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PROJECTIVE STAR OPERATIONS ON
POLYNOMIAL RINGS OVER A FIELD

ALICE FABBRI AND OLIVIER A. HEUBO-KWEGNA

ABSTRACT. We consider the polynomial ring S := K[X0,
. . . ,Xn] over a field K and the rings Ri := K[(X0/Xi), . . . ,
(Xn/Xi)] for 0 ≤ i ≤ n. We introduce the notion of a
projective star operation on S and relate it to the classical
star operations on the Ri’s. We show that the projective
Kronecker function ring PKr (S, �) of S is the intersection of
the Kronecker function rings Kr (Ri, �i), 0 ≤ i ≤ n, where the
�i’s are pairwise compatible e.a.b. star operations on the Ri’s
and � is a projective star operation on S built from the �i’s.

1. Introduction. Let R be an integral domain with quotient field
F . Let F(R) denote the set of nonzero fractional ideals of R. We recall
that a star operation on R is defined as a mapping � : F(R) → F(R),
I �→ I�, such that for all I, J ∈ F(R) and x ∈ F \ {0}:
(�1) R

� = R and (xI)� = xI�;

(�2) I ⊆ I�, and I ⊆ J ⇒ I� ⊆ J�;

(�3) I
�� := (I�)� = I�.

A star operation � is called endlich arithmetisch brauchbar (in brief
e.a.b.) if for any finitely generated I, J,H ∈ F(R), (IJ)� ⊆ (IH)�

implies J� ⊆ H�. Given an e.a.b. star operation �, the ring Kr (R, �) :=
{f/g : f, g ∈ R[X ] \ {0}, C(f)� ⊆ C(g)�} ∪ {0}, where C(f) denotes
the content of the polynomial f(X), is called the Kronecker function
of R with respect to �. It is known that Kr (R, �) is a Bézout domain
(a domain for which every proper nonzero finitely generated ideal is
principal) with quotient field F (X) and such that Kr (R, �) ∩ F = R
(for an overview on star operations and Kronecker function rings see
[7, Section 32]).
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Recently, two generalizations of the concept of Kronecker function
rings were proposed: one by Halter-Koch [8], and the other one by
Fontana and Loper [5, 6]. Halter-Koch introduced the notion of F -
function ring using only two axioms; the ring turns out to share many
properties with the classical Kronecker function ring (the two axioms
and properties of F -function rings can be found in Section 5 of this
article), whilst the Fontana-Loper approach uses semistar operations
(see [14, 15]).

The more general nature of F -function rings, compared to Kronecker
function rings, is due to the fact that they do not necessarily depend
on star operations. For instance, let K ⊆ F be a field extension which
is not algebraic and denote by Σ(F/K) the set of valuation rings of
F containing K. The F -function ring Kr (F/K) := ∩V ∈Σ(F/K)V

b,

studied in [11], where V b = V (X) is the Gauss (also called trivial)
extension of V to F (X), cannot be associated to a star operation
and it is not a classical Kronecker function ring. Motivated by such
examples, in this paper we rely on Halter-Koch’s approach to overcome
this restriction by introducing the notions of projective star operation
and projective Kronecker function ring, which is an example of an F -
function ring.

Let S := K[X0, . . . , Xn] be a polynomial ring over a field K. We
consider the (relevant) coherent sheaves of ideals on Proj (S). The
idea is to define a projective star operation as an application from the
set of (relevant) coherent sheaves of ideals into itself, satisfying the
same properties as classical star operations. But, motivated by the
bijection between the set of coherent sheaves of ideals of Proj (S) and
homogeneous saturated ideals of S (see [3, Exercises III-15 and III-
16]), we restrict our attention to the set of homogeneous ideals of S.
Generalities and basic properties of homogeneous and saturated ideals
of S are provided in Section 2.

In Section 3, we define homogeneous star operations on S as maps
from the set of homogeneous ideals of S into itself satisfying the
properties of classical star operation (�1), (�2) and (�3) above. We
provide examples of classical star operations, such as the b-operation
and the v-operation, that are homogeneous. On the other hand, for
the v(I) operation defined as Jv(I) := (I : (I : J)), it is possible to
choose a suitable I so that v(I) is not a homogeneous star operation
(see Example 3.6).
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A projective star operation is a homogeneous star operation � on S
such that sat ◦ � = �, where sat is the saturation. We observe that the
v-operation and the composition sat ◦ b are projective star operations,
but the b-operation is not necessarily a projective star operation (see
Example 4.1).

We prove that each homogeneous (or projective) star operation � in-
duces (by dehomogenization) a star operation �i on Ri := K[X0/Xi, . . .,
Xn/Xi], for each i = 0, . . . , n. Conversely, if we have a compatibil-
ity condition between star operations on different Ri’s, then we can
build from those (homogenization process) a homogeneous star oper-
ation which turns out to be projective. We then obtain a bijection
between the (n+ 1)-tuples of compatible star operations, each defined
on one of the Ri’s and projective star operations on S:

⎧⎨
⎩

{�0, . . . , �n}
�i = star operation on Ri,
�icompatible with �j , ∀i, j

⎫⎬
⎭

←→
⎧⎨
⎩ � = projective star operation on S

⎫⎬
⎭ .

In Section 4, we show that the b-operation (respectively, the v-
operation) dehomogenizes at the integral closure of ideals (respectively,
divisorial closure of ideals) on Ri for each i = 0, . . . , n, and observe that
the saturation sat is a projective star operation that dehomogenizes at
the identity star operation.

In Section 5, we define an e.a.b. projective star operation as a projec-
tive star operation that dehomogenizes at e.a.b. star operations (e.a.b.
in the classical sense) and we prove that an e.a.b. projective star op-
eration on S satisfies the usual cancelation property. We can therefore
associate to an e.a.b. projective star operation � a projective Kronecker
function ring with respect to �, denoted PKr (S, �), which turns out to
be an F -function ring (F is the quotient field of the rings Ri’s) and has
a natural interpretation in terms of valuations of F .

2. Preliminaries and notations. First of all, we fix the notation
that will be used throughout. LetK be a field. Let S := K[X0, . . . , Xn]
be the polynomial ring in n + 1 indeterminates over K. For i ranging
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from 0 to n, we shall denote by Ri the ring K[X0/Xi, . . . , Xn/Xi]. All
the domains Ri are integrally closed and have the same quotient field,
namely , F := K(X0/Xi, . . . , Xn/Xi).

Let f ∈ S. The dehomogenization of f in Ri is the element

aif := f

(
X0

Xi
, . . . , 1, . . . ,

Xn

Xi

)

of Ri. The application
ai is a ring homomorphism for each i = 0, . . . , n.

Conversely, given an element g in Ri, its homogenization in S is the
homogeneous element

hg := Xni

i g

(
X0

Xi
, . . . ,

Xn

Xi

)

of S, where ni is the degree of g.

Since S is graded, we can write each element f ∈ S as f = f0+· · ·+fd,
with fi homogeneous of degree i. An ideal I of S is homogeneous if it is
generated by homogeneous elements, or equivalently, if for any f ∈ I,
f = f0 + · · ·+ fd, then each fi ∈ I. A homogeneous prime ideal of S is
a prime ideal of S which is also homogeneous.

A useful characterization of homogeneous prime ideals follows:

Proposition 2.1 [2, Exercise 2.15(c)]. Let S be a Z-graded ring. A
homogeneous ideal P of S is prime if and only if whenever fg ∈ P for
homogeneous polynomials f, g ∈ S then f ∈ P or g ∈ P .

Given a homogeneous ideal I of S, the dehomogenization of I (in Ri):

aiI := {aif : f is homogeneous in I}

is an ideal of Ri.

Remark 2.2. We note that, using the fact that the operation ai is a
ring homomorphism for each i = 0, . . . , n, and I is generated by some
homogeneous elements of I, it is clear that aiI is just the same as the
set {aif : f ∈ I}. So, from now on, for a homogeneous ideal I of S, we
will say x ∈ aiI if and only if x = aif for some f ∈ I.
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For each i = 0, . . . , n, the operation I �→ aiI maps the set of all
homogeneous ideals of S onto the set of all ideals of Ri and preserves
inclusion and the usual ideal-theoretic operations: addition, multipli-
cation, intersection, radical and colon [17, Theorem 18, Chapter VII,
Section 5].

Given an ideal I of Ri, we denote by hI the homogeneous ideal of S
which is generated by the set of homogeneous polynomials:

{
Xm

i
hf : m ≥ 0, f ∈ I

}
.

The operation I �→ hI that assigns to each ideal of Ri a homogeneous
ideal of S is one-to-one and preserves inclusion and the usual ideal-
theoretic operations: addition, multiplication, intersection, radical and
colon [17, Theorem 17, Chapter VII, Section 5].

Remark 2.3. We recall the properties of the composite operations
aih and hai , for each i = 0, . . . , n, for each ideal I of Ri and each
homogeneous ideal J of S (see [17, Chapter VII, Section 5, page 182]):

(H1) ai(hI) = I;

(H2) h(aiJ) ⊇ J ;

(H3) Xm
i (h(aiJ)) ⊆ J , for some integer m ≥ 1.

In particular, if I is a homogeneous ideal of S, for all i, j = 0, . . . , n,
we have aiI ⊆ aihajI.

Definition 2.4. Let I be an ideal of S, the saturation of I is the
ideal:

sat I := {y ∈ S : for all i = 0, . . . , n, there exists ati ≥ 0, yXti
i ∈ I}.

An ideal I of S is saturated if sat I = I.

By [9, Exercise 5.10], the saturation of a homogeneous ideal is
homogeneous.
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Remark 2.5. Let I be an ideal of S. Then

y ∈ sat I ⇐⇒ y ∈ IS

[
1

Xi

]
∩ S for all i = 0, . . . , n.

⇐⇒ y ∈
(
IS

[
1

X0

]
∩ S

)
∩ · · · ∩

(
IS

[
1

Xn

]
∩ S

)
.

Thus

sat I =

(
IS

[
1

X0

])
∩ · · · ∩

(
IS

[
1

Xn

])
.

Furthermore, denoting by m the irrelevant ideal (X0, . . . , Xn), the
saturation of an ideal I can be also defined as: ∪k(I : mk) =: (I : m∞).
It is easily seen that this definition agrees with the one proposed above.

By using this latest definition, it is not hard to prove that, for an
ideal I of S, the following are equivalent:

(a) m is an embedded component of I;

(b) the height of I is less than or equal to n and I is not saturated.

Proposition 2.6. Let I be a homogeneous ideal of S. Then
sat I = ∩ni=0

haiI.

Proof. Let f ∈ sat I. Then for each i = 0, . . . , n, there is a
nonnegative integer n such that Xn

i f ∈ I. Set g := Xn
i f . Then we have

g = h(aig)Xm
i , where m is the degree of Xi in polynomial g. Clearly,

as f = X−n
i g ∈ S, we have m ≥ n. So f = h(aig)Xm−n

i ∈ h(aiI) for

each i = 0, . . . , n. Therefore sat I ⊆ ∩ni=0
haiI.

Since sat I and ∩ni=0
haiI are homogeneous ideals, it is enough to prove

that all the homogeneous elements of ∩ni=0
haiI are also in sat I. For,

let f ∈ ∩ni=0
haiI with f a homogeneous polynomial. Then, for each i =

0, . . . , n, we can assume, without loss of generality, that f = Xm
i (hgi)

with mi a nonnegative integer and gi ∈ aiI (i.e., gi = aiϕ, ϕ ∈ I).
Thus, f = Xmi

i
h(aiϕ) = Xmi

i X−m0i

i ϕ, where m0i is the highest power
of Xi that divides ϕ. Therefore, it is enough to choose a nonnegative
integer s such that s ≥ m0i −mi to have Xs

i f = Xs+mi−m0i

i ϕ ∈ I, as

ϕ ∈ I. Hence f ∈ sat I, and sat I = ∩ni=0
haiI.
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Proposition 2.7. Given I, J homogeneous ideals of S the following
properties hold:

(a) for each i = 0, . . . , n, aiI = aisat I;

(b) sat I ⊆ satJ if and only if aiI ⊆ aiJ for all i = 0, . . . , n;

(c) sat I is homogeneous;

(d) for all (homogeneous) polynomials f ∈ S, sat (fI) = fsat I;

(e) I ⊆ sat I and if I ⊆ J then sat I ⊆ satJ ;

(f) sat (I ∩ J) = sat I ∩ satJ .

In particular, from (d), (e), (f) together with the fact that satS = S, it

follows that the saturation sat is a star operation on S.

Proof. (a) The inclusion aiI ⊆ aisat I is trivial since dehomogeniza-
tion preserves inclusions. For the converse, since ai commutes with
intersections:

aisat I = ai

( n⋂
j=0

hajI

)
=

n⋂
j=0

aihajI ⊆ aiI.

(b) Suppose that sat I ⊆ satJ . We have I ⊆ sat I ⊆ satJ . Thus,

for each i = 0, . . . , n: aiI ⊆ aisatJ = aiJ , by (a). Conversely, suppose
that aiI ⊆ aiJ for all i = 0, . . . , n. Since the operation h preserves
inclusion, we can conclude by using Proposition 2.6 that sat I ⊆ satJ .

(c) It is straightforward by Proposition 2.6 and the fact that an
intersection of homogeneous ideals is homogeneous.

(d) Let f be a polynomial in S.

sat (fI) =

(
(fI)S

[
1

X0

])
∩ · · · ∩

(
(fI)S

[
1

Xn

])

= f

((
IS

[
1

X0

])
∩ · · · ∩

(
IS

[
1

Xn

]))

= fsat I.

(e) This is clear by the definition of saturation or by Proposition 2.6.
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(f) It is clear by combining Proposition 2.6 and the fact that the
operations ai and h preserve intersections.

3. Star operations on homogeneous and non-homogeneous
ideals.

Definition 3.1. A fractional ideal J of S is homogeneous, respec-
tively saturated, if a homogeneous polynomial f ∈ S exists such that
fJ is a homogeneous, respectively saturated, ideal of S.

Definition 3.2. If J is a homogeneous fractional ideal of S, then
the dehomogenization of J is aiJ := 1/(aif)ai(fJ), where f is a
homogeneous element of S such that fJ is a homogeneous ideal of
S.

For each i = 0, . . . , n, if J is a fractional ideal of Ri, i.e., J is an
Ri-module in F and there is an f ∈ Ri such that fJ is an ideal of Ri,
then the homogenization of J is hJ := 1/(hf)h(fJ).

Remark 3.3. For each i = 0, . . . , n, operation ai is well defined
for homogeneous fractional ideals of S. For instance, let J be a
homogeneous fractional ideal of S. Suppose that there are homogeneous
polynomials f and g such that fJ and gJ are homogeneous ideals of
S. Then:

1
aif

ai(fJ) =
1

aig
ai(gJ)⇐⇒ aigai(fJ)

= aifai(gJ)⇐⇒ai (gfJ)

= ai(fgJ).

It is also clear by a similar argument that the operation h is well defined
for fractional ideals of Ri, for all i = 0, . . . , n.

Observe that, if J is a homogeneous fractional ideal of S, then aiJ is
a fractional ideal of Ri. Conversely, given a fractional ideal I of Ri,

hI
is a homogeneous fractional ideal of S.

Definition 3.4. Let H(S) denote the set of nonzero homogeneous
fractional ideals of S. A homogeneous star operation on S is a mapping:
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� : H(S) −→ H(S)
I �−→ I�

such that, for every nonzero homogeneous rational function f (i.e.,
f = g/h with 0 �= h and g homogeneous polynomials in S) in the
quotient field of S and every I, J ∈ H(S) the following conditions are
satisfied:

(a) (f)� = (f), (fI)� = fI�;

(b) I ⊆ I� and if I ⊆ J then I� ⊆ J�;

(c) I�� := (I�)� = I�.

Remark 3.5. If I �→ I� is a homogeneous star operation on S, it is
clear that S = (1) = (1)� = S�, and if I is a homogeneous ideal of
S, then I ⊆ I� ⊆ S� = S. Hence, each homogeneous star operation
on S induces a map I �→ I� from H(S), the set of homogeneous ideals
of S, into H(S) satisfying conditions (a), (b) and (c). Moreover, for
each operation � from H(S) onto H(S) satisfying conditions (a), (b)
and (c), if J ∈ H(S), then there is a homogeneous element f ∈ S such
that fJ =: I is a homogeneous ideal of S. Set J� = (1/f)I�. It is clear
that � is well defined and is a homogeneous star operation on S. From
now on, we consider a homogeneous star operation on S as a map from
H(S) onto H(S) satisfying conditions (a), (b) and (c) (in condition (a),
take f to be a homogeneous element of S).

Furthermore it is easily seen that a star operation on S which
preserves homogeneous ideals is a homogeneous star operation, but,
as expected, not every star operation on S is homogeneous preserving.

Next we provide some examples of homogeneous star operations (part
(a)) and an example of a star operation on S that is not a homogeneous
star operation (part (b)).

Example 3.6. (a) The identity is clearly, by definition, a homoge-
neous star operation. We saw earlier that saturation is also a homoge-
neous star operation (Proposition 2.7 (c), (d), (e) and (f)). We will see
that the b-operation and the v-operation (whose definitions are recalled
later) are homogeneous star operations on S as well.
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(b) Let I be an ideal of S. Since S is a Noetherian integrally closed
domain, S is completely integrally closed, so S = (I : I) for each
nonzero ideal I of S (see [7, Theorem 34.3]). So, by [10, Proposition
3.2], the application v(I) : F(S) → F(S), J �→ (I : (I : J)) is a star
operation on S for each ideal I.

Consider the nonhomogeneous maximal ideal M := (X0 − 1, X1, . . .,
Xn) of S and the homogeneous ideal I := (X0, . . . , Xn−1). We shall
prove that Iv(M) := (M : (M : I)) is not homogeneous, and hence
v(M) cannot be restricted to a homogeneous star operation.

By [10, Lemma 3.1], Iv(M) = ∩I⊆qMqM with q in the quotient
field of S. First of all we observe that Iv(M) � I. Suppose by
contradiction that I = Iv(M). Then, since S is Noetherian, the ideal
(M : I) = (r1, . . . , rn)S for some finite set {r1, . . . , rn} of the quotient
field of S, and (M : (M : I)) = (M : (r1, . . . , rn)S) = ∩ni=1r

−1
i M . By

setting qi := r−1
i :

I =
⋂

I⊆qM

qM =

n⋂
i=1

qiM =

n⋂
i=1

qiM ∩ S ⊆
n⋂

i=1

qiS ∩ S = S,

where the last equality holds because I is a prime ideal of height
greater than 1 in an integrally closed Noetherian domain, hence, by
[7, Corollary 44.8]:

S =
⋂

I⊆qS

qS ⊆
n⋂

i=1

qiS ∩ S ⊆ S.

Then, for each i, qiS ∩ S = S and ri := q−1
i ∈ S. Therefore,

I = (1/r1)M ∩ · · · ∩ (1/rn)M ∩ S. We can assume without loss of
generality that, for all i, ri ∈ S \ M . For, if ri ∈ M for some i,
(1/ri)M = S and there is no contribution in the intersection. We have
then that (r1 · · · rn)I = (r2 · · · rn)M∩· · ·∩(r1 · · · rn−1)M ∩(r1 · · · rn)S.
Thus, IM = MSM (for all i, ri /∈M), which is a contradiction because I
is a prime ideal properly contained in M . So I � Iv(M) ⊆Mv(M) = M .

We prove now that I is maximal among the homogeneous ideals of S
contained in M . Suppose that a homogeneous ideal J of S exists such
that I � J � M . Then the set

F := {J : J is homogeneous and I ⊆ J � M}
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is nonempty and, since S is Noetherian, each ascending chain in the set
F stabilizes. By Zorn’s lemma, F has a maximal element P . Suppose
P is not prime. Then, by Proposition 2.1, f, g ∈ S \ P homogeneous
exist such that fg ∈ P . We can suppose f is in M because M is prime,
so we have P � (P, f) � M , because M is not homogeneous, and this
contradicts the maximality of P in F. Hence, P is prime and

(0) � (X0) � (X0, X1) � · · · � (X0, . . . , Xn−1) = I � P � M

is a chain of distinct primes of length n+ 2 > dim (S) = n+ 1, which
is impossible. Therefore, I is maximal in F and, since I � Iv(M) ⊆M ,
Iv(M) is not homogeneous.

We next turn our attention to the “dehomogenization” of a homoge-
neous star operation. In other words, given a homogeneous star opera-
tion � on S, we construct star operations �i on Ri for each i = 0, . . . , n.

Proposition 3.7. Let � be a homogeneous star operation on S. Then
the map �i : I(Ri)→ I(Ri), I �→ I�i := ai((hI)�), where I(Ri) denotes
the set of ideals of Ri, is a star operation on Ri for each i = 0, . . . , n.

Proof. We want to prove that conditions (�1), (�2) and (�3) defined
for star operation in the introduction hold. Let g ∈ Ri and I be an
ideal of Ri;

(gI)�i = ai(h(gI))� = ai(hghI)� = gai(hI)� = gI�i .

Since hRi = S for each i, the first condition (�1) holds. Condition
(�2) is straightforward. The fact that (I�i)�i ⊇ I�i follows from (�2),
and we prove that the reverse inclusion holds too. By (H3) we have
Xm

i
hai((hI)�) ⊆ (hI)� for some m ≥ 1. Since � is a homogeneous star

operation:

Xm
i

[
hai

(
(hI)�

)]�
=

[
Xm

i
hai

(
(hI)�

)]� ⊆ (hI)�� = (hI)�.

Now, as ai preserves inclusion and ai(Xm
i ) = 1, we have

(I�i)�i = ai

([
hai

(
(hI)�

)]�)
= ai

(
Xm

i

[
hai

(
(hI)�

)]�) ⊆ ai(hI)� = I�i .

Then �i is a star operation on Ri for each i = 0, . . . , n.
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We call the process described in Proposition 3.7 dehomogenization of
a homogeneous star operation. Our next aim is to reverse this process.
So, first of all, we investigate the properties of the set of star operations
obtained by dehomogenizing a homogeneous star operation.

Proposition 3.8. Let � be a homogeneous star operation on S, and
let {�0, . . . , �n} be the star operations obtained by dehomogenizing �.
Then ai(I�) = (aiI)�i for each homogeneous ideal I of S and each
i = 0, . . . , n.

Proof. For each i = 0, . . . , n, (haiI)� ⊇ I�, then (aiI)�i = ai(haiI)� ⊇
ai(I�). Conversely, by (H3) of Remark 2.3, some m ≥ 1 exists such
that I� ⊇ Xm

i (haiI)�, so that ai(I�) ⊇ ai(Xm
i (haiI)�) = (aiI)�i for

each i = 0, . . . , n.

Corollary 3.9. Let � be a homogeneous star operation on S, and
let {�0, . . . , �n} be the star operations obtained by dehomogenizing �.
Then

sat (I�) = h
(
(a0I)

�0
) ∩ · · · ∩ h

(
(anI)

�n
)
.

Proof. By Proposition 2.6,

sat (I�) = ha0(I�) ∩ · · · ∩ han(I�)

= h
(
(a0I)�0

) ∩ · · · ∩ h
(
(anI)�n

)
.

The last equality is by Proposition 3.8.

The lemma below suggests a “star” version for the properties (H1),
(H2) and (H3), mentioned in Remark 2.3.

Lemma 3.10. Let � be a homogeneous star operation on S, and let
{�0, . . . , �n} be the set of star operations on R0, . . . , Rn obtained as in
Proposition 3.7. Then, for each homogeneous ideal I of S,

(i) (aj I)�j ⊆ aj [h((aiI)�i)] for all j = 0, . . . , n and i = 0, . . . , n,

(ii) For each i = 0, . . . , n a nonnegative integer mi exists such that
Xmi

i
aj [h((aiI)�i)] ⊆ (ajI)�j for all j = 0, . . . , n.
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Proof. For (i), for each i = 0, . . . , n, (haiI)� ⊇ I�, i.e., for each j =
0, . . . , n, for each i = 0, . . . , n, aj [(haiI)�] ⊇ aj (I�). By Proposition 3.8,
(ajI)�j ⊆ aj [h((aiI)�i)] for all j = 0, . . . , n and i = 0, . . . , n.

For (ii), a similar argument as for (i) works by using the inclusion
Xmi

i
hai(I�) ⊆ I� for some mi ≥ 1 for each i = 0, . . . , n.

By homogenization and dehomogenization we can “move” an ideal
of Ri to any of the other Rj ’s. Condition (i) in Lemma 3.10 suggests
that, just as in the case of the identity operation, the behavior of an
ideal of Ri under the star operation �i reflects the behavior of that
same ideal moved into Rj under �j . Since a homogeneous ideal of S
collects together the behaviors of its dehomogenized components, if we
want to glue together a collection of star operations on different Ri’s,
we define two star operations to be compatible if we can move ideals
from Ri to Rj , through S, preserving the behavior of the given star
operations. This compatibility has to be satisfied by any pair of star
operations that we want to “glue” together into a homogeneous star
operation.

In particular, it will not be possible to glue together star operations
of very different kinds (cf. Example 4.6).

Definition 3.11. Let �0, . . . , �n be star operations on R0, . . . , Rn,
respectively. We say that �0, . . . , �n are pairwise compatible if (aj I)�j ⊆
aj [h((aiI)�i)] for all i, j = 0, . . . , n and all homogeneous ideals I of S.

Proposition 3.12. Let {�0, . . . , �n} be a set of pairwise compatible
star operations on R0, . . . , Rn. Then the map:

� : H(S) −→ H(S)

I �−→ I� := sat
[ n⋂
i=0

h
(
(aiI)

�i
) ]

is a homogeneous star operation on S. Moreover, if {�0, . . . , �n} are
the dehomogenization of a homogeneous star operation �′ on S, then
� = sat ◦ �′.

Proof. We need to prove that � satisfies conditions (a), (b) and (c) of
Definition 3.4. It is easily seen that S� = S. Moreover, saturation,
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homogenization and dehomogenization preserve inclusions. This is
enough to prove (b).

Now suppose that f is a homogeneous element in S. We claim that
(fI)� = fI�. We have:

aj [(fI)�] ⊆ ajsat (h[(ajfI)�j ]
)
, (by Definition 3.4)

= ajh[(ajfI)�j ], (by Proposition 2.7 (a))

= (ajfI)�j

= ajf(ajI)�j , (since �j is a star operation)

⊆ ajfaj [h((aiI)�i)], (by the compatibility of the �i’s)

= aj [fh((aiI)�i)].

Hence, by Proposition 2.7 (b), we have sat [(fI)�] ⊆ fsat [h((aiI)�i)]
for all i = 0, . . . , n. Thus,

(fI)� ⊆ sat [(fI)�] ⊆ fsat
[ n⋂
i=0

h((aiI)�i)

]
= fI�.

For the other inclusion, we have

aj (fI�) = ajfaj (I�) ⊆ ajfajh[(ajI)�j ] = ajf(ajI)�j = [aj (fI)]�j .

By compatibility of the �i’s,

aj (fI�) ⊆ aj [h((aifI)�i)], for all i = 0, . . . , n,

i.e., sat (fI�) ⊆ sat h[((aifI)�i)] for all i = 0, . . . , n, by Proposition
2.7 (b). Hence,

fI� = sat (fI�) ⊆
n⋂

i=0

sat (h((aifI)�i)
)
= (fI)�.

So (fI)� = fI�.

For the last condition (c) left, it is clear that I� ⊆ I�� on one hand.
On the other hand,

(I�)
�
= sat

n⋂
j=0

h
(
(aj (I�)

�j
)
) ⊆ sat

n⋂
j=0

h
(
(ajI)

�j�j
)

= sat
n⋂

j=0

h
(
(ajI)

�j
)
= I�.
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If {�0, . . . , �n} are the dehomogenization of a homogeneous star oper-
ation �′, it follows directly by Corollary 3.9 that � = sat ◦ �′.

We call this process homogenization of a set of pairwise compatible
star operations {�0, . . . , �n}.

Remark 3.13. Given a homogeneous star operation � on S, we
can build, by dehomogenization, star operations �i on Ri for each
i = 0, . . . , n. These star operations �i’s are pairwise compatible.
Therefore, by applying Proposition 3.12 to the n + 1 star operations
obtained, we get a homogeneous star operation that differs from � by
saturation, i.e., it is of the form sat ◦ �.
Reciprocally, starting from a set of pairwise compatible star opera-

tions {�0, . . . , �n} on R0, . . . , Rn, then we can build, by homogeniza-
tion, a homogeneous star operation � on S such that � = sat ◦ �.
By Proposition 3.16 there is a bijection between the set of (n + 1)-

tuples of compatible star operations, each defined on one of the Ri’s and
the set of homogeneous star operations star operations on S enjoying
the additional property that � = sat ◦ �. This motivates our next
definition.

Definition 3.14. A projective star operation on S is a homogeneous
star operation � on S such that sat ◦ � = �.

It is clear that a homogeneous star operation � on S is projective if
and only if � = sat ◦ �′ for some homogeneous star operation �′ on S.
Consequently, the homogeneous star operation built in Proposition 3.12
is a projective star operation.

To keep a standard notation and avoid confusion between star oper-
ations defined on different domains, we shall denote on S the identity,
the integral closure of ideals and the divisorial closure of ideals by d,
b and v, respectively (the definitions are recalled in Section 4). The
same star operations referred to Ri will be denoted by di, bi and vi,
respectively.

Example 3.15. Clearly, the identity operation d on S is a homoge-
nous star operation on S that is not projective. The identities di’s
on the Ri’s satisfy the compatibility conditions, by Remark 2.3. The
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homogenization of {d0, . . . , dn} is, by Proposition 2.6, the saturation
sat. On the other hand, by the same arguments, the saturation sat is
a projective star operation on S.

More examples will be given in the next section, where the b- and
v-operations are studied in detail in the context of homogeneous ideals.

We conclude the section with some more properties of projective star
operations.

Proposition 3.16. Let {�0, . . . , �n} be a set of pairwise compatible
star operations on R0, . . . , Rn, and let � be the homogenization of
{�0, . . . , �n}. Then, for each i = 0, . . . , n and for each ideal I of Ri,
we have I�i = ai [(hI)�].

Proof. For each i = 0, . . . , n, and each ideal I of Ri, we have:

ai [(hI)�] = aisat
[ n⋂
k=0

h(akhI)�k

]

=

n⋂
k=0

aih(akhI)�k

= I�i ∩
n⋂

k �=i
k=0

aih(akhI)�k .

Hence,

I�i ⊇ I�i ∩
n⋂

k �=i
k=0

aih(akhI)�k ⊇ I�i ,

by compatibility of the �i’s. So I�i = ai [(hI)�].

We next prove that the same property as in Proposition 3.8 holds
when we start with a set of pairwise compatible star operations.

Proposition 3.17. Let {�0, . . . , �n} be a set of pairwise com-
patible star operations on R0, . . . , Rn and � the homogenization of
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{�0, . . . , �n}. Then. for any homogeneous ideal I of S, we have
(aiI)�i = ai(I�) for all i = 0, . . . , n.

Proof. Let i ∈ {0, . . . , n}. By Proposition 3.16, we have (aiI)�i =
ai [(haiI)�]. On the other hand, (haiI)� ⊇ I�, which implies (aiI)�i =
ai(haiI)� ⊇ ai(I�).

Conversely, I ⊇ Xm
i (haiI) for some m ≥ 1. Since � is a projec-

tive star operation, we have I� ⊇ Xm
i (haiI)�. Therefore, ai(I�) ⊇

ai(Xm
i (haiI)�) = ai [(haiI)�].

4. Projective b-operation and v-operation. In this section
we study the b-operation and the v-operation. First of all we observe
that they are homogeneous star operations. We prove that the deho-
mogenization of b is the set {b0, . . . , bn}, and similarly the v-operation
dehomogenizes at {v0, . . . , vn}. We show that the v-operation is pro-
jective, whilst the b-operation is not in general.

Let L be a field and D a subring (possibly a subfield) of L; we
denote by Σ(L/D) := {V : V valuation rings of L,D ⊆ V }, that is,
the Zariski-Riemann space of L over D.

Recall that, if D is an integral domain with quotient field L and I is
any nonzero fractional ideal of D:

(i) the b-operation is defined by the mapping I �→ Ib := ∩V ∈Σ(L/D)IV ;

(ii) the v-operation is defined by the mapping I �→ Iv := (D : (D :
I)).

For details on the b- and v-operations, the reader is referred to [7,
Section 32, Section 34].

It is known that, if I is a homogeneous ideal of S, then Ib is a
homogeneous ideal of S [16, Corollary 5.2.3]. So the b-operation is
a homogeneous star operation on S. A natural question is whether the
b-operation is projective in general. The example below is negative.

Example 4.1. Consider S = K[X0, X1, X2] and I = (X2
0X

2
1 , X

2
0X

2
2 ,

X2
1X

2
2 ) a homogeneous ideal of S. It is enough to see that I has height 2

and no embedded components, so it is saturated. On the other hand,
by [12, Example 2.6], the integral closure Ib of I has m = (X0, X1, X2)
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as an embedded prime, and hence it is not saturated, by Remark 2.5.
So sat (Ib) �= Ib and the b-operation in this case is not projective.

Now we prove that the star operations bi on the Ri’s satisfy the
compatibility condition.

Lemma 4.2. Let I be a homogeneous ideal of S. Then ai(Ib) is an
integrally closed ideal of Ri for all i = 0, . . . , n.

Proof. For each i, we have Ri = SMi ∩ F where Mi is the mul-
tiplicatively closed subset of S consisting of powers of Xi and F
is the quotient field of Ri. Now, for I a homogeneous ideal of S,
ai(Ib) = IbSMi ∩ F = (ISMi)

b ∩ F [17, VII, Section 5.(10’)] and [16,
Proposition 1.1.4]. Since (ISMi)

b is an integrally closed ideal in SMi ,
(ISMi)

b∩F is integrally closed in SMi ∩F = Ri. So
ai(Ib) is integrally

closed in Ri, for each i = 0, . . . , n.

Lemma 4.3. Let I be a homogeneous ideal of S. Then ai(Ib) =
(aiI)bi for all i = 0, . . . , n and the bi’s are therefore pairwise compatible.

Proof. Let I be a homogeneous ideal of S. We have I ⊆ Ib. Since ai

preserves inclusions for each i, we have aiI ⊆ ai(Ib). But, by Lemma4.2,
ai(Ib) is integrally closed. Therefore, (aiI)bi ⊆ ai(Ib).

For the reverse inclusion, let x ∈ ai(Ib). Then we can write x = air
for some element r ∈ Ib. Thus, r satisfies an equation of integral
dependence of r over I of the form rs+ c1r

s−1+ · · ·+ cs−1r+ cs = 0 for
some positive integer s and cj ∈ Ij for each j = 1, . . . , s. Since ai is a
homomorphism, we have (air)s+aic1(

air)s−1+· · ·+aics−1
air+aics = 0

with aicj ∈ (aiI)j for each j = 1, . . . , s. Thus, x = air ∈ (aiI)bi .
Hence, ai(Ib) ⊆ (aiI)bi . So ai(Ib) = (aiI)bi .

We just proved that the dehomogenization of the b-operation on S
are exactly the bi-operations on the Ri’s. Hence, by Lemma 3.10, the
bi-operations are pairwise compatible.

Remark 4.4. By Lemma 4.3, it is clear that if we start with the b-
operation (a homogeneous star operation) on S and dehomogenize it on
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the Ri’s, the �i’s are exactly the bi-operations on Ri’s. Conversely, if we
start with the set of the bi-operations on the Ri’s, we can homogenize
it into a projective star operation on S, which is, by Proposition3.12,
sat ◦ b. By Example 4.1, sat ◦ b may differ from the b-operation.

Suppose I is a homogeneous ideal of S. Then Iv := (S : (S : I))
is homogeneous too (see [17, VII, Section 2, Theorem 8]), so if we
restrict the divisorial closure in S to H(S), we get a homogeneous star
operation on S that we keep denoting by v. From the general theory
on star operations we have that, for any star operation � on S, � is less
than or equal to v, i.e., (I�)v = (Iv)

� = Iv, for each I ∈ F(S) (cf. [7,
Theorem 34.1 (4)]).

Proposition 4.5. For every i = 0, . . . , n, the dehomogenization of v
to Ri is the divisorial closure, vi, so in particular vi and vj are pairwise
compatible for each i, j = 0, . . . , n. Furthermore, the homogenization
of {v0, . . . , vn} is exactly v. Hence, sat ◦ v = v and v is a projective
star operation.

Proof. For each i = 0, . . . , n, let J be an ideal of Ri, and let
J�i := ai((hJ)v). We will prove that �i = vi.

J�i =ai((hJ)v) (by definition of �i)

=ai
(
S : (S : hJ)

)
(by definition of v)

=
(
aiS : (aiS : aihJ)

)
(ai commutes with colon)

=(Ri : (Ri : J)) (since
aiS = Ri)

=Jvi (by definition of vi).

Hence, the dehomogenization of v is the divisorial closure vi on Ri and
{v0, . . . , vn} are pairwise compatible by Lemma 3.10 (i).

If � is the homogenization of {v0, . . . , vn}, we have that � = sat ◦ v,
but as discussed before sat is less than or equal to v. So, for every
I ∈ H(S), (sat I)v = sat (Iv) = Iv, and � = v.

Example 4.6 (Non-compatible star operations). Let S = K[X0, X1,
X2, X3] and v0 be the v-operation on R0 = K[(X1/X0), (X2/X0),
(X3/X0)], and consider the b-operation bi on Ri, for i = 1, 2, 3. We
show that v0 is not compatible with b1.
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Let P := (X2, X3) be a homogeneous prime ideal of S. Then the ideal
a0P = ((X2/X0), (X3/X0)) of R0 is prime and has height 2; hence, by
[7, Corollary 44.8], (a0P )v0 = R0. The dehomogenization a1P in R1

is also a prime ideal and so it is integrally closed, i.e., (a1P )b1 = a1P .
Note that ha1P = P . Thus, a0(h[(a1P )b1 ]) = a0(ha1P ) = a0P � R0 =
(a0P )v0 . Therefore, condition (i) of Lemma 3.10 is not satisfied and v0
is not compatible with b1. By a similar argument, it is possible to show
that v0 is not compatible with bi, for i ∈ {2, 3}.

5. Projective Kronecker function rings. In this section we
associate a projective Kronecker function ring to a projective star
operation on S and show how this is related to Kronecker function
rings of the Ri’s. Furthermore, we show that, by using projective
star operations, we can build some F -function rings, called projective
Kronecker function rings, that are not Kronecker function rings of a
domain.

A star operation � on an integral domainD is e.a.b. if, for each finitely
generated ideal I, J and N of D, the following cancelation property
holds:

(IN)� ⊆ (JN)� =⇒ I� ⊆ J�.

Recall also that we can represent the Kronecker function ring of D
with respect to an e.a.b. star operation �, in terms of valuation overrings
of D (cf. [7, Theorem 32.12]): Kr (D, �) = ∩V ∈ΣV

b, where Σ is a subset
of Σ(L/D) and V b = V (T ) is the trivial extension of V to L(T ) (cf. [4,
Theorem 2.2.1]).

Halter-Koch introduced in [8] the notion of an L-function ring as a
generalization of the Kronecker function ring.

Let L be a field and T an indeterminate for L. A subring R ⊆ L(T )
is an L-function ring if the following two axioms are satisfied:

(Ax1) T, T−1 ∈ R,

(Ax2) For any f ∈ L[T ], f(0) ∈ fR.

It is easily seen that, given a valuation ring of L, V b is an L-function
ring and an arbitrary intersection of L-function rings is an L-function
ring. It follows that every Kronecker function ring of a domain D
with quotient field L is an L-function ring, but there are L-function
rings that cannot be constructed by using star operations (for instance,
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rings of the form ∩V ∈Σ(L1/L2)V
b where L1/L2 is a transcendental field

extension, which are studied by Heubo-Kwegna in [11]).

We start by defining the e.a.b. cancelation property for projective
star operation.

Definition 5.1. A projective star operation � on S is e.a.b. if the
dehomogenization of � consists of e.a.b. star operations on the Ri’s.

It is clear by the preceding definition that if we built a projective star
operation � on S by homogenizing a set of e.a.b. star operations �i’s
on the Ri’s, then � is e.a.b. We have, in particular, that sat ◦ b is an
e.a.b. projective star operation on S.

Lemma 5.2. Let � be an e.a.b. projective star operation on S. Then,
for each finitely generated homogenous ideal I, J and N of S,

(IN)� ⊆ (JN)� =⇒ I� ⊆ J�.

Proof. Let I, J,N be finitely generated ideals of S, and suppose that
(IN)sat◦� ⊆ (JN)sat◦�. Then we have by Proposition 2.7 (b): for each
i = 0, . . . , n,

ai ((IN)�) ⊆ ai ((JN)�)⇐⇒ (aiIaiN)�i ⊆ (aiJaiN)�i

=⇒ (aiI)
�i ⊆ (aiJ)

�i

=⇒ ai(I�) ⊆ ai(J�).

Thus, by Proposition 2.7 (b), Isat◦� ⊆ Jsat◦�. The result follows since
� = sat ◦ �.

We investigate some properties of the notion of the content ideal
of a homogeneous polynomial of S[T ], where T is a variable over S.
In particular, we focus on dehomogenization and homogenization of
content ideals.

Note that if f = f0+ f1T + · · ·+ fsT
s is a homogenous polynomial of

S[T ] = K[X0, . . . , Xn, T ] in n+2 variables, that forces its coefficients to
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be homogeneous elements of S. Then the content of f is a homogeneous
ideal of S.

We will use the notation CD(h) to indicate the ideal of D which is
the content of the polynomial h(T ) ∈ D[T ].

Remark 5.3. Let f = f0 + f1T + · · · + fsT
s ∈ S[T ] be homogeneous

of degree m in K[X0, . . . , Xn, T ]. Then

f

Xm
i

=
f0
Xm

i

+
f1

Xm−1
i

T

Xi
+ · · ·+ fs

Xm−s
i

(
T

Xi

)s

∈ Ri

[
T

Xi

]
,

for each i = 0, . . . , n.

We also have, for each i = 0, . . . , n:

(1) aiCS(f) = (aif0,
aif1, . . . ,

aifs) = CRi

(
f

Xm
i

)
.

Now set

F ′ :=
{
f

g
: f, g homogeneous of same degree in S[T ] and g �= 0

}
.

It is clear that F ′ is a field, and it is not hard to see that F ′ is in fact
the field K((X0/T ), . . . , (Xn/T )). Let � be an e.a.b. projective star
operation on S. Let

PKr (S, �) : =

{
f

g
: f, 0 �= g homogeneous of same degree in S[T ],

C(f)� ⊆ C(g)�
}

=

{
f

g
∈ F ′ : C(f)� ⊆ C(g)�

}
.

We can immediately note by Lemma 5.2 that the set PKr (S, �) is
well defined using the fact that, for all f, g ∈ S[T ] \ {0}, C(fg)� =
(C(f)C(g))� (cf. [7, Lemma 32.6]). We also note that PKr (S, �)
“looks” quite like the classical Kronecker function ring, but contrary
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to the classical one S �⊆ PKr (S, �). In fact, Xi is not in PKr (S, �) for
any i = 0, . . . , n. A natural question is whether PKr (S, �) is a ring.
We give an answer in the next proposition:

Proposition 5.4. Let � be an e.a.b. projective star operation on S.
PKr (S, �) is a domain with quotient field F ′ = K((X0/T ), . . . , (Xn/T ))
(we do have K[(X0/T ), . . . , (Xn/T )] ⊆ PKr (S, �) ⊆ K((X0/T ), . . . ,
(Xn/T ))).

Proof. The fact that PKr (S, �) is a domain is proved using the same
argument as the one of the classical Kronecker function ring [7, Proof
of Theorem 32.7 (a)]. It is clear that, for each i = 0, . . . , n, (T/Xi) ∈
PKr (S, �) ⊆ K((X0/T ), . . . , (Xn/T )). Since K ⊆ PKr (S, �), the
result follows.

We next make a connection between the ring PKr (S, �) and the
classical Kronecker function rings Kr (Ri, �i), 0 ≤ i ≤ n, when the
�i’s are pairwise compatible e.a.b. star operations on Ri’s and � is
the homogenization of the �i’s. Note in this case that � is an e.a.b.
projective star operation on S (cf. Proposition 3.12).

Theorem 5.5. Let �0, . . . , �n be n+1 pairwise compatible e.a.b. star
operations on R0, . . . , Rn, respectively. Let � be the homogenization of
�0, . . . , �n; hence, � is an e.a.b. projective star operation on S. Then
PKr (S, �) = ∩ni=0Kr (Ri, �i).

Proof. First we note that the quotient field of PKr (S, �) is F ′ =
K((X0/T ), . . . , (Xn/T )) and the quotient field of each Kr (Ri, �i), 0 ≤
i ≤ n, isK((X0/Xi), . . . , (Xn/Xi), (T/Xi)) = K((X0/T ), . . . , (Xn/T ))
= F ′. So we consider the Kronecker function ring Kr (Ri, �i) with re-
spect to the variable T/Xi. We recall that, for each homogeneous
element f ∈ S[T ] of degree m, aiCS(f) = CRi(f/X

m
i ), 0 ≤ i ≤ n (see

relation (1) in Remark 5.3). That way, we have:

X ∈ PKr (S, �)⇐⇒ X =
f

g
, f, g ∈ F ′, CS(f)

� ⊆ CS(g)
�

⇐⇒ X =
f

g
, f, g ∈ F ′, ai [CS(f)

�] ⊆ ai [CS(g)
�]

for all i = 0, . . . , n,
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⇐⇒ X =
f

g
, f, g ∈ F ′, [aiCS(f)]

�i ⊆ [aiCS(g)]
�i

for all i = 0, . . . , n,

⇐⇒ X =
f

g
, f, g ∈ F ′, CRi

(
f

Xm
i

)�i

⊆ CRi

(
g

Xm
i

)�i

for all i = 0, . . . , n

⇐⇒ X =
f

g
∈

n⋂
i=0

Kr (Ri, �i).

Definition 5.6. If � is an e.a.b. projective star operation on S, then
PKr (S, �) is called the projective Kronecker function ring of S with
respect to �.

Recall that we denote by F the quotient field of domain Ri, i =
0, . . . , n. Our next goal is to prove that PKr (S, �) is an F -function
ring with � an e.a.b. projective star operation on S.

It is easily seen that ∩ni=0Kr (Ri, �i) is an F -function ring, as an
intersection of F -function rings.

By Theorem 5.5, we have:

Corollary 5.7. Let � be an e.a.b. projective star operation on S.
Then PKr (S, �) is an F -function ring.

Although Kr (F/K) := ∩V ∈Σ(F/K)V
b is not a Kronecker function

ring in the classical sense, we prove that it is a projective Kronecker
function ring of S, with respect to a suitable projective star operation
� on S.

Proposition 5.8. The F -function ring Kr (F/K) = ∩ni=0Kr (Ri, bi).

Proof. We first remark that Kr (Ri, bi) = ∩V ∈Σ(F/Ri)V
b. Let

V ∈ Σ(F/Ri). Then K ⊆ Ri ⊆ V ⊆ F . Hence, V ∈ Σ(F/K).
Thus, Kr (F/K) ⊆ Kr (Ri, bi), for all i = 0, . . . , n. Hence, Kr (F/K) ⊆
∩ni=0Kr (Ri, b).
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Now let V ∈ Σ(F/K). We have F ⊆ K ′ := K(X0, . . . , Xn).

Let w be a valuation that extends the valuation v to K ′. Pick j such
that w(Xj) = min{w(Xi) : 0 ≤ i ≤ n}. Then w((Xi/Xj)) ≥ 0 for all
i = 0, . . . , n. Hence, Rj ⊆W ∩F = V ⊆ F . So V ∈ Σ(F/Rj) for some
j. Thus, ∩V ∈Σ(F/Ri)V

b ⊆ Kr (Rj , b) ⊆ V b. Hence, ∩ni=0Kr (Ri, b) ⊆
Kr (F/K).

By Lemma 4.3, the bi’s are pairwise compatible e.a.b. star operations
on the Ri’s, and their homogenization is sat ◦ b which is projective and
e.a.b. By Theorem 5.5, PKr (S, sat ◦ b) = ∩ni=0Kr (Ri, bi) = Kr (F/K).
Thus:

Corollary 5.9. The F -function ring Kr (F/K) = PKr (S, sat ◦ b)
and is a projective Kronecker function ring.
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