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RELATIVE COHEN-MACAULAYNESS AND
RELATIVE UNMIXEDNESS OF BIGRADED MODULES

MARYAM JAHANGIRI AND AHAD RAHIMI

ABSTRACT. In this paper we study the finitely generated
bigraded modules over a standard bigraded polynomial ring
that are relative Cohen-Macaulay or relatively unmixed with
respect to one of the irrelevant bigraded ideals. A general-
ization of Reisner’s criterion for Cohen-Macaulay simplicial
complexes is considered.

Introduction. Let S = K[x1, . . . , xm, y1, . . . , yn] be the standard
bigraded polynomial ring over a field K. We set P = (x1, . . . , xm) and
Q = (y1, . . . , yn). Let M be a finitely generated bigraded S-module.
In [11] we call M relative Cohen-Macaulay with respect to Q if we
have only one non-vanishing local cohomology with respect to Q. In
other words, grade (Q,M) = cd (Q,M) where cd (Q,M) denotes the
cohomological dimension of M with respect to Q.

In [11], it is shown that if M is a finitely generated bigraded Cohen-
Macaulay S-module, then M is relative Cohen-Macaulay with respect
to P” if and only if “M is relative Cohen–Macaulay with respect to Q.”
In Section 1, inspired by this result, we raise the following question: if
M is relative Cohen-Macaulay with respect to P and Q, is M Cohen-
Macaulay? We have an example in dimension 2 which shows that this
is not true in general. The question has a positive answer in some
special cases.

Next we show M to be relatively unmixed with respect to Q if
cd (Q,M) = cd (Q,S/p) for all p ∈ AssM . We prove that relative
Cohen-Macaulay modules with respect to Q are relatively unmixed
with respect to Q but the converse is not true in general. The converse
is true under some additional assumptions.

2010 AMS Mathematics subject classification. Primary 3D45, 16W50, 13C14,
13F55.

The first author was supported in part by a grant from IPM (No. 89130115).
The second author was supported in part by a grant from IPM (No. 89130050).

Received by the editors on March 31, 2011, and in revised form on November 17,
2011.

DOI:10.1216/JCA-2012-4-4-551 Copyright c©2012 Rocky Mountain Mathematics Consortium

551



552 MARYAM JAHANGIRI AND AHAD RAHIMI

Replacing, in the previous question, “M is relative Cohen-Macaulay
with respect to Q” by the weaker assumption “M is relatively unmixed
with respect to Q,” one obtains the following question: if M is relative
Cohen-Macaulay with respect to P and relatively unmixed with respect
to Q, is M unmixed? The question has a positive answer if M satisfies
one of the following conditions:

(a) cd (P,M) ≤ 1,

(b) M = M1 ⊗K M2 where M1 is a graded K[x]-module and M2 is a
graded K[y]-module and where S/(p1 + p2)S is an integral domain for
all p1 ∈ AssM1 and p2 ∈ AssM2,

(c) M = S/I where I is a monomial ideal and

(d) every cyclic submodule of M is pure.

This question has a negative answer, if R is a Noetherian local ring and
M a finitely generated R-module of dimension 2. For the bigraded case
we believe that the question has a negative answer for dimension 4. We
include this question at the end of this section.

In Section 2, we describe explicitly the Krull-dimension of the graded
components of local cohomology of relative Cohen-Macaulay modules.
We show that if M is relative Cohen-Macaulay with respect to Q
with cd (Q,M) = q, then dimSH

q
Q(M) = p where p = cd (P,M).

Something more general is true for its graded components, namely, if
fQ(M) = cd (Q,M) = q with p+q = dimM , then dimK[x]H

q
Q(M)j = p

for j � 0. Here, fQ(M) is the finiteness dimension of M with relative
to Q. As a consequence, if M is relative Cohen-Macaulay with respect
to Q, then Hq

Q(M) is an Artinian S-module if and only if q = dim (M).

In the following section we consider the hypersurface ring R = S/fS
where f is a bihomogeneous element of S of degree (a, b) with a, b > 0.
Note that Hi

Q(R) = 0 for i �= n, n − 1. It is a well-known fact that
Hn

Q(R) is not finitely generated for n ≥ 1. For n ≥ 2, we prove

that Hn−1
Q (R) is not finitely generated too. Furthermore, for the

Artinianness of local cohomology of R, we show that Hn
Q(R) is an

Artinian S-module for m ≤ 1. Also, Hn−1
Q (R) is an Artinian S-module

if and only if m = 0.

In the final section, we let Δ be a simplicial complex on [n + m]
and K[Δ] = S/IΔ its Stanley-Reisner ring. We say that Δ is relative
Cohen-Macaulay with respect to Q over K if K[Δ] is relative Cohen-



BIGRADED MODULES 553

Macaulay with respect to Q. We first observe that cd (Q,K[Δ]) =
dimΔW + 1 where ΔW is the subcomplex of Δ whose faces are
subsets of W . This generalizes the known fact that for every simplicial
complex Δ one has dimK[Δ] = dimΔ + 1. Using this result and the
generalization of Hochster’s formula [10] we prove the following: Δ is
relative Cohen-Macaulay with respect to Q with cd (Q,K[Δ]) = q if

and only if H̃i((linkF ∪ G)W ;K) = 0 for all F ∈ ΔW , G ⊆ V and
all i < dim linkΔWF . This in particular implies the Reisner’s criterion
for Cohen-Macaulay simplicial complexes. A general version of this
statement for the monomial case is obtained.

1. Cohen-Macaulayness and unmixedness with respect to P ,
Q and P +Q. Let K be a field and S = K[x1, . . . , xm, y1, . . . , yn] the
standard bigraded polynomial ring over K. We set P = (x1, . . . , xm)
and Q = (y1, . . . , yn). We denote by cd (Q,M) the cohomological
dimension of M with respect to Q, which is the largest integer i for
which Hi

Q(M) �= 0. We recall the following [11, Definition 1.3].

Definition 1.1. Let M be a finitely generated bigraded S-module
and q ∈ Z. We call M relative Cohen-Macaulay with respect to
Q if Hi

Q(M) = 0 for all i �= q. This is equivalent to saying that
grade (Q,M) = cd (Q,M) = q, see [11, Proposition 1.2].

We recall the following facts from [11] which will be used in the
sequel.

(1) cd (P,M) = dimM/QM and cd (Q,M) = dimM/PM.

In [11, Proposition 3.1] we have shown that if M is a finitely gener-
ated bigraded Cohen-Macaulay S-module, then “M is relative Cohen-
Macaulay with respect to P” if and only if “M is relative Cohen-
Macaulay with respect to Q.” The following question is inspired by
this result.

Question 1.2. Let (R,m) be a Noetherian local ring, I and J
two ideals of R such that I + J = m and M a finitely generated R-
module. Let M be relative Cohen-Macaulay with respect to I, i.e.,
grade (I,M) = cd (I,M) and relative Cohen-Macaulay with respect to
J , i.e., grade (J,M) = cd (J,M). Is M Cohen-Macaulay?
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We give several examples to show that Question 1.2 does not hold in
general. The examples are given for graded, local and bigraded cases.

Example 1.3. Consider the standard graded polynomial ring S =
K[x1, . . . , x2n] with n ≥ 1 and degxi = 1 for all i. We set P =
(x1, . . . , xn), Q = (xn+1, . . . , x2n), m = (x1, . . . , x2n) the unique
graded maximal ideal of S and R = S⊕S/p where p = (x1+xn+1, x2+
xn+2, . . . , xn + x2n). We first claim that S/p is a Cohen-Macaulay S-
module of dimension n. In fact, if we set Bi = K[xi, xn+i]/(xi + xn+i)
for i = 1, . . . , n, then S/p = B1 ⊗K B2 ⊗K · · · ⊗K Bn. Thus, by
[12, Corollary 2.3], S/p is Cohen-Macaulay of dimension n. Hence,
depthR = n and dimR = 2n. On the other hand, grade (P,R) =
cd (P,R) = grade (Q,R) = cd (Q,R) = n. Therefore, R is relative
Cohen-Macaulay with respect to P and Q but not Cohen-Macaulay.
Localizing R at the maximal ideal m and noting that, for any graded
ideal I ⊆ S, we have grade (I, R) = grade (Im, Rm), cd (I, R) =
cd (Im, Rm), depthSR = depthSmRm and dimSR = dimSmRm. Now
one easily obtains that the question is not the case in the local case
too.

Example 1.4. Let S = K[x1, x2, y1, y2] be the standard bigraded
polynomial ring with degxi = (1, 0) and deg yi = (0, 1) for i = 1, 2.
Set R = S/I where I = p1 ∩ p2 with pi = (xi, yi) for i = 1, 2. Let
m be the unique graded maximal ideal of S. From the exact sequence
0 → R → S/p1 ⊕ S/p2 → S/m → 0, we have the exact sequence

−→ Hj
Q(R) −→ Hj

Q(S/p1)⊕Hj
Q(S/p2)

−→ Hj
Q(S/m) −→ Hj+1

Q (R) −→ .

Since H0
Q(S/m) = S/m and Hj

Q(S/pi) = 0 for j �= 1 and, for i = 1, 2,
it follows that grade (Q,R) = cd (Q,R) = 1. By a similar argument,
applying the functor Hi

P (−) to the above short exact sequence, one
obtains grade (P,R) = cd (Q,R) = 1. Thus, R is relative Cohen-
Macaulay with respect to P and Q. On the other hand, one has
depthR = 1 and dimR = 2. Therefore, R is relative Cohen-Macaulay
with respect to P and Q but not Cohen-Macaulay.

In the following we show that Question 1.2 has a positive answer in
some cases. We first recall [11, Theorem 3.6].
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Theorem 1.5. Let M be a finitely generated bigraded S-module and
|K| = ∞. If M is relative Cohen-Macaulay with respect to Q, then we
have cd (Q,M) + cd (P,M) = dimM .

Proposition 1.6. Let M be a finitely generated bigraded S-module
with cd (P,M) = p, cd (Q,M) = q ≥ 0 and |K| = ∞. Then the
following statements hold:

(a) If M is relative Cohen-Macaulay with respect to P and Q with
p ∈ {0, dimM}, then M is Cohen-Macaulay.

(b) Suppose M = M1 ⊗K M2 where M1 is a finitely generated graded
K[x]-module and M2 a finitely generated graded K[y]-module. If M is
relative Cohen-Macaulay with respect to P and Q, then M is Cohen-
Macaulay.

Proof. In order to prove (a) we first let p = 0. We consider the
spectral sequence Hi

Q(H
j
P (M)) ⇒

i
Hi+j

m (M) where m = P + Q. As

Hj
P (M) = 0 for all j �= 0, then the above spectral sequence degenerates

and one obtains for all i the following isomorphism of bigraded S-
modules, Hi

Q(H
0
P (M)) ∼= Hi

m(M). Using the fact that cd (P,M) = 0

if and only if H0
P (M) = M , we therefore have Hi

Q(M) ∼= Hi
m(M).

Since Hi
Q(M) = 0 for all i �= q, it follows that Hi

m(M) = 0 for
all i �= q, and hence M is Cohen-Macaulay. Now let p = dimM .
Theorem 1.5 implies that q = 0, and then by a similar argument
as above, M is Cohen-Macaulay. In order to prove (b), we suppose
that M is relative Cohen-Macaulay with respect to P and Q. By [11,
Proposition 1.5], M1 is a Cohen-Macaulay K[x]-module of dimension p
and M2 a Cohen-Macaulay K[y]-module of dimension q. Therefore,
depthM = dimM = p+ q by [12, Corollary 2.3].

We recall the following known facts which will be used in the rest of
the paper, see [3, Proposition 4.4, Corollary 4.6]. If 0 → M ′ → M →
M ′′ → 0 is an exact sequence of S-modules with M finitely generated,
then

(2) cd (Q,M) = max{cd (Q,M ′), cd (Q,M ′′)}.
Let MinM denote the minimal elements of SuppM . Then

(3) cd (Q,M) = max{cd (Q,S/p) : p ∈ Ass (M)}.
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Also,

cd (Q,M) = max{cd (Q,S/p) : p ∈ Supp (M)}
= max{cd (Q,S/p) : p ∈ Min (M)}.

Proposition 1.7. Let M be a finitely generated bigraded S-module
with |K| = ∞. Then we have

grade (Q,M) ≤ cd (Q,S/p) for all p ∈ Ass (M).

Proof. Here we follow the proof of [2, Proposition 1.2.13]. Let
p ∈ AssM . We proceed by induction on grade (Q,M). The inequality
is clear if grade (Q,M) = 0. Now let grade (Q,M) = k > 0 and suppose
inductively that the result has been proved for all finitely generated
bigraded S-modules N such that grade (Q,N) < k. We want to prove
it for M . As grade (Q,M) > 0, by [11, Lemma 3.4], there exists a
bihomogeneous M -regular element y ∈ Q such that cd (Q,M/yM) =
cd (Q,M)− 1 and of course grade (Q,M/yM) = grade (Q,M) − 1. In
the proof of [2, Proposition 1.2.13] we observe that p consists of zero
divisors of M/yM . Thus, p ⊆ q for some q ∈ Ass (M/yM). Since y is
M -regular, it follows that y /∈ p, and hence p �= q because y ∈ q. Also,
as y is M -regular and p ∈ Ass (M), one observes that y is S/p-regular,
and hence grade (Q,S/p) > 0. Thus, cd (Q,S/p) = dimS/(P + p) > 0
by (1). We claim that element y may be chosen to avoid all the minimal
prime ideals of Supp (S/(P + p)) too. Let {q1, . . . , qr} be the minimal
prime ideals of Supp (S/(P + p)). By [11, Lemma 3.3], it suffices to
show that Q �⊆ qi for i = 1, . . . , r. Suppose Q ⊆ qi for some i where
i = 1, . . . , r. Since P + p ⊆ qi, it follows that qi = P + Q = m,
and hence dim S/(P + p) = cd (Q,S/p) = 0, a contradiction. Using
inductive hypothesis and the above observation, we have

grade (Q,M)− 1 = grade (Q,M/yM)

≤ cd (Q,S/q)

= dimS/(P + q)

< dimS/(P + p)

= cd (Q,S/p),

as desired.
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This in particular generalizes the following known result:

Corollary 1.8. If M is a finitely generated graded K[y]-module, then
we have

depthM ≤ dimS/p for all p ∈ Ass (M).

In particular, depthM ≤ dimM .

Corollary 1.9. If M is a finitely generated bigraded S-module, then
we have

grade (Q,M) ≤ cd (Q,M).

Proof. The assertion follows from Proposition 1.7 and (3).

Definition 1.10. Let M be a finitely generated bigraded S-module.
We say that M is relatively unmixed with respect to Q if cd (Q,M) =
cd (Q,S/p) for all p ∈ Ass (M).

In the following we observe that relative Cohen-Macaulay modules
with respect to Q are relatively unmixed with respect to Q. In partic-
ular, all associated prime ideals of M are minimal in SuppM/PM .

Corollary 1.11. Let M be a finitely generated bigraded S-module. If
M is relative Cohen-Macaulay with respect to Q, then M is relatively
unmixed with respect to Q.

Proof. By Proposition 1.7, we have grade (Q,M) ≤ cd (Q,S/p) for
all p ∈ Ass (M). On the other hand, since p ∈ Ass (M), we have the
monomorphism S/p → M which yields cd (Q,S/p) ≤ cd (Q,M) by (2).
Thus, the conclusion follows.

Remark 1.12. Relatively unmixed modules with respect to Q need
not be relative Cohen-Macaulay with respect to Q. We consider
the hypersurface ring R = S/fS where f ∈ S is an irreducible
bihomogeneous polynomial of degree (a, b) with a, b > 0. Note that
Ass (R) = {(f)}, grade (Q,R) = n − 1 and cd (Q,R) = n. Thus, R is
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relatively unmixed with respect to Q but not relative Cohen-Macaulay
with respect to Q.

In the following we give some cases to show that the converse of
Corollary 1.11 holds under some additional assumptions.

Proposition 1.13. Let M be a finitely generated bigraded S-module
with cd (Q,M) > 0. If M is relatively unmixed with respect to Q,
then grade (Q,M) > 0. In particular, if M is relatively unmixed with
respect to Q with cd (Q,M) = 1, then M is relative Cohen-Macaulay
with respect to Q.

Proof. Suppose grade (Q,M) = 0. Thus, there exists a q ∈ Ass (M)
such that Q ⊆ q. Therefore, cd (Q,M) = cd (Q,S/q) = dimS/(P +
q) = dimS/(P +Q) = 0, a contradiction.

Proposition 1.14. Let M be a finitely generated bigraded S-module
for which every quotient of M is relatively unmixed with respect to Q.
Then M is relative Cohen-Macaulay with respect to Q.

Proof. We proceed by induction on q = cd (Q,M). The claim is
obvious for q = 0. Suppose q > 0 and the result has been proved for
all finitely generated bigraded S-modules of cohomological dimension
less than q. Since q > 0, it follows that grade (Q,M) > 0 by
Proposition 1.13. By [11, Lemma 3.4], there exists an M -regular
bihomogeneous element y ∈ Q such that cd (Q,M/yM) = cd (Q,M)−1
as well as grade (Q,M/yM) = grade (Q,M) − 1. Our assumption
implies that M/yM is relatively unmixed with respect to Q, and hence
our induction hypothesis says that M/yM is relative Cohen-Macaulay
with respect to Q. Therefore, M is relative Cohen-Macaulay with
respect to Q, as desired.

Remark 1.15. In Remark 1.12, if one takes n = m = 2, f =
x1y1 + x2y2 and J = (x1y1, y2)/(f), then the quotient ring R/J =
S/(x1y1, y2) is not relatively unmixed with respect to Q. In fact, one
has cd (Q,R/J) = 1 and, as Ass (R/J) = {(x1, y2), (y1, y2)} we have
cd (Q,S/(y1, y2)) = 0. Of course, R is not relative Cohen-Macaulay
with respect to Q.
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In Question 1.2, we replace “M is relative Cohen-Macaulay with
respect to J” by the weaker assumption “M is relatively unmixed with
respect to J” and raise the following question:

Question 1.16. Let (R,m) be a Noetherian local ring, I and J two
ideals of R such that I+J = m andM a finitely generated R-module. If
M is relative Cohen-Macaulay with respect to I and relatively unmixed
with respect to J , is M unmixed?

Remark 1.17. In Example 1.3, the ring R is relative Cohen-Macaulay
with respect to P and Q. Observe that Ass (R) = {p, (0)} for n ≥ 1
and dimS/p = n < dimR = 2n. Thus, R is not unmixed, and hence
Question 1.16 is not the case for dimension 2.

In the following we show that Question 1.16 has a positive answer in
some cases.

Proposition 1.18. Suppose cd (P,M) = p where p ∈ {0, 1, dimM},
cd (Q,M) = q ≥ 0 and |K| = ∞. If M is relative Cohen-Macaulay
with respect to P and relatively unmixed with respect to Q, then M is
unmixed.

Proof. Let p ∈ AssM . We first assume that p = cd (P,M) =
cd (P, S/p) = 0. Hence, cd (Q,M) = dimM and cd (Q,S/p) = dimS/p
by Theorem 1.5. As M is relatively unmixed with respect to Q, it
follows that M is unmixed. Now let p = cd (P,M) = cd (P, S/p) = 1.
We claim that S/p is relative Cohen-Macaulay with respect to P .
Assume grade (P, S/p) = 0. The exact sequence 0 → S/p → M yields
the exact sequence 0 → H0

P (S/p) → H0
P (M), and hence grade (P,M) =

0, a contradiction. Therefore, we have

dimM = cd (P,M)+ cd (Q,M) = cd (P, S/p)+ cd (Q,S/p) = dimS/p.

The first and the last equality follow from Theorem 1.5. Finally, we
assume that p = dimM . By Theorem 1.5 we have q = 0, and hence by
a similar argument as the first part M is unmixed.

Corollary 1.19. Let dimM ≤ 3 and |K| = ∞. If M is relative
Cohen-Macaulay with respect to P with cd (P,M) = p and relatively
unmixed with respect to Q with cd (Q,M) = q, then M is unmixed.



560 MARYAM JAHANGIRI AND AHAD RAHIMI

Proof. The assertion is clear for dimM ≤ 2, by Proposition 1.18.
Suppose dimM = 3 with p = 1 and q = 2. The assertion is also
clear in this case by Proposition 1.18. Finally, we assume dimM = 3
with p = 2 and q = 1. By Proposition 1.13, M is relative Cohen-
Macaulay with respect to Q, and hence the assertion follows again
from Proposition 1.18.

Proposition 1.20. Let M1 and M2 be two non-zero finitely gener-
ated graded modules over K[x] and K[y], respectively, and let |K| = ∞.
Set M = M1 ⊗K M2, and assume that K[x]/p1 ⊗K K[y]/p2 is an in-
tegral domain for all p1 ∈ AssM1 and p2 ∈ AssM2. If M is relative
Cohen-Macaulay with respect to P and relatively unmixed with respect
to Q, then M is unmixed.

Proof. Let p ∈ Ass (M). Note that

AssS(M) =
⋃

p1∈AssK[x](M1)

⋃
p2∈AssK[y](M2)

AssS(K[x]/p1 ⊗K K[y]/p2),

see [12, Corollary 3.7]. Thus, there exist p1 ∈ AssK[x](M1) and p2 ∈
AssK[y](M2) such that p ∈ AssS(K[x]/p1 ⊗K K[y]/p2) = Ass (S/p1S +
p2S). Since S/(p1S + p2S) is an integral domain, it follows that
Ass (S/p1S + p2S) = {p1S + p2S}, and hence p = p1 + p2. By our
assumption M is relative Cohen-Macaulay with respect to P . Thus, M
is relatively unmixed with respect to P , and we have

cd (P,M)=cd (P, S/p)=dimS/(Q+p)=dimS/(Q+p1)=dimK[x]/p1.

On the other hand, since M is relatively unmixed with respect to Q,
we have

cd (Q,M)=cd (Q,S/p)=dimS/(P+p)=dimS/(P+p2)=dimK[y]/p2.

Thus by Theorem 1.5 and [12, Corollary 2.3], we have

dimM=cd (P,M)+cd (Q,M)=dimK[x]/p1+dimK[y]/p2=dimS/p,

as desired.
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Corollary 1.21. Let I be a monomial ideal in K[x], J a monomial
ideal in K[y] and |K| = ∞. We set M = K[x]/I ⊗K K[y]/J . If M is
relative Cohen-Macaulay with respect to P and relatively unmixed with
respect to Q, then M is unmixed.

Proof. Note that the associated prime ideals of a monomial ideal
are monomial prime ideals, see [6, Corollary 1.3.9]. Now the assertion
follows from Proposition 1.20.

Proposition 1.22. Let I ⊆ S be a monomial ideal, and set R = S/I
with |K| = ∞. If R is relative Cohen-Macaulay with respect to P and
relatively unmixed with respect to Q, then R is unmixed.

Proof. Let p ∈ Ass (R). Since R is relative Cohen-Macaulay with
respect to P , it follows that R is relatively unmixed with respect to P
and we have cd (P,R) = cd (P, S/p). Our assumption also says that
cd (Q,R) = cd (Q,S/p). As we mentioned above that the associated
prime ideals of a monomial ideal are monomial prime ideals, we may
write p = px+ py where px is the monomial prime ideal in K[x] and py
is the monomial prime ideal in K[y]. Hence,

cd (P,R)=cd (P, S/p)=dimS/(Q+ p)=dimS/(Q+ px)=dimK[x]/px

and

cd (Q,R)=cd (Q,S/p)=dimS/(P+p)=dimS/(P+py)=dimK[y]/py.

Thus, by Theorem 1.5 and [12, Corollary 2.3], we have

dimR = cd (P,R)+cd (Q,R) = dimK[x]/px+dimK[y]/py = dimS/p,

as desired.

Proposition 1.23. Let |K| = ∞, and let M be a finitely generated
bigraded S-module such that every cyclic submodule of M is pure. If
M is relative Cohen-Macaulay with respect to P with cd (P,M) = p
and relatively unmixed with respect to Q with cd (Q,M) = q, then M
is unmixed.
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Proof. Let p ∈ Ass (M). We first claim that S/p is relative
Cohen-Macaulay with respect to P . Let f1, . . . , fp be a maximal M -
sequence in P . As S/p is a cyclic submodule of M , we have the exact
sequence 0 → S/p → M which yields the exact sequence 0 → S/(p +
(f1, . . . , fp)) → M/(f1, . . . , fp)M . Since fi /∈ Z(M/(f1, . . . , fi−1)M)
for i = 1, . . . , p, it follows that fi /∈ Z(S/(p + (f1, . . . , fi−1))) for
i = 1, . . . , p. Thus, f1, . . . , fp is an S/p-sequence in P which may
not be maximal. Hence, grade (P, S/p) ≥ p. On the other hand,
by our assumption M is relative Cohen-Macaulay with respect to
P . Thus, M is relatively unmixed with respect to P , and we have
cd (P,M) = cd (P, S/p) = p ≤ grade (P, S/p). We conclude that
grade (P, S/p) = cd (P, S/p) = p, and hence S/p is relative Cohen-
Macaulay with respect to P . Now, by Theorem 1.5, we have

dimM = cd (P,M)+ cd (Q,M) = cd (P, S/p)+ cd (Q,S/p) = dimS/p,

as desired.

We remark that in the above proposition such a class of modules that
“every cyclic submodule of M is pure” exists: Let R be a domain and
f ∈ R a non-zero element. Hence, (f) ∼= R/AnnR(f) ∼= R and so (f)
is pure. More is true in general, if M is a torsion-free R-module where
R is a domain.

Remark 1.24. Let M be a finitely generated bigraded unmixed S-
module. Then all the associated prime ideals of M have the same
height. This number is n+m− (p+ q) when M satisfies the conditions
of Question 1.16.

In Corollary 1.19, we observed that Question 1.16 has a positive
answer for dimM ≤ 3. We end this section with the following question:

Question 1.25. Let M be a finitely generated bigraded S-module
of dimension 4 that is relative Cohen-Macaulay with respect to P and
Q. Is the module M unmixed?

2. The Krull-dimension of the graded components of lo-
cal cohomology of relative Cohen-Macaulay modules. In this
section we describe explicitly the Krull-dimension of the graded com-
ponents of local cohomology of relative Cohen-Macaulay modules. As
a first result we have the following:
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Proposition 2.1. Let M be a finitely generated bigraded S-module
with cd (P,M) = p, cd (Q,M) = q and |K| = ∞. If M is relative
Cohen-Macaulay with respect to Q, then dimSH

q
Q(M) = p.

Proof. We first note that SuppHq
Q(M) ⊆ SuppM/QM . Thus, we

have dimHq
Q(M) ≤ dimM/QM = cd (P,M) = p. As M is rela-

tive Cohen-Macaulay with respect to Q, from the spectral sequence
Hi

P (H
j
Q(M)) ⇒

i
Hi+j

m (M), we get the following isomorphisms of bi-

graded S-modules Hi
P (H

q
Q(M)) ∼= Hi+q

m (M) for all i. By Theo-

rem 1.5, we have p + q = dimM which yields Hp
P (H

q
Q(M)) �= 0 and

Hi
P (H

q
Q(M)) = 0 for i > p. Consequently, cd (P,Hq

Q(M)) = p. As we

always have p ≤ dimHq
Q(M), the desired equality follows.

Let M be a finitely generated bigraded S-module. Recall the finite-
ness dimension of M with respect to Q by:

fQ(M) = inf {i ∈ N : Hi
Q(M) is not finitely generated}.

For all integers j and k, we set

Hk
Q(M)j = Hk

Q(M)(∗,j) = ⊕iH
k
Q(M)(i,j).

Notice that Hk
Q(M)j is a finitely generated graded K[x]-module.

Proposition 2.2. Let M be a finitely generated bigraded S-module
with cd (P,M) = p, cd (Q,M) = q and p + q = dimM . If fQ(M) =
cd (Q,M) = q, then dimK[x]H

q
Q(M)j = p for j � 0.

Proof. We consider the spectral sequence Hi
P (H

k
Q(M))(∗,j) ⇒

i

Hi+k
m (M)(∗,j). Observe that Hi

P (H
k
Q(M))(∗,j) = Hi

P0
(Hk

Q(M)(∗,j))
where P0 is the graded maximal ideal of K[x]. This equality follows
from the definition of local cohomology using the Čech complex. Note
that Hk

Q(M)j = 0 for all k < cd (Q,M) = q and j � 0. Thus the
spectral sequence degenerates and one obtains for all i and j � 0 the
following isomorphisms of bigraded K[x]-modules Hi

P0
(Hq

Q(M)(∗,j)) ∼=
Hi+q

m (M)(∗,j). Our assumption says that p + q = dimM ≥ 1. Thus,
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as Hp+q
m (M) is a non zero Artinian S-module which is not finitely gen-

erated, we have Hp+q
m (M)j �= 0 for j � 0. Hence, Hp

P0
(Hq

Q(M)j) �= 0

for j � 0. Since Hi
P0
(Hq

Q(M)j) = 0 for i > p, it therefore follows that

dimK[x]H
q
Q(M)j = p for j � 0, as desired.

Corollary 2.3. Let M be a finitely generated bigraded S-module with
cd (P,M) = p, cd (Q,M) = q, p+ q = dimM , fQ(M) = cd (Q,M) = q
and |K| = ∞. Then Hq

Q(M) is an Artinian S-module if and only if
q = dim (M).

Proof. Suppose Hq
Q(M) is an Artinian S-module. One has that

Hq
Q(M)j is an ArtinianK[x]-module for all j. Thus, dimK[x]H

q
Q(M)j =

0 for all j. On the other hand, dimK[x]H
q
Q(M)j = p for j � 0 by

Proposition 2.2. Thus, we conclude that p = 0, and hence q = dimM
by Theorem 1.5. The converse is a well-known fact.

Corollary 2.4. Let M be a finitely generated bigraded S-module
with |K| = ∞. If M is relative Cohen-Macaulay with respect to Q with
cd (Q,M) = q > 0, then dimK[x]H

q
Q(M)j = p for j � 0. Moreover,

Hq
Q(M) is an Artinian S-module if and only if q = dim (M).

Proof. The assertion follows from Proposition 2.2, Theorem 1.5 and
Corollary 2.3.

Recall the Q-finiteness dimension fQ
m (M) of M with respect to m by

fQ
m (M) = inf {i ∈ N0 : Q �⊆ rad (0 : Hi

m(M))}.

In view of [8, Proposition 2.3], one has

fQ
m (M) = sup{i ∈ N0 : Hk

m(M)j = 0 for all k < i and all j � 0}.

Proposition 2.5. Let M be a finitely generated bigraded S-module
with cd (P,M) = p, cd (Q,M) = q and p + q = dimM . If M
is generalized Cohen-Macaulay with fQ(M) = cd (Q,M) = q, then
depthK[x]H

q
Q(M)j = p for j � 0.
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Proof. Since M is generalized Cohen-Macaulay, it follows that
fQ
m (M) = dim (M) = p + q. By [5, Theorem 2.3] we have grade (P0,

Hq
Q(M)j) = fQ

m (M) − cd (Q,M) for j � 0. This yields the desired
conclusion.

Corollary 2.6. Let M be a finitely generated bigraded generalized
Cohen-Macaulay S-module with fQ(M) = cd (Q,M) = q and p + q =
dimM . Then the following statements hold:

(a) Hq
Q(M)j is a Cohen-Macaulay K[x]-module of dimension p for

j � 0.

(b) proj dimK[x]H
q
Q(M)j = n− p for j � 0.

3. Finiteness properties of local cohomology of hypersurface
rings. It is a well-known fact that the top local cohomology modules
are almost never finitely generated. LetM be relative Cohen-Macaulay
with respect to Q with cd (Q,M) = q. Thus Hq

Q(M) is not finitely

generated for q > 0. Also Hq
Q(M) is not Artinian for q �= dimM by

Corollary 2.4. We consider the hypersurface ring R = S/fS where
f ∈ S is a bihomogeneous form of degree (a, b) with a, b > 0. We note
that Hi

Q(R) = 0 for i �= n, n− 1. Thus, R is not far from being relative
Cohen-Macaulay with respect to Q. In the following, for n ≥ 2, we
observe that Hn−1

Q (R) is not finitely generated. We also obtain some

results on Artinianness of Hn
Q(R) and Hn−1

Q (R).

Proposition 3.1. Let R = S/fS be the hypersurface ring. Then
Hn−1

Q (R) is not finitely generated for n ≥ 2.

Proof. The exact sequence 0 → S(−a,−b)
f→ S → S/fS → 0,

induces the following exact sequence of S-modules

0 −→ Hn−1
Q (R) −→ Hn

Q(S)(−a,−b)
f−→ Hn

Q(S) −→ Hn
Q(R) −→ 0.

Moreover, Hi
Q(R) = 0 for all i < n− 1. Let F be the quotient field of

K[x]. Then

F ⊗K[x] S = F [y1, . . . , yn] =: T.

Let T+ be the graded maximal ideal of T . By the graded flat base
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change theorem, we have

F ⊗K[x] H
i
Q(R) ∼= Hi

T+
(F ⊗K[x] R) for all i.

Since F ⊗K[x] R = T/fT and dimT/fT = n− 1, it follows that

Hi
T+

(T/fT ) = 0 for all i �= n− 1.

Note that Hn−1
T+

(T/fT ) is an Artinian T -module which is not finitely

generated. Thus, Hn−1
T+

(T/fT )j �= 0 for n ≥ 2 and j � 0. Hence,

Hn−1
Q (R)j �= 0 for n ≥ 2 and j � 0. Therefore, Hn−1

Q (R) is not finitely
generated for n ≥ 2.

For a bihomogeneous element f ∈ S, we denote by c(f) the ideal of
K[x] generated by all the coefficients of f and P0 = (x1, . . . , xm) the
graded maximal ideal of K[x]. A dual version of the above observation
can be discussed as Artinianness of local cohomology of hypersurface
rings.

Proposition 3.2. Let R = S/fS be the hypersurface ring. Then the
following statements hold:

(a) If m ≤ 1, then Hn
Q(R) is an Artinian S-module.

(b) Let m ≥ 2. If Hn
Q(R) is an Artinian S-module, then c(f) is an

P0-primary ideal for which the non-zero coefficients of f do not form
a system of parameters for K[x].

Proof. For the proof of (a), if m = 0, then Q is the graded maxi-
mal ideal of K[y] and we may write f =

∑
|β|=b cβy

β where cβ ∈ K.

Hence, R is Cohen-Macaulay of dimension n − 1 and so Hn
Q(R) = 0

is Artinian. Let m = 1. We need to show SuppHn
Q(R) ⊆ {m}

and Hom (S/m, Hn
Q(R)) is finitely generated S-module where m =

P + Q is the unique graded maximal ideal of S. We may write
f = xa

∑
|β|=b cβy

β where cβ ∈ K. Thus, c(f) = (xa) is an (x)-primary

ideal and hence SuppHn
Q(R) = {m} by [9, Corollary 2.6]. As m = 1,

Hn
Q(R) is Q-cofinite by [4, Theorem 1]. Thus, Hom (S/Q,Hn

Q(R)) is
finitely generated. Consequently, Hom (S/m, Hn

Q(R)) is finitely gener-
ated.
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For the proof of (b), as Hn
Q(R) is an Artinian S-module, we have

SuppHn
Q(R) ⊆ {m}. On the other hand, SuppHn

Q(R) = {q ∈ SpecS :
c(f)+Q ⊆ q} by [9, Lemma 2.5]. Thus, the maximal ideal m is the only
minimal prime ideal c(f)+Q. Hence, P0 is the only minimal prime ideal
c(f). Therefore, c(f) is a P0-primary ideal. Since Hom (S/m, Hn

Q(R))
is finitely generated, the non-zero coefficients of f do not form a system
of parameters for K[x] by [9, Theorem 2.3].

Proposition 3.3. Let R = S/fS be the hypersurface ring with n ≥ 1.
Then Hn−1

Q (R) is an Artinian S-module if and only if m = 0.

Proof. The exact sequence 0 → S(−a,−b)
f→ S → S/fS → 0 induces

the following exact sequence of S-modules:

0 −→ Hn−1
Q (R) −→ Hn

Q(S)(−a,−b)
f−→ Hn

Q(S) −→ Hn
Q(R) −→ 0.

Note that Hn−1
Q (R) = 0 :

Hn
Q
(S)

f ⊇ 0 :
Hn

Q
(S)

Q and Hn
Q(S) is a Q-torsion

S-module. By [1, Theorem 7.1.2], we have Hn−1
Q (R) is an Artinian

S-module if and only if Hn
Q(S) is an Artinian S-module. Hence, by

Corollary 2.4, this is equivalent to saying that m = 0.

4. Generalization of Reisner’s criterion for Cohen-Macaulay
simplicial complexes. As before, let S = K[x1, . . . , xm, y1, . . . , yn]
be the standard bigraded polynomial ring in n + m variables over a
field K and Δ a simplicial complex on [n + m]. We assume that Δ
has vertices {v1, . . . , vm, w1, . . . , wn} where vertices V = {v1, . . . , vm}
and W = {w1, . . . , wn} correspond to the variables of x1, . . . , xm and
y1, . . . , yn, respectively. We denote by ΔW the restriction of Δ on W
which is the subcomplex

ΔW = {F ∈ Δ : F ⊆ W}.
Let F be a facet simplicial complex of Δ on [n+m]. We denote by pF
the prime ideal generated by all xi and yj such that vi, wj /∈ F .

Proposition 4.1. Let Δ be a simplicial complex on [n + m] and
K[Δ] = S/IΔ the Stanley-Reisner ring of Δ. Then

cd (Q,K[Δ]) = dimΔW + 1.
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Proof. Using primary decomposition of IΔ = ∩F pF where the
intersection is taken over all facets of Δ, together with (1) and (3)
we have

cd (Q,K[Δ]) = max{cd (Q,S/q) : q ∈ Min (K[Δ])}
= max{cd (Q,S/pF ) : F is a facet of Δ}
= max{dimS/(P + pF ) : F is a facet of Δ}
= max{dimK[y1, . . . , yn]/pG : G is a facet of ΔW }
= max{|G| : G is a facet of ΔW }
= dimΔW + 1,

as required.

Corollary 4.2. If Δ is a simplicial complex on [n], then dimK[Δ] =
dimΔ + 1.

We say that Δ is relative Cohen-Macaulay with respect to Q over
K if K[Δ] is relative Cohen-Macaulay with respect to Q. A simplicial
complex Δ is pure if all facets have the same cardinality.

Corollary 4.3. If Δ is relative Cohen-Macaulay with respect to Q,
then ΔW is a pure simplicial complex.

Proof. The assertion is immediate from Corollary 1.11 and Proposi-
tion 4.1.

Corollary 4.4. If dimΔW = 0, then Δ is relative Cohen-Macaulay
with respect to Q.

Proof. By Proposition 4.1, we have cd (Q,K[Δ]) = 1. Since
dimΔW = 0, it follows that the facets of ΔW are the forms Fi = (wi)
for i = 1, . . . , n, and hence pFi = (x1, . . . , xm, y1, . . . , ŷi, . . . , yn)
where yi /∈ pFi . Thus Q �⊆ q for all q ∈ Ass (K[Δ]). Therefore,
grade (Q,K[Δ]) = 1.

Let Δ be a simplicial complex on [n]. For a face F of Δ, the link of
F in Δ is the subcomplex

linkΔF = {G ∈ Δ : F ∪G ∈ Δ, F ∩G = ∅},
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and the star of F in Δ is the subcomplex

starΔF = {G ∈ Δ : F ∪G ∈ Δ}.

Note that, if Δ is a pure simplicial complex, then for any F ∈ Δ
we have dim linkΔF = dimΔ − |F |. We denote by H̃i(Δ;K) the ith
reduced homology group of Δ with coefficient in K, see [2, Chapter 5]
for details. We say that a simplicial complex Δ is connected if there
exists a sequence of facets F = F0, . . . , Ft = G such that Fi ∩Fi+1 �= 0
for i = 0, . . . , t − 1. One has that Δ is connected if and only if
H̃0(Δ;K) = 0. We set Zm− = {a ∈ Zm : ai ≤ 0 for i = 1, . . . ,m}
and Zn

+ = {b ∈ Zn : bi ≥ 0 for i = 1, . . . , n}. We recall the following
theorem from [10, Theorem 1.3].

Theorem 4.5. Let I ⊆ S be a squarefree monomial ideal. Then the
bigraded Hilbert series of the local cohomology modules of K[Δ] = S/I
with respect to the Zm × Zn-bigrading is given by

HHi
Q
(K[Δ])(s, t) =

∑
a∈Zm

+

b∈Zn
−

dimKHi
P (K[Δ])(a,b)s

atb

=
∑

F∈ΔW

∑
G⊂V

dimKH̃i−|F |−1((linkF ∪G)W ;K)

×
∏
vi∈G

si
1− si

∏
wj∈F

t−1
j

1− t−1
j

where s = (s1, . . . , sm), t = (t1, . . . , tn), G = Supp a, F = Supp b and
Δ is the simplicial complex corresponding to the Stanley-Reisner ring
K[Δ].

Here we note that (linkF ∪ G)W = linkΔWF . As an immediate
consequence we obtain:

Corollary 4.6. The following statements hold:

(a) We have Hi
Q(K[Δ])(a,b) = 0 for all i and all (a, b) ∈ Zm ×Zn for

which ai < 0 for some i or bj > 0 for some j.
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(b) Hi
Q(K[Δ])(a,b) ∼= H̃i−|F |−1((linkF ∪ G)W ;K) for all (a, b) ∈

Zm
+ × Zn− with G = Supp a and F = Supp b.

As a main result of this section, we have the following. Here we follow
the proof [6, Theorem 8.1.6].

Theorem 4.7. Let Δ be a simplicial complex over a field K. The
following conditions are equivalent.

(a) Δ is relative Cohen-Macaulay with respect to Q with cd (Q,K[Δ]) =
q,

(b) H̃i((linkF ∪ G)W ;K) = 0 for all F ∈ ΔW , G ⊆ V and all
i < dim linkΔW F .

Proof. Note that dimΔW = q − 1 by Proposition 4.1. Let Δ be
relative Cohen-Macaulay with respect toQ. This is equivalent to saying
that Hi

Q(K[Δ]) = 0 for all i �= q. Hence, by Corollary 4.6, this is
equivalent to saying that
(4)

H̃i−|F |−1((linkF ∪G)W ;K) = 0 for all F ∈ ΔW , G ⊆ V and all i < q.

(a) ⇒ (b). Since Δ is relative Cohen-Macaulay with respect to Q, it
follows from Corollary 4.3 that ΔW is pure and hence dim linkΔWF =

dimΔW − |F | = q − |F | − 1. Therefore, (4) implies that H̃i((linkF ∪
G)W ;K) = 0 for all F ∈ ΔW , G ⊆ V and all i < dim linkΔW F .

(b) ⇒ (a). Let F ∈ ΔW , G ⊆ V and H ∈ linkΔWF . Set
Γ = linkΔWF . One has

linkΓH = linkΔW (H ∪ F ) = (link (H ∪ F ∪G))W .

Hence, our assumption yields

H̃i(linkΓH ;K) = H̃i((link (H ∪ F ∪G))W ;K) = 0

for all i < dim linkΓH.

Thus, by induction on the dimΔW , we may assume that all proper
links of ΔW are Cohen-Macaulay over K. In particular, the link of
each vertex of ΔW is pure. Thus, all facets containing a given vertex



BIGRADED MODULES 571

have the same dimension. Now let dimΔW = 0; by Corollary 4.4, Δ is
relative Cohen-Macaulay with respect to Q. Thus, we may assume that
dimΔW ≥ 1. Since H̃0(ΔW ;K) = H̃0(linkΔW∅;K) = 0, it follows
that ΔW is connected. Thus, ΔW is a pure simplicial complex, and
hence for any F ∈ ΔW , we have dim linkΔWF = q − |F | − 1. Thus,
our hypothesis implies (4), and so Δ is relative Cohen-Macaulay with
respect to Q.

As an immediate consequence we obtain Reisner’s criterion for Cohen-
Macaulay simplicial complexes:

Corollary 4.8. Let Δ be a simplicial complex and K a field. Then,
Δ is Cohen-Macaulay over K if and only if H̃i(linkF ;K) = 0 for all
F ∈ Δ and all i < dim linkF .

Proof. In Theorem 4.7 we assume that m = 0. Then G = ∅,
(linkF ∪ G)W = linkF , ΔW = Δ, Q is the unique maximal ideal
m and cd (Q,K[Δ]) = dimK[Δ].

In the proof of the theorem, we showed

Corollary 4.9. Let Δ be relative Cohen-Macaulay with respect to Q.
Then ΔW is connected.

Corollary 4.10. Let Δ be relative Cohen-Macaulay complex with
respect to Q and F a face of ΔW . Then linkΔWF is Cohen-Macaulay.

Proof. The assertion follows from the beginning of the proof of
Theorem 4.7 (b) ⇒ (a) and Corollary 4.8.

Let I ⊆ S be a monomial ideal and G(I) the unique minimal
monomial system of generators of I. For a monomial u ∈ S, we may
write u = u1u2 where u1 = xc1

1 · · ·xcm
m and u2 = yd1

1 · · · ydn
n . We set

νi(u1) = ci for i = 1, . . . ,m and νj(u2) = dj for j = 1, . . . , n. We
also set σi = max{νi(u1) : u ∈ G(I)} for i = 1, . . . ,m and ρj =
max{νj(u2) : u ∈ G(I)} for j = 1, . . . , n. For b = (b1, . . . , bn) ∈ Zn,



572 MARYAM JAHANGIRI AND AHAD RAHIMI

we set Gb = {j : 1 ≤ j ≤ n, bj < 0} and let a ∈ Zm
+ . We define the

simplicial complex Δ(a,b)(I) whose faces are the set L−Gb with Gb ⊆ L
and such that L satisfies the following conditions: for all u ∈ G(I)
there exists a j /∈ L such that νj(u2) > bj ≥ 0, or for at least one i,
νi(u1) > ai ≥ 0. We recall the following theorem from [10, Theorem
2.4].

Theorem 4.11. Let I ⊆ S be a monomial ideal. Then the
Hilbert series of the local cohomology modules of S/I with respect to
the Zm × Zn-bigrading is given by

HHi
Q
(S/I)(s, t) =

∑∑
dimKH̃i−|F |−1(Δ(a,b)(I);K)satb,

where the first sum runs over all F ∈ ΔW , b ∈ Zn for which Gb = F
and bj ≤ ρj − 1 for j = 1, . . . , n, and the second sum runs over all
a ∈ Zm for which Na = G and ai ≥ σi − 1 for i = 1, . . . ,m. Here
Na = Supp a and Δ is the simplicial complex corresponding to the
Stanley-Reisner ideal

√
I.

The precise expression of the Hilbert series is given in [10]. As a first
consequence, we have

Corollary 4.12. The following statements hold:

(a) we have Hi
Q(S/I)(a,b) = 0 for all i and all (a, b) ∈ Zm × Zn for

which ai < σi − 1 for some i or bj > ρj − 1 for some j.

(b) Hi
Q(S/I)(a,b)

∼= H̃i−|F |−1(Δ(a,b)(I);K) for all (a, b) ∈ Zm × Zn

with Na = G, Gb = F , ai ≥ σi− 1 for i = 1, . . . ,m and bj ≤ ρj − 1 for
j = 1, . . . , n.

For a bigraded S-module M , we recall that the a-invariant of M is
defined by

aiQ(M) = sup{μ : Hi
Q(M)(∗,μ) �= 0},

and so reg (M) = maxi{aiQ(M) + i : i ≥ 0}.

Corollary 4.13. Suppose I ⊆ S is a monomial ideal such that S/I is
relative Cohen-Macaulay with respect to Q with cd (Q,S/I) = q. Then

reg (S/I) ≤
n∑

j=1

ρj − n+ q.
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Proof. Note that, for all k, j ∈ Z, we have

Hq
Q(S/I)(k,j) =

⊕
a∈Zm,|a|=k
b∈Zn,|b|=j

Hq
Q(S/I)(a,b),

where |a| = ∑m
i=1 ai for a = (a1, . . . , am) and |b| = ∑n

i=1 bi for b =
(b1, . . . , bn). By Corollary 4.12, Hq

Q(S/I)(k,j) = 0 for k <
∑m

i=1 σi −m

or j >
∑n

j=1 ρj − n. Thus, we have

Hq
Q(S/I)j =

⊕
k

Hq
Q(S/I)(k,j) = 0 for j >

n∑
j=1

ρj − n.

Hence, aqQ(S/I) ≤
∑n

j=1 ρj − n, and so the conclusion follows.

As a generalization of [7, Corollary 2.3], we have

Corollary 4.14. Let I ⊆ S be a monomial ideal. Then, for all i, we
have the following isomorphisms of K-vector spaces

Hi
Q(S/I)(a,b)

∼= Hi
Q(S/

√
I)(a,b),

for all a ∈ Zm
+ and b ∈ Zn

−. In particular, cd (Q,S/I) = cd (Q,S/
√
I).

Proof. By a similar proof as [7, Corollary 2.3], one has Δ(a,b)(I) =

Δ(a,b)(
√
I). Thus, Corollary 4.12 yields the desired isomorphisms.

Now we come to a general version of Theorem 4.7 as follows:

Corollary 4.15. Let I ⊆ S be a monomial ideal and Δ the simplicial
complex corresponding to

√
I. The following conditions are equivalent.

(a) S/I is relative Cohen-Macaulay with respect to Q with cd (Q,S/I) =
q,

(b) H̃i((linkF ∪ G)W ;K) = 0 for all F ∈ ΔW , G ⊆ V and all
i < dim linkΔW F .
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Proof. Note that

Δ(a,b)(I) = Δ(a,b)(
√
I) = linkstarNa∪Hb

Gb

= linkstarNaGb

= (linkF ∪G)W ,

see the remark after [10, Theorem 2.4] and also the proof [13, Corollary
1]. Now the assertion follows by applying Corollary 4.12 and Corol-
lary 4.14 to Theorem 4.7.
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