But Hi
S+

(N [T ]) = Hi
S+

(N)[T ] for any S-module N

and any i. Hence, replacing R by R[T ], M by M [T ] and Xn by ξ, we
may assume that

K := ker (Xn : M(−1) −→ M) ⊂ H0
S+

(M).

We then have Hi
S+

(K) = 0 for i �= 0 and the exact sequence

0 −→ K −→ M(−1)
×Xn−→ M −→ Q −→ 0

induces for all i an exact sequence

Hi
S+

(M)(−1)
×Xn−→ Hi

S+
(M) −→ Hi

S+
(Q) −→ Hi+1

S+
(M)(−1).

For i+ j = m, the equalities

Hi
S+

(M)j = 0 and Hi+1
S+

(M)(−1)j = Hi+1
S+

(M)j−1 = 0

imply Hi
S+

(Q)j = 0. Hence, Hi
S+

(Q)j = 0 for i ≥ � and i + j = m.

As Q is annihilated by Xn, setting n := (X1, . . . , Xn−1), one has
Hi

S+
(Q) = Hi

n(Q) for all i. Applying the recursion hypothesis to the

R[X1, . . . , Xn−1]-module Q, it follows that

Hi
S+

(Q)j = Hi
n(Q)j = 0, for all i ≥ �, for all j ≥ m− i.

Hence, Xn : Hi
S+

(M)j−1 → Hi
S+

(M)j is onto for i ≥ � and i + j ≥ m.

As Hi
S+

(M)m−i = 0 for i ≥ �, this proves our claim.
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Remark 2.3. Notice that the exact sequence 0 → S+M → M →
M/S+M → 0 induces an exact sequence

0 −→ H0
S+

(S+M) −→ H0
S+

(M) −→ M/S+M

−→ H1
S+

(S+M) −→ H1
S+

(M) −→ 0.

Proposition 2.4. If S = R[X1, . . . , Xn] is a polynomial ring, then
for any graded S-module M :

(i) reg (M) = sup{μ | ∃i, TorSi (M,R)μ+i �= 0},
(ii) reg (M) = sup{μ | ∃i, Hi(X1, . . . , Xn;M)μ+i �= 0},
(iii) reg (M) = sup{μ | ∃j, Hj(X1, . . . , Xn;M)μ−j �= 0},
(iv) reg (M) = sup{μ | ∃j, ExtjS(R,M)μ−j �= 0}.

In particular, M is generated in degrees at most reg (M) (when
reg (M) = −∞, it means that M is generated in degrees at most μ, for
any μ ∈ Z).

Proof. We first show this equality if reg (M) < ∞. Let K•(M) :=
K•(X1, . . . , Xn;M) and K•(M) := K•(X1, . . . , Xn;M). As K•(M) =
K•(S) ⊗S M , K•(M) = HomS(K•(S),M) and K•(S) is a free
S-resolution of R, it follows that Hi(K•(M)) � TorSi (M,R) and

Hj(K•(M)) � ExtjS(R,M). Furthermore, the complexes K•(M) and
K•(M) are isomorphic, up to a shift in homological degree and internal
degree : K•(M) � Kn−•(M)(n), proving that

ExtjS(R,M)μ−j � Hj(K•(M))μ−j

� Hn−j(K•(M))μ−j+n � TorSn−j(M,R)μ−j+n

and the equivalence of the four items.

To prove (ii), the double complex C•
(X1,... ,Xn)

K•(M) gives rise to two
spectral sequences whose first terms are, respectively,

′Ep,q
1 = K−p(X1, . . . , Xn;H

q
S+

(M)),

′Ep,q
2 = TorS−p(H

q
S+

(M), R)
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and

′′Ep,q
1 = Cp

(X1,... ,Xn)
TorS−q(M,R),

′′Ep,q
2 = Hp

S+
(TorS−q(M,R)).

Recall that K•(M)Xi is acyclic for any i, hence ′′Ep,q
1 = 0 for p �= 0,

which implies that ′′Ep,q
∞ = 0 for p �= 0 and ′′E0,q

∞ � TorS−q(M,R).

On the other hand, (′Ep,q
1 )μ = 0 for μ > reg (M)− q − p as Hq

S+
(M)

lives in degrees at most reg (M)− q. It follows first that TorS−j(M,R)

lives in degrees at most reg (M) − j showing that TorSi (M,R)μ+i = 0
for μ > reg (M).

To conclude, choose j such that Hj
S+

(M)reg (M)−j �= 0. Set μ :=

reg (M)− j + n and notice that (′Ep,q
1 )μ = 0 when p+ q = −n+ j + 1.

As ′Ep,q
1 = 0 for p < −n, it follows that 0 �= Hj

S+
(M)reg (M)−j =

(′E−n,j
1 )μ � (′E−n,j

∞ )μ, which shows that ′′E 0,j−n
∞ � Tor Sn−j(M,

R)reg (M)+n−j �= 0.

To finish the proof, we must show that reg (M) < ∞ if there exists
μ0 such that Tor Si (M,R)μ = 0 for all i and μ ≥ μ0.

We first show that, in this case, there exists a graded free S-resolution
F• of M with Fi = ⊕j∈IiS(−dij), and dij < μ0 for all i and j. Notice
that, if M is graded and (M/S+M)>ν = 0, then M is generated
in degree at most ν, showing the existence of a graded epimorphism
φ : F0 → M with F0 as claimed. The exact sequence,

0 −→ ker (φ) −→ F0 −→ M −→ 0,

gives rise to another

Tor S1 (M,R) −→ ker (φ)/S+ker (φ) −→ F0/S+F0,

and proves the existence of F1, as claimed, such that F1 → ker (φ) is a
graded epimorphism. As Tor Sj (M,R) � TorSj−1(ker (φ), R), for j ≥ 2,
the conclusion follows by induction on i.

Finally, it suffices to remark that, if F• is a graded resolution as
above, then Hi

S+
(M)μ � Hn−i(H

n
S+

(F•)μ) vanishes in degree bigger

than −n+ maxi,j{dij} ≤ −n+ μ0, as H
n
S+

(F•)μ = 0 for all i for such

a μ. Hence, reg (M) ≤ μ0.
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Lemma 2.5. For any graded S-module N ,

reg (N) = sup
p∈Spec (R)

{reg (N ⊗R Rp)}.

Furthermore, reg (N) = reg (N ⊗R Rp) for some p ∈ Spec (R) if
reg (N) < ∞.

Proof. For p ∈ Spec (R),

Hi
S+

(N ⊗R Rp)μ � (Hi
S+

(N)μ)⊗R Rp,

from which the claim directly follows.

3. Depth of the graded components of a graded module.
As in the previous section, S is a finitely generated standard graded
algebra over a commutative ring R.

Proposition 3.1. Let I be a finitely generated R-ideal, M a graded
S-module and d an integer. Assume that depthI(Mμ) ≥ d for μ � 0.
Then:

(i) depthI(Mμ) ≥ d for any μ such that Hq
S+

(M)μ = 0 for q < d,

(ii) if depthI(Mμ) = d for some μ such that Hq
S+

(M)μ = 0 for q ≤ d,

then depthI(Mν) ≤ d for any ν ≥ μ.

Proof. Let a = (a1, . . . , ar) be generators of I. Recall that
Hp(a;M)μ = Hp(a;Mμ), as I is an R-ideal. Hence, if depthI(Mμ) ≥ d
for μ � 0, the S-modules Hp(a;M) are supported in V (S+) for p < d,
by Lemma 1.2 and (i) ⇒ (ii) in Lemma 2.1. Comparing the two spectral
sequences obtained from the double complex C•

S+
K•(a;M), comput-

ing the hypercohomology H• of K•, we obtain on the one hand that
Hi � Hi(a;M) for i < d and Hd � H0

S+
(Hd(a;M)). On the other

hand, one has a spectral sequence

′E p,q
1 = Hq

S+
Kp =⇒ Hp+q,

which shows that (Hi)μ = 0 for i < d if Hq
S+

(M)μ = 0 for q < d,

proving (i).
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For (ii), the condition Hq
S+

(M)μ = 0 for q ≤ d implies that

H0
S+

(Hd(a;M))μ = H0
S+

(Hd(a;Mμ)) = 0. Hence, if Hd(a;Mμ) �= 0,

then 0 �= (S+)
ν−μHd(a;M)μ ⊆ Hd(a;M)ν , which shows (ii) by

Lemma 1.2.

Corollary 3.2. Let I be an R-ideal and M a graded S-module. Then
depthI(M≥μ) is independent of μ for μ > reg (M)− depthS+(M).

Theorem 3.3. Let I be an R-ideal and M a graded S-module with
reg (M) <∞. Set r := reg (M) − depthS+(M), d := minν>r{depthI
(Mν)} = depthI(M>r) and μ0 := inf{ν > r | depthI(Mν) = d}.
Then depthI(Mμ) = d for all μ ≥ μ0.

Proof. We may assume that d < ∞. By definition of d, depthI(Mμ) ≥
d for μ ≥ μ0, as μ0 > r. On the other hand, depthI(Mμ) ≤ d for μ ≥ ν
by Proposition 3.1 (ii). The conclusion follows.

4. Cohomological dimension. Let A be a commutative ring (with
unit), I a finitely generated ideal and M an A-module. First remark
that it follows from (1) that, if M is annihilated by an ideal J , for
instance, if J = annA(M), considering M as an A/J-module one has

(3) cdAI (M) = cd
A/J
(I+J)/J (M).

Furthermore,

Proposition 4.1. Let M be an A-module.

(a)
cdI(M) ≤ max

E⊂M
E f.g.

{cdI(E)}.

(b)
cdI(M) ≤ cdI(A/annAM) ≤ cdI(A).

(c) If M is finitely generated, then

cdI(M) = cdI(A/annAM).
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Proof. (a) M is the filtered inductive limit of its submodules of finite
type (for the inclusion), and local cohomology commutes with filtered
inductive limits.

(b) The spectral sequence (2) shows that cdI(N) ≤ cdI(A) for any
module N , in particular cdI(A/annA(M)) ≤ cdI(A). Together with

(3) applied with J := annA(M), we get cdAI (M) = cd
A/J
(I+J)/J (M) ≤

cd
A/J
(I+J)/J(A/J) = cdI(A/J).

(c) According to (b), it suffices to show that cdI(A/annAM) ≤
cdI(M). Replacing A by A/annA(M), we may assume that M is
faithful.

We will show that cdI(M) ≤ r implies cdI(A) ≤ r. This is clear for
r ≥ araA(I), and we now perform a descending recursion on r. Assume
that this is true for r + 1. If cdI(M) ≤ r, by recursion hypothesis we
know that cdI(A) ≤ r + 1; hence, spectral sequence (2) implies that

0 = Hr+1
I (M) = M ⊗A Hr+1

I (A).

As M is faithful and of finite type, [13, 4.3] shows that Hr+1
I (A) = 0,

which implies that cdI(A) ≤ r.

The following corollary has been proved by Dibaei and Vahidi in the
Noetherian case in [4, 2.2].

Corollary 4.2. Let M be an A-module and I, J two finitely
generated ideals. Then

cdI+J(M) ≤ cdI(A/annAM) + cdJ (M),

and cdI+J (M) ≤ cdI(M) + cdJ (M) if M is finitely generated.

Proof. We may assume that M is faithful. If a is a finite set of
generators of I and b a finite set of generators of J , the double complex
with components Ci

a(A)⊗ACj
b (M) gives rise to a spectral sequence with

second term Hi
I(H

j
J(M)) that abuts to Hi+j

I+J (M). Hence,

cdI+J (M) ≤ max{i+ j | Hi
I(H

j
J (M)) �= 0} ≤ cdI(A) + cdJ(M),

by Proposition 4.1 (b).
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Furthermore, by Proposition 4.1 (c), cdI(A) = cdI(M) whenever M
is faithful and finitely generated.

Corollary 4.3. Let M be a finitely generated A-module and a an
ideal of A such that atM = 0 for some t. Then

cdI(M) = cdI(M/aM).

Proof. Let d := cdI(M) = cdI(A/annA(M)) (by Proposition 4.1 (c)).
As M/aM is annihilated by annA(M), it follows from Proposition
4.1 (b) that cdI(M/aM) ≤ d. Furthermore, Proposition 4.1 (b)
shows that the functor N 	→ Hd

I (N) restricted to the category of
A-modules annihilated by annA(M) is right exact. It implies that
Hd

I (M/aM) = Hd
I (M)⊗A A/a = Hd

I (M)/aHd
I (M).

If cdI(M/aM) < d it implies

Hd
I (M) = aHd

I (M) = a2Hd
I (M) = · · · = atHd

I (M) = 0,

which contradicts the definition of d.

Proposition 4.4. Let 0 → M ′ → M → M ′′ → 0 be an exact
sequence of A-modules. Then

cdI(M) ≤ max{cdI(M ′), cdI(M
′′)} ≤ cdI(A/annA(M)).

Furthermore, all inequalities are equalities if M is finitely generated.

Proof. First, the exact sequences

Hi
I(M

′) −→ Hi
I(M) −→ Hi

I(M
′′), i ∈ Z,

show the inequality on the left. As both A-modules M ′ and M ′′ are
annihilated by annA(M), the inequality on the right follows from (3)
and Proposition 4.1 (b).

Finally, the extreme terms are equal according to Proposition 4.1 (c)
if M is finitely generated.
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Remark 4.5. If A is a domain, distinct from its field of fractions K
and I a proper finitely generated ideal, then A is a submodule of K
such that

−∞ = cdI(K) < 0 ≤ cdI(A).

Corollary 4.6. If M is a Noetherian A-module, then

cdI(M) = max
p∈SuppA(M)

cdI(A/p)

= max
p∈AssA(M)

cdI(A/p)

= max
p∈MinA(M)

cdI(A/p).

Proof. Let MinA(M) be the minimal primes in the support of M .
Every p ∈ SuppA(M) contains some q ∈ MinA(M), and the canonical
epimorphism A/q → A/p gives an inequality cdI(A/p) ≤ cdI(A/q) by
Proposition 4.4. It follows that

max
p∈SuppA(M)

cdI(A/p) = max
p∈MinA(M)

cdI(A/p).

On the other hand, MinA(M) ⊂ AssA(M), and for p ∈ AssA(M), the
existence of a monomorphism A/p → M implies by Proposition 4.4
that cdI(A/p) ≤ cdI(M). Hence,

max
p∈MinA(M)

cdI(A/p) ≤ max
p∈AssA(M)

cdI(A/p) ≤ cdI(M),

and it remains to show that cdI(M) ≤ maxp∈SuppA(M) cdI(A/p).

Observe that, if M �= 0, it admits a finite filtration by cyclic
modules A/pi (1 ≤ i ≤ t) with pi ∈ SuppA(M) for all i. Again,
by Proposition 4.4, we obtain

cdI(M) = max
1≤i≤t

{cdI(A/pi)} ≤ max
p∈SuppA(M)

{cdI(A/p)}.

This concludes the proof.

The following result generalizes the main theorem of [5], which applies
in the case of two finitely generated modules over a Noetherian ring.
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Proposition 4.7. Let M and N be A-modules. Assume M is finitely
presented, and SuppA(N) ⊂ SuppA(M). Then

cdI(N) ≤ cdI(M).

Proof. Let E be a finitely generated submodule of N . The inclusion
SuppA(N) ⊂ SuppA(M) implies that

(4)
√
annA(M) ⊂

√
annA(E).

As M is finitely generated, the Fitting ideal Fitt0A(M) has the same
radical as annA(M) and contains a power of annA(M). Furthermore,
as M is finitely presented, this ideal is finitely generated. It then
follows from (4) that there exists t such that annA(M)t ⊂ annA(E).
By Corollary 4.3 and Proposition 4.1 (b) and (c), one has

cdI(E) ≤ cdI(E/annA(M)E) ≤ cdI(A/annA(M)) = cdI(M).

The conclusion follows by Proposition 4.1 (a) applied to the A-module
N .

Now, let S be a finitely generated standard graded algebra over a
commutative ring R.

Definition 4.8. For a graded S-module M ,

aiS+
(M) := sup{μ | Hi

S+
(M)μ �= 0},

so that reg (M) = maxi{aiS+
(M) + i}.

Proposition 4.9. Let M be a finitely generated graded S-module
and I a finitely generated R-ideal. Then

(a) cdI(Mμ) is a non decreasing function of μ for μ > a0S+
(M),

(b) cdI(Mμ) is constant for μ ≥ reg (M)+n− depthS+(M) if n > 0.

Proof. We may, and will, assume that cdS+(M) > 0, as the proposi-
tion is immediate when cdS+(M) = 0 by Lemma 2.1. We also remark
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that it suffices to prove the claim after the faithfully flat base change
R → R′; hence, we may further assume (making an invertible linear
change of coordinates) by Remark 1.8 that the sequence (X1, . . . , Xn)
is M -regular off V (S+).

In particular, the kernel of the map M → M(1) induced by mul-
tiplication by Xn is contained in H0

S+
(M). It follows an injection

Mν → Mν+1 for ν > a0S+
(M) which proves (a) by Proposition 4.4

as Mν+1 is finitely generated over R.

To prove (b), we consider the two converging spectral sequences
arising from the double complex C•

IK•(X1, . . . , Xn;M). They have
as respective second terms

Tor S−p(H
q
I (M), R) and Hp

I (Tor
S
−q(M,R)).

Let d := maxν>a0
S+

(M){cdI(Mν)}. We may assume d ≥ 0. It follows

from the comparison of the spectral sequences that

Tor S0 (H
d
I (M), R)ν+1 = Hd

I (Mν+1)/S1H
d
I (Mν) = 0

if Hd+i
I (Mν−i) = 0 for 1 ≤ i ≤ n − 1 and Hd+i

I (Tor S
i (M,R)ν+1) = 0

for all i.

But Tor Si (M,R)ν+1 = 0 for ν ≥ reg (M)+ i and Tor Si (M,R) = 0 for
i > n− depthS+(M) by Lemma 1.2.

It follows that Hd
I (Mν) = 0 implies Hd

I (Mν+1) = 0 if

ν ≥ max{a0S+
(M) + n, reg (M) + n− depthS+(M)}

= reg (M) + n− depthS+(M).

This implies (b), in view of (a).

5. Associated primes of the graded components of a graded
module. Let S be a standard graded Noetherian algebra over a
commutative ring R.

Theorem 5.1. Let M be a graded S-module. Then

⋃
μ∈Z

AssR(Mμ) = {P ∩R, P ∈ AssS(M)}.
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Proof. For μ ∈ Z, let p ∈ AssR(Mμ). There exists an x ∈ Mμ with
p = annR(x). Hence, pRp = annRp(x). Let Q be an S ⊗R Rp-ideal,
maximal among those of the form annS⊗RRp(y), y ∈ M ⊗R Rp, that
contains annRp(x). The ideal Q is associated to M ⊗R Rp; hence,
P := Q ∩ S is associated to M and P ∩R = p. One inclusion follows.

Conversely, let P be an ideal associated to M . We need to show that
p := P ∩ R is associated to Mμ for some μ. This will be the case if
pRp is associated (Mμ)p, so that we may assume that R is local with
maximal ideal p. Let m �= 0 in M such that Pm = 0. If mν is the
degree ν component of m, one has pmν = 0. Hence, choosing μ such
that mμ �= 0, one has p ⊆ annR(mμ); hence, p = annR(mμ), as p is
maximal.

Theorem 5.2. Let M be a graded S-module. If H0
S+

(M)ν = 0, then

AssR(Mν) ⊆ AssR(Mμ) for all μ ≥ ν.

Proof. Let x1, . . . , xn be generators of S1 as an R-module, and let
T1, . . . , Tn be variables. Set P :=

∑
|α|=μ−ν x

αTα. The polynomial

P is of bidegree (μ − ν, μ − ν) for the bigraduation defined by setting
deg (xi) := (1, 0) and deg (Ti) := (0, 1), and c(P ) = (S+)

μ−ν . Theo-
rem 1.5 shows that kernel K of the map

M [T ]
×P−→ M [T ]

is a submodule of H0
S+

(M)[T ]. Hence, K vanishes in bidegree (ν, θ) for
any θ. In particular, it provides an injective map

Mν = M [T ]ν,0
×P−→ M [T ]μ,μ−ν .

As M [T ]μ,μ−ν is a finite direct sum of copies of Mμ, it follows that any
associated prime of Mν is associated to Mμ.

Theorem 5.3. Let M be a finitely generated graded S-module and
A the finite set ∪μ∈ZAssR(Mμ) (Theorem 5.1). Set

j(M) := max
p∈A

{a0S+
(H0

p(M ⊗R Rp))} ≤ a0S+
(M).

Then, for any ideal p ∈ Spec (R), �Rp(H
0
p(Mμ⊗RRp)) is a nondecreas-

ing function of μ, for μ > j(M).
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Proof. First notice that H0
p(M ⊗R Rp) = 0 if p /∈ A. Let p ∈ A. We

will prove that �Rp(H
0
p(Mμ ⊗R Rp)) is a nondecreasing function of μ,

for μ > a0S+
(H0

p(M ⊗R Rp)). The proof of Theorem 5.2, applied to the

S⊗RRp-module H0
p(M⊗RRp), with P :=

∑
xiTi provides an injective

morphism of Rp[T ]-modules

H0
p(M ⊗R Rp)μ[T ] −→ H0

p(M ⊗R Rp)μ+1[T ].

Let Rp(T ) := S−1Rp[T ] with S be the multiplicative system of poly-
nomials whose coefficient ideal is the unit ideal. The above injection
induces an injective morphism of Rp(T )-modules of finite length

H0
p(M ⊗R Rp)μ ⊗Rp Rp(T ) −→ H0

p(M ⊗R Rp)μ+1 ⊗Rp Rp(T ).

For any Rp-module N of finite length, the Rp(T )-module N⊗Rp Rp(T )
is a module of the same length as the Rp-module N . The conclusion
follows.

Corollary 5.4. Let M be a finitely generated graded S-module.
Then, for any p ∈ Spec (R) of height 0, �Rp(Mμ ⊗R Rp) is a nonde-
creasing function of μ, for μ > a0S+

(M). In particular, Mμ ⊗R Rp = 0

for all μ > reg (M) or Mμ ⊗R Rp �= 0 for all μ > reg (M).

Proof. Notice that M ⊗R Rp = H0
p(M ⊗R Rp) as p is of height 0.

Also recall that M (hence, M ⊗R Rp) is generated in degrees at most
reg (M).

Lemma 5.5. Let M be a graded S-module generated in degree at
most B. Then

(i) Mμ �= 0 ⇒ Mμ+1 �= 0, if μ > a0S+
(M),

(ii) Mμ �= 0 ⇔ Mμ+1 �= 0 if μ > max{B, a0S+
(M)},

(iii) Mμ �= 0 ⇔ Mμ+1 �= 0 if μ > reg (M).

Proof. (i) follows from Theorem 5.2 as R is Noetherian. Now (ii) and
(iii) follow from (i), as Mμ = 0 ⇒ Mμ+1 = 0 for μ ≥ B, and M is
generated in degrees at most reg (M).
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Remark 5.6. The proof of Theorem 5.2 shows that the above lemma
holds without assuming that R is Noetherian.

6. Duality results.

6.1. Preliminaries on RHom. Let (X,OX) be a ringed space
and Y closed in X . For any complex K• ∈ D(X), let C(K•) be the
Godement resolution of K•, and set:

RΓ(X,K•) := C(K•) and RΓY (X,K•) := ΓY (X,C(K•)) in D(X),

RΓ(X,K•) := Γ(X,C(K•)) and RΓY (X,K•) := ΓY (X,C(K•)) in
D(Γ(X,OX)).

Notice that a flasque resolution of K• in D+(X) (e.g., an injective
resolution) can be used in place of C(K•) if K• ∈ D+(X).

We set Hi(X,K•) := Hi(RΓ(X,K•)), Hi
Y (X,K•) := Hi(RΓY (X,

K•)) and Hi(X,K•) := Hi(RΓ(X,K•)), which coincides with the
usual notations for OX -modules when considered as complexes con-
centrated in degree 0.

If there exists a d such that, for any OX -module E , Hi(X, E) = 0
(respectivelyHi

Y (X, E) = 0) for i > d, then any flasque resolution ofK•

can be used in place of C(K•) to compute Hi(X,K•) and Hi(X,K•)
(respectively, Hi

Y (X,K•)).

Given K• in D(X) and L• in D+(X), one checks that the class in
D(X) (respectively in D(Γ(X,OX))) of the complex Hom•

OX
(K•, I•)

(respectively, Hom•
OX

(K•, I•)) is independent of the choice of an injec-
tive resolution I• of L• in D+(X), and one set

RHom•
OX

(K•, L•) := Hom•
OX

(K•, I•)

and

RHom•
OX

(K•, L•) := Hom•
OX

(K•, I•).

When the components of the complex K• are locally free OX -modules,
there is a quasi-isomorphism

RHom•
OX

(K•, L•) � Hom•
OX

(K•, L•).
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For a pair (E ,F) of OX -modules, one defines

HomY (E ,F) := ΓY (X,HomOX (E ,F)) = HomOX (E ,ΓY F)

and

HomY (E ,F) := ΓY HomOX (E ,F) = HomOX (E ,ΓY F),

and then extends these definitions to pairs of complexes ofOX -modules,
as usual.

Assume L• is bounded below. Given a bounded below injective
resolution I• of L•, the components of the complex Hom•

OX
(K•, I•)

are flasques; hence,

RΓY (RHom•
OX

(K•, L•)) = RΓY (Hom•
OX

(K•, I•))

= ΓY (Hom•
OX

(K•, I•))

= Hom•
Y (K

•, I•),

in the following cases:

(a) K• is bounded below,

(b) there exists a d such that, for any OX -module E , Hi
Y (X, E) = 0

for i > d.

In cases (a) and (b), Hom•
Y (K

•, I•) is independent of the choice of
I• (up to an isomorphism in D(X)), and one sets

RΓ•
Y (K

•, L•) := Hom•
Y (K

•, I•).

As the components of ΓY I
• are injective OX -modules, Hom•

Y (K
•, I•)

� Hom•
OX

(K•,ΓY I
•) � RHom•

OX
(K•, RΓY L

•). In other words,

RΓ•
Y (K

•, L•) � RHom•
OX

(K•, RΓY L
•)

if (a) or (b) holds.

6.2. Some spectral sequences. LetA be a commutative ring (with

unit) and I a finitely generated A-ideal. Set (X,OX) := (Spec (A), Ã)
and Y := V (I) ⊂ X .
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Assume that there exists an n such that

Hi
I(A) = Hi

Y (X,OX) = 0, for i �= n.

Then RΓY (OX) � Hn
Y (OX)[−n] in D+(X,OX). Given a complex

K• ∈ D−(X,OX), it follows that

RΓY (RHom•
OX

(K•,OX)) � RHom•
OX

(K•, RΓY (OX))

� RHom•
OX

(K•,Hn
Y (OX))[−n]

in D(X,OX). Such an isomorphism holds for K• ∈ D(X,OX) when X
has finite homological dimension, hence, for instance, if A is Noetherian
of finite dimension.

Assuming further that the components of K• are locally free OX -
modules of finite type, and under one of the two hypotheses above, one
has

RΓY (Hom•
OX

(K•,OX)) � Hom•
OX

(K•,Hn
Y (OX))[−n]

in D(X,OX).

This provides a spectral sequence

Ep,q
2 = Hp

Y (H
q Hom•

OX
(K•,OX))

=⇒ Hp+q−n(Hom•
OX

(K•,Hn
Y (OX))),

in the two cases above.

As the OX -modules taking place in this spectral sequence are quasi-
coherent, and the components of K• are finitely presented (recall that

˜HomA(M,N) = HomOX (M̃, Ñ) if M is finitely presented) the above
results show the following proposition.

Proposition 6.1. Let A be a commutative ring and I a finitely
generated A-ideal. Assume that there exists an n such that

Hi
I(A) = Hi

Y (X,OX) = 0 for i �= n.

Then, for any bounded below complex of projective A-modules of finite
type (respectively, for any complex of projective A-modules of finite
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type if A is Noetherian of finite dimension) K•, there exists a spectral
sequence

Ep,q
2 = Hp

I (H
qHom•

A(K
•, A)) =⇒ Hp+q−n(Hom•

A(K
•, Hn

I (A))).

Corollary 6.2. Assume (A,m) is local Gorenstein of dimension n.
Then, for any complex K• of free A-modules of finite type, there is a
spectral sequence

Ep,q
2 = Hp

m(H
qHom•

A(K
•, A)) =⇒ Hp+q−n(Hom•

A(K
•, Hn

m(A))).

Proof. Under the hypotheses of Corollary 6.2, Hi
m(A) = 0 for i �= n

and Hn
m(A) is injective.

Example 6.3. In the context of Corollary 6.2, taking for K• the
dual of a resolution of finitely generated module M by free modules of
finite type, gives the local duality

Hp
m(M) � HomA(Ext

n−p
A (M,A), Hn

m(A)).

Corollary 6.4. Assume I is generated by a weakly regular sequence
of length n. Then, for any bounded below complex K• of projective
A-modules of finite type, there is a spectral sequence

Ep,q
2 = Hp

I (H
qHom•

A(K
•, A)) =⇒ Hp+q−n(Hom•

A(K
•, Hn

I (A))).

Example 6.5. Let R be a commutative ring, Xi for 1 ≤ i ≤ n
indeterminates, set A := R[X1, . . . , Xn], with its standard grading and
p := (X1, . . . , Xn). As Hn

p (A) � (X1 · · ·Xn)
−1R[X−1

1 , . . . , X−1
n ], it

follows that, for any graded free A-module of finite type F and every
integer ν, the pairing

HomA(F,H
n
p (A))−ν−n ⊗R Fν −→ Hn

p (A)−n � R

(u : F → Hn
p (A)(−ν − n))⊗R x 	−→ u(x)
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defines a perfect duality between R-modules of finite type, and this
duality is functorial in the free graded A-module F . It gives, for each
integer ν, an isomorphism of complexes of R-modules

Hom•
A(K

•, Hn
p (A))−ν−n � Hom•

R(K
•
ν , R).

Together with Corollary 6.4, it gives for any ν a spectral sequence of
R-modules

Ep,q
2 = Hp

p(H
qHom•

A(K
•, A))ν =⇒ Hp+q−n(Hom•

R(K
•
−ν−n, R)).

Replacing K• by its dual F •, one deduces of a spectral sequence

Ep,q
2 = Hp

p(H
q(F •)ν) =⇒ Hp+q−n(Hom•

R(Hom
•
A(F

•, A)−ν−n, R)).

For instance, if M is a graded A-module admitting a resolution by free
modules of finite rank, taking for K• such a resolution, that one may
assume to be graded, a spectral sequence follows:

Ep,q
2 = Hp

p(Ext
q
A(M,A))ν =⇒ Extp+q−n

R (M−ν−n, R).

6.3. The Herzog-Rahimi spectral sequences. We keep nota-
tions as in the preceding subsection. For any graded complex K• whose
components are of finite type, we have established an isomorphism

RΓp(Hom
•
A(K

•, A)) � Hom•
A(K

•, Hn
p (A))[−n] in D(A),

whenever K• is bounded above or A is Noetherian of finite dimension.

In each of these cases, for any integer ν, the isomorphisms

RΓp(Hom
•
A(K

•, A))ν � Hom•
R(K

•
−ν−n, R)[−n] in D(R)

follow. Hence, if F • is a graded complex of finite free A-modules, and
either A is Noetherian of finite dimension or F • is bounded below, one
has the isomorphisms

RΓp(F
•)ν � Hom•

R(Hom
•
A(F

•, A)−ν−n, R)[−n]

� RHom•
R(Hom

•
A(F

•, A)−ν−n, R)[−n] in D(R).
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Now, assume further that (R,m) is local Gorenstein of dimension d.
The above isomorphisms then give

RHom•
R(RΓp(F

•)ν , H
d
m(R))

� RHom•
R(RΓp(F

•)ν , RΓm(R))[d]

� RΓm(RHom•
R(RΓp(F

•)ν , R))[d]

� RΓm(RHom•
R(RHom•

R(Hom
•
A(F

•, A)−ν−n, R), R))[n+ d]

� RΓm(Hom
•
A(F

•, A)−ν−n)[n+ d]

As R is Gorenstein, Hd
m(R) is the injective envelope of the residue

field of R, and we obtain a spectral sequence

Ep,q
2 = Hp

m(H
q(Hom•

A(F
•, A)−ν−n))

=⇒ HomR(H
n+d−p−q(RΓp(F

•)ν), H
d
m(R)).

If M is a graded A-module with free resolution F •, this spectral
sequence takes the form

Ep,q
2 = Hp

m(Ext
q
A(M,A)−ν−n) =⇒ HomR(H

n+d−p−q
p (M)ν , H

d
m(R)),

which is the Herzog-Rahimi spectral sequence, as ωA � A(−n) in this
situation.

7. Tameness of local cohomology over Noetherian rings. In
this section S is a finitely generated standard graded algebra over an
epimorphic image R of a Gorenstein ring.

Theorem 7.1. Let (R,m) be a local Noetherian Gorenstein ring of
dimension d, S a finitely generated standard graded Cohen-Macaulay
algebra over R and M a finitely generated graded S-module. Set
∨ := HomR( , Hd

m(R)). Then, there is a spectral sequence

Ei,j
2 = Hi

m(Ext
j
S(M,ωS)γ) =⇒ (H

dimS−(i+j)
S+

(M)−γ)
∨.

Proof. See [12, Section 4] or the previous section.
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For an R- or an S-module M , we set

H0
[i](M) :=

⋃
I⊆R

dim (R/I)≤i

H0
I (M) ⊆ M.

We will need the following facts about the functor H0
[i]( ),

Lemma 7.2. Let M be a graded S-module. Then

(i) H0
[i](M)γ = H0

[i](Mγ).

(ii) If p a prime ideal of R with dim (R/p) = i, then

H0
[i](M)⊗R Rp = H0

p(M ⊗R Rp).

Proof. Claim (i) follows from the fact that, for any R-ideal I,
H0

I (M)γ = H0
I (Mγ). For (ii), recall that inductive limits commute

with tensor products, and notice that, if dim (R/I) ≤ i, thenH0
Ip
(M⊗R

Rp) = 0 if I �⊆ p, and H0
Ip
(M ⊗R Rp) = H0

p(M ⊗R Rp) otherwise.

Theorem 7.3. Let S be a polynomial ring in n variables over an
equidimensional Gorenstein ring R of dimension d. Let M be a finitely
generated graded S-module.

Then there exist A,B,C,D,E defined below such that:

(1) (a) For γ > A, dimHi
S+

(M)−γ = d ⇒ dimHi
S+

(M)−γ−1 = d.

(b) For γ > B, dimHi
S+

(M)−γ = d ⇔ dim Hi
S+

(M)−γ−1 = d.

(2) (a) For γ > C, dimHi
S+

(M)−γ ≥ d − 1 ⇒ dimHi
S+

(M)−γ−1 ≥
d− 1.

(b) For γ > D, dimHi
S+

(M)−γ ≥ d−1 ⇔ dim Hi
S+

(M)−γ−1 ≥ d−1.

(3) For γ > E, dimHi
S+

(M)−γ ≥ d−2 ⇒ dim Hi
S+

(M)−γ−1 ≥ d−2.

In particular, there exists a γ0 such that either dimHi
S+

(M)γ is

constant for γ < γ0 of value at least d − 2, or dimHi
S+

(M)γ < d − 2
for any γ < γ0.
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Set aij := end (H0
S+

(H0
[d−j](Ext

i
S(M,ωS)))) ≤ end (H0

S+
(ExtiS(M,ωS)))

and rij := reg (H0
[d−j](Ext

i
S(M,ωS))). Then one has:

A := an−i
0 , B := rn−i

0 ,

C := max{an−i+1
1 , an−i

0 }, D := max{rn−i+1
1 , rn−i

0 }

and

E := max{an−i
0 , rn−i+1

0 − 1, rn−i+1
2 − 2, an−i+2

2 }.

Proof. Recall that, if N is a finitely generated R-module, dimN < r
if and only if Np = 0 for all p ∈ Spec (R) with dim (R/p) = r.
Furthermore, it follows from Lemma 7.2 and from Lemma 2.5 and its
proof that, for any p ∈ Spec (R) with dim (R/p) = r and for any �, one
has

a�S+
(H0

p(Ext
i
S⊗RRp

(M ⊗R Rp, ωS⊗RRp))) ≤ a�S+
(H0

[r](Ext
i
S(M,ωS))).

Therefore, reg (H0
p(Ext

i
S⊗RRp

(M ⊗R Rp, ωS⊗RRp))) ≤ rin−r, and, as a

consequence, it suffices to prove (1) (a) and (1) (b) when dimR = 0,
(2) (a) and (2) (b) when dimR = 1 and (3) when dimR = 2.

Notice that H0
[d](N) = N for any S-module N .

If dimR = 0, by Theorem 7.1, (Hi
S+

(M)−γ)
∨ � Extn−i

S (M,ωS)γ ,

and the result follows from Lemma 5.5 (i) and (iii).

If dimR = 1, Theorem 7.1 provides exact sequences

0 → H1
m(Ext

n−i
S (M,ωS)γ) → (Hi

S+
(M)−γ)

∨

→ H0
m(Ext

n−i+1
S (M,ωS)γ) → 0.

The result follows applying Lemma 5.5 (i) and (iii) toH0
m(Ext

n−i+1
S (M,

ωS)) and Corollary 5.4 to Extn−i
S (M,ωS)γ . Indeed, H1

m(Ext
n−i
S (M,

ωS)γ) is zero if and only if dimExtn−i
S (M,ωS)γ < 1.

We now assume that dimR = 2. In this case, Theorem 7.1 provides
a spectral sequence which converges to (H•

S+
(M)−γ)

∨,
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· · · H0
m(Ext

n−i+1
S (M,ωS)γ)

�
�
�
�

�
�

�
�
���

ψn−i+1
γ

H0
m(Ext

n−i+2
S (M,ωS)γ)

�
�

�
�

�
�
�
�

���

ψn−i+2
γ

· · · H1
m(Ext

n−i+1
S (M,ωS)γ) H1

m(Ext
n−i+2
S (M,ωS)γ)

H2
m(Ext

n−i
S (M,ωS)γ) H2

m(Ext
n−i+1
S (M,ωS)γ) · · ·

It provides a filtration F 0
∗ ⊆ F 1

∗ ⊆ F 2
∗ = (Hi

S+
(M)−∗)

∨, by

graded S-modules, such that F 2
γ /F

1
γ � ker (ψn−i+2

γ ), F 1
γ /F

0
γ �

H1
m(Ext

n−i+1
S (M,ωS)γ) and F 0

γ � coker (ψn−i+1
γ ).

We will show that the three modules satisfy :

(i) F 0
γ �= 0 ⇒ F 0

γ+1 �= 0, if γ > an−i
0 ,

(ii) F 1
γ /F

0
γ �= 0 ⇒ F 1

γ+1/F
0
γ+1 �= 0 if γ > max{rn−i+1

0 −1, rn−i+1
2 −2},

(iii) F 2
γ /F

1
γ �= 0 ⇒ F 2

γ+1/F
1
γ+1 �= 0 if γ > an−i+2

2 .

For (i), notice that coker (ψn−i+1
γ ) = 0 if and only if H2

m(Ext
n−i
S (M,

ωS)γ) = 0, hence if and only if dim (Extn−i
S (M,ωS)γ) < 2. Hence, (i)

follows from Corollary 5.4.

For (ii), let N := Extn−i+1
S (M,ωS)/H

0
m(Ext

n−i+1
S (M,ωS)). The

exact sequence

0 −→ H0
m(Ext

n−i+1
S (M,ωS)) −→ Extn−i+1

S (M,ωS) −→ N −→ 0

shows that H0
m(N) = 0 (hence, depth (N) ≥ 1),

F 1/F 0 = H1
m(Ext

n−i+1
S (M,ωS)) � H1

m(N)

and

a1S+
(N) ≤ max{a1S+

(Extn−i+1
S (M,ωS)), a

2
S+

(H0
m(Ext

n−i+1
S (M,ωS)))}

≤ max{rn−i+1
0 − 1, rn−i+1

2 − 2}.

Hence, Proposition 3.1 (ii) implies (ii).
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For (iii), let α ∈ H0
m(Ext

n−i+2
S (M,ωS)γ) = H0

m(Ext
n−i+2
S (M,ωS))γ .

Let x1, . . . , xt be generators of S1 as an R-module, and set � :=∑
i xiTi ∈ S[T ]. For γ > a0S+

(H0
m(Ext

n−i+2
S (M,ωS))), �α is not zero

in H0
m(Ext

n−i+2
S (M,ωS)γ+1)[T ] by Theorem 1.5 (see also the proof of

Theorem 5.3). The commutative diagram

H0
m(Ext

n−i+2
S (M,ωS)γ) �

×�

�

ψn−i+2
γ

H0
m(Ext

n−i+2
S (M,ωS)γ+1)[T ]

�

ψn−i+2
γ+1 ⊗S 1S[T ]

H2
m(Ext

n−i+1
S (M,ωS)γ) �×�

H2
m(Ext

n−i+1
S (M,ωS)γ+1)[T ]

then shows that ψn−i+2
γ (α) �= 0 if ψn−i+2

γ+1 is injective. Hence, ψn−i+2
γ

is injective if ψn−i+2
γ+1 is. Claim (iii) follows.

Theorem 7.4. Let S be a Noetherian standard graded algebra over a
commutative ring R. Assume R has dimension at most two and either
R is an epimorphic image of a Gorenstein ring or R is local. Let M be
a finitely generated graded S-module.

Then there exists a γ0 such that, for any i,

{Hi
S+

(M)γ = 0 for γ < γ0} or {Hi
S+

(M)γ �= 0 for γ < γ0}.

Proof. First, if R is local, then we can complete R to reduce to
the case where R is a quotient of a regular ring (by Cohen structure
theorem); hence, an epimorphic image of a Gorenstein ring.

As a Gorenstein ring is a finite product of equidimensional Gorenstein
rings, and each such ring is itself a quotient of a Gorenstein ring of any
bigger dimension, R is also a quotient of an equidimensional Gorenstein
ring R′. We further remark that R is the epimorphic image of R′/K,
where K is generated by a regular sequence of length dimR′ − 2 in R′.

Thus, we may, and will, assume that R is an equidimensional Goren-
stein ring of dimension at most two. Now S is an epimorphic image
of a polynomial ring in a finite number of variables over R, so that we
may, and will, also assume that S is a polynomial ring over R.

The result then follows from Theorem 7.3.
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