PROJECTIVE STAR OPERATIONS ON POLYNOMIAL RINGS OVER A FIELD

ALICE FABBRI AND OLIVIER A. HEUBO-KWEGNA

Abstract

We consider the polynomial ring $S:=K\left[X_{0}\right.$, $\left.\ldots, X_{n}\right]$ over a field K and the rings $R_{i}:=K\left[\left(X_{0} / X_{i}\right), \ldots\right.$, $\left(X_{n} / X_{i}\right)$] for $0 \leq i \leq n$. We introduce the notion of a projective star operation on S and relate it to the classical star operations on the R_{i} 's. We show that the projective Kronecker function ring $\operatorname{PKr}(S, \star)$ of S is the intersection of the Kronecker function rings $\operatorname{Kr}\left(R_{i}, \star_{i}\right), 0 \leq i \leq n$, where the \star_{i} 's are pairwise compatible e.a.b. star operations on the R_{i} 's and \star is a projective star operation on S built from the \star_{i} 's.

1. Introduction. Let R be an integral domain with quotient field F. Let $\mathfrak{F}(R)$ denote the set of nonzero fractional ideals of R. We recall that a star operation on R is defined as a mapping $\star: \mathfrak{F}(R) \rightarrow \mathfrak{F}(R)$, $I \mapsto I^{\star}$, such that for all $I, J \in \mathfrak{F}(R)$ and $x \in F \backslash\{0\}$:
$\left(\star_{1}\right) R^{\star}=R$ and $(x I)^{\star}=x I^{\star}$;
$\left(\star_{2}\right) I \subseteq I^{\star}$, and $I \subseteq J \Rightarrow I^{\star} \subseteq J^{\star}$;
$\left(\star_{3}\right) I^{\star \star}:=\left(I^{\star}\right)^{\star}=I^{\star}$.
A star operation \star is called endlich arithmetisch brauchbar (in brief e.a.b.) if for any finitely generated $I, J, H \in \mathfrak{F}(R),(I J)^{\star} \subseteq(I H)^{\star}$ implies $J^{\star} \subseteq H^{\star}$. Given an e.a.b. star operation \star, the $\operatorname{ring} \operatorname{Kr}(R, \star):=$ $\left\{f / g: f, g \in R[X] \backslash\{0\}, C(f)^{\star} \subseteq C(g)^{\star}\right\} \cup\{0\}$, where $C(f)$ denotes the content of the polynomial $f(X)$, is called the Kronecker function of R with respect to \star. It is known that $\operatorname{Kr}(R, \star)$ is a Bézout domain (a domain for which every proper nonzero finitely generated ideal is principal) with quotient field $F(X)$ and such that $\operatorname{Kr}(R, \star) \cap F=R$ (for an overview on star operations and Kronecker function rings see [7, Section 32]).
[^0]Recently, two generalizations of the concept of Kronecker function rings were proposed: one by Halter-Koch [8], and the other one by Fontana and Loper [5, 6]. Halter-Koch introduced the notion of F function ring using only two axioms; the ring turns out to share many properties with the classical Kronecker function ring (the two axioms and properties of F-function rings can be found in Section 5 of this article), whilst the Fontana-Loper approach uses semistar operations (see $[14,15]$).

The more general nature of F-function rings, compared to Kronecker function rings, is due to the fact that they do not necessarily depend on star operations. For instance, let $K \subseteq F$ be a field extension which is not algebraic and denote by $\Sigma(F / K)$ the set of valuation rings of F containing K. The F-function ring $\operatorname{Kr}(F / K):=\cap_{V \in \Sigma(F / K)} V^{b}$, studied in [11], where $V^{b}=V(X)$ is the Gauss (also called trivial) extension of V to $F(X)$, cannot be associated to a star operation and it is not a classical Kronecker function ring. Motivated by such examples, in this paper we rely on Halter-Koch's approach to overcome this restriction by introducing the notions of projective star operation and projective Kronecker function ring, which is an example of an F function ring.

Let $S:=K\left[X_{0}, \ldots, X_{n}\right]$ be a polynomial ring over a field K. We consider the (relevant) coherent sheaves of ideals on $\operatorname{Proj}(S)$. The idea is to define a projective star operation as an application from the set of (relevant) coherent sheaves of ideals into itself, satisfying the same properties as classical star operations. But, motivated by the bijection between the set of coherent sheaves of ideals of $\operatorname{Proj}(S)$ and homogeneous saturated ideals of S (see [3, Exercises III-15 and III16]), we restrict our attention to the set of homogeneous ideals of S. Generalities and basic properties of homogeneous and saturated ideals of S are provided in Section 2.
In Section 3, we define homogeneous star operations on S as maps from the set of homogeneous ideals of S into itself satisfying the properties of classical star operation $\left(\star_{1}\right),\left(\star_{2}\right)$ and $\left(\star_{3}\right)$ above. We provide examples of classical star operations, such as the b-operation and the v-operation, that are homogeneous. On the other hand, for the $v(I)$ operation defined as $J^{v(I)}:=(I:(I: J))$, it is possible to choose a suitable I so that $v(I)$ is not a homogeneous star operation (see Example 3.6).

A projective star operation is a homogeneous star operation \star on S such that sat $\circ \star=\star$, where sat is the saturation. We observe that the v-operation and the composition $s a t \circ b$ are projective star operations, but the b-operation is not necessarily a projective star operation (see Example 4.1).

We prove that each homogeneous (or projective) star operation \star induces (by dehomogenization) a star operation \star_{i} on $R_{i}:=K\left[X_{0} / X_{i}, \ldots\right.$, $\left.X_{n} / X_{i}\right]$, for each $i=0, \ldots, n$. Conversely, if we have a compatibility condition between star operations on different R_{i} 's, then we can build from those (homogenization process) a homogeneous star operation which turns out to be projective. We then obtain a bijection between the $(n+1)$-tuples of compatible star operations, each defined on one of the R_{i} 's and projective star operations on S :

$$
\begin{gathered}
\left\{\begin{array}{c}
\left\{\star_{0}, \ldots, \star_{n}\right\} \\
\star_{i}=\text { star operation on } R_{i}, \\
\star_{i} \text { compatible with } \star_{j}, \forall i, j
\end{array}\right\} \\
\longleftrightarrow\{\star=\text { projective star operation on } S\}
\end{gathered}
$$

In Section 4, we show that the b-operation (respectively, the v operation) dehomogenizes at the integral closure of ideals (respectively, divisorial closure of ideals) on R_{i} for each $i=0, \ldots, n$, and observe that the saturation sat is a projective star operation that dehomogenizes at the identity star operation.
In Section 5, we define an e.a.b. projective star operation as a projective star operation that dehomogenizes at e.a.b. star operations (e.a.b. in the classical sense) and we prove that an e.a.b. projective star operation on S satisfies the usual cancelation property. We can therefore associate to an e.a.b. projective star operation \star a projective Kronecker function ring with respect to \star, denoted $\operatorname{PKr}(S, \star)$, which turns out to be an F-function ring (F is the quotient field of the rings R_{i} 's) and has a natural interpretation in terms of valuations of F.
2. Preliminaries and notations. First of all, we fix the notation that will be used throughout. Let K be a field. Let $S:=K\left[X_{0}, \ldots, X_{n}\right]$ be the polynomial ring in $n+1$ indeterminates over K. For i ranging
from 0 to n, we shall denote by R_{i} the ring $K\left[X_{0} / X_{i}, \ldots, X_{n} / X_{i}\right]$. All the domains R_{i} are integrally closed and have the same quotient field, namely, $F:=K\left(X_{0} / X_{i}, \ldots, X_{n} / X_{i}\right)$.

Let $f \in S$. The dehomogenization of f in R_{i} is the element

$$
{ }^{a_{i}} f:=f\left(\frac{X_{0}}{X_{i}}, \ldots, 1, \ldots, \frac{X_{n}}{X_{i}}\right)
$$

of R_{i}. The application ${ }^{a_{i}}$ is a ring homomorphism for each $i=0, \ldots, n$. Conversely, given an element g in R_{i}, its homogenization in S is the homogeneous element

$$
{ }^{h} g:=X_{i}^{n_{i}} g\left(\frac{X_{0}}{X_{i}}, \ldots, \frac{X_{n}}{X_{i}}\right)
$$

of S, where n_{i} is the degree of g.
Since S is graded, we can write each element $f \in S$ as $f=f_{0}+\cdots+f_{d}$, with f_{i} homogeneous of degree i. An ideal I of S is homogeneous if it is generated by homogeneous elements, or equivalently, if for any $f \in I$, $f=f_{0}+\cdots+f_{d}$, then each $f_{i} \in I$. A homogeneous prime ideal of S is a prime ideal of S which is also homogeneous.

A useful characterization of homogeneous prime ideals follows:

Proposition 2.1 [2, Exercise 2.15(c)]. Let S be a Z-graded ring. A homogeneous ideal P of S is prime if and only if whenever $f g \in P$ for homogeneous polynomials $f, g \in S$ then $f \in P$ or $g \in P$.

Given a homogeneous ideal I of S, the dehomogenization of I (in R_{i}):

$$
{ }^{a_{i}} I:=\left\{{ }^{a_{i}} f: f \text { is homogeneous in } I\right\}
$$

is an ideal of R_{i}.

Remark 2.2. We note that, using the fact that the operation ${ }^{a_{i}}$ is a ring homomorphism for each $i=0, \ldots, n$, and I is generated by some homogeneous elements of I, it is clear that ${ }^{a_{i}} I$ is just the same as the set $\left\{{ }^{a_{i}} f: f \in I\right\}$. So, from now on, for a homogeneous ideal I of S, we will say $x \in{ }^{a_{i}} I$ if and only if $x={ }^{a_{i}} f$ for some $f \in I$.

For each $i=0, \ldots, n$, the operation $I \mapsto{ }^{a_{i}} I$ maps the set of all homogeneous ideals of S onto the set of all ideals of R_{i} and preserves inclusion and the usual ideal-theoretic operations: addition, multiplication, intersection, radical and colon [17, Theorem 18, Chapter VII, Section 5].

Given an ideal I of R_{i}, we denote by ${ }^{h} I$ the homogeneous ideal of S which is generated by the set of homogeneous polynomials:

$$
\left\{X_{i}^{m h} f: m \geq 0, f \in I\right\}
$$

The operation $I \mapsto{ }^{h} I$ that assigns to each ideal of R_{i} a homogeneous ideal of S is one-to-one and preserves inclusion and the usual idealtheoretic operations: addition, multiplication, intersection, radical and colon [17, Theorem 17, Chapter VII, Section 5].

Remark 2.3. We recall the properties of the composite operations ${ }^{a_{i} h}$ and ${ }^{h a_{i}}$, for each $i=0, \ldots, n$, for each ideal I of R_{i} and each homogeneous ideal J of S (see [17, Chapter VII, Section 5, page 182]):
(H1) ${ }^{a_{i}}\left({ }^{h} I\right)=I$;
(H2) ${ }^{h}\left({ }^{a_{i}} J\right) \supseteq J$;
(H3) $X_{i}^{m}\left({ }^{h}\left({ }^{a_{i}} J\right)\right) \subseteq J$, for some integer $m \geq 1$.
In particular, if I is a homogeneous ideal of S, for all $i, j=0, \ldots, n$, we have ${ }^{a_{i}} I \subseteq{ }^{a_{i} h a_{j}} I$.

Definition 2.4. Let I be an ideal of S, the saturation of I is the ideal:

$$
\text { sat } I:=\left\{y \in S: \quad \text { for all } i=0, \ldots, n, \text { there exists a } t_{i} \geq 0, y X_{i}^{t_{i}} \in I\right\}
$$

An ideal I of S is saturated if ${ }^{s a t} I=I$.

By [9, Exercise 5.10], the saturation of a homogeneous ideal is homogeneous.

Remark 2.5. Let I be an ideal of S. Then

$$
\begin{aligned}
y \in{ }^{s a t} I & \Longleftrightarrow y \in I S\left[\frac{1}{X_{i}}\right] \cap S \text { for all } i=0, \ldots, n \\
& \Longleftrightarrow y \in\left(I S\left[\frac{1}{X_{0}}\right] \cap S\right) \cap \cdots \cap\left(I S\left[\frac{1}{X_{n}}\right] \cap S\right)
\end{aligned}
$$

Thus

$$
s^{\text {sat }} I=\left(I S\left[\frac{1}{X_{0}}\right]\right) \cap \cdots \cap\left(I S\left[\frac{1}{X_{n}}\right]\right)
$$

Furthermore, denoting by \mathfrak{m} the irrelevant ideal $\left(X_{0}, \ldots, X_{n}\right)$, the saturation of an ideal I can be also defined as: $\cup_{k}\left(I: \mathfrak{m}^{k}\right)=:\left(I: \mathfrak{m}^{\infty}\right)$. It is easily seen that this definition agrees with the one proposed above.

By using this latest definition, it is not hard to prove that, for an ideal I of S, the following are equivalent:
(a) \mathfrak{m} is an embedded component of I;
(b) the height of I is less than or equal to n and I is not saturated.

Proposition 2.6. Let I be a homogeneous ideal of S. Then ${ }^{\text {sat }} I=\cap_{i=0}^{n}{ }^{h a_{i}} I$.

Proof. Let $f \in{ }^{s a t} I$. Then for each $i=0, \ldots, n$, there is a nonnegative integer n such that $X_{i}^{n} f \in I$. Set $g:=X_{i}^{n} f$. Then we have $g={ }^{h}\left({ }^{a_{i}} g\right) X_{i}^{m}$, where m is the degree of X_{i} in polynomial g. Clearly, as $f=X_{i}^{-n} g \in S$, we have $m \geq n$. So $f={ }^{h}\left({ }^{a_{i}} g\right) X_{i}^{m-n} \in{ }^{h}\left({ }^{a_{i}} I\right)$ for each $i=0, \ldots, n$. Therefore ${ }^{s a t} I \subseteq \cap_{i=0}^{n}{ }^{h a_{i}} I$.

Since ${ }^{s a t} I$ and $\cap_{i=0}^{n}{ }^{h a_{i}} I$ are homogeneous ideals, it is enough to prove that all the homogeneous elements of $\cap_{i=0}^{n}{ }^{h a_{i}} I$ are also in ${ }^{s a t} I$. For, let $f \in \cap_{i=0}^{n}{ }^{h a_{i}} I$ with f a homogeneous polynomial. Then, for each $i=$ $0, \ldots, n$, we can assume, without loss of generality, that $f=X_{i}^{m}\left({ }^{h} g_{i}\right)$ with m_{i} a nonnegative integer and $g_{i} \in{ }^{a_{i}} I$ (i.e., $g_{i}={ }^{a_{i}} \varphi, \varphi \in I$). Thus, $f=X_{i}^{m_{i} h}\left({ }^{a_{i}} \varphi\right)=X_{i}^{m_{i}} X_{i}^{-m_{0 i}} \varphi$, where $m_{0 i}$ is the highest power of X_{i} that divides φ. Therefore, it is enough to choose a nonnegative integer s such that $s \geq m_{0 i}-m_{i}$ to have $X_{i}^{s} f=X_{i}^{s+m_{i}-m_{0 i}} \varphi \in I$, as $\varphi \in I$. Hence $f \in{ }^{s a t} I$, and ${ }^{s a t} I=\cap_{i=0}^{n}{ }^{h a_{i}} I$.

Proposition 2.7. Given I, J homogeneous ideals of S the following properties hold:
(a) for each $i=0, \ldots, n,{ }^{a_{i}} I={ }^{a_{i}} s a t I$;
(b) ${ }^{s a t} I \subseteq{ }^{s a t} J$ if and only if ${ }^{a_{i}} I \subseteq{ }^{a_{i}} J$ for all $i=0, \ldots, n$;
(c) ${ }^{s a t} I$ is homogeneous;
(d) for all (homogeneous) polynomials $f \in S,{ }^{s a t}(f I)=f^{s a t} I$;
(e) $I \subseteq{ }^{s a t} I$ and if $I \subseteq J$ then ${ }^{s a t} I \subseteq{ }^{s a t} J$;
(f) $s a t(I \cap J)={ }^{s a t} I \cap{ }^{s a t} J$.

In particular, from (d), (e), (f) together with the fact that ${ }^{s a t} S=S$, it follows that the saturation sat is a star operation on S.

Proof. (a) The inclusion ${ }^{a_{i}} I \subseteq{ }^{a_{i}} s a t I$ is trivial since dehomogenization preserves inclusions. For the converse, since ${ }^{a_{i}}$ commutes with intersections:

$$
a_{i} s a t I={ }^{a_{i}}\left(\bigcap_{j=0}^{n} h a_{j} I\right)=\bigcap_{j=0}^{n} a_{i} h a_{j} I \subseteq{ }^{a_{i}} I
$$

(b) Suppose that ${ }^{s a t} I \subseteq s^{s a t} J$. We have $I \subseteq s^{s a t} I \subseteq s^{s a t} J$. Thus, for each $i=0, \ldots, n$: ${ }^{a_{i}} I \subseteq{ }^{a_{i}} s a t J={ }^{a_{i}} J$, by (a). Conversely, suppose that ${ }^{a_{i}} I \subseteq{ }^{a_{i}} J$ for all $i=0, \ldots, n$. Since the operation ${ }^{h}$ preserves inclusion, we can conclude by using Proposition 2.6 that ${ }^{s a t} I \subseteq{ }^{s a t} J$.
(c) It is straightforward by Proposition 2.6 and the fact that an intersection of homogeneous ideals is homogeneous.
(d) Let f be a polynomial in S.

$$
\text { sat } \begin{aligned}
(f I) & =\left((f I) S\left[\frac{1}{X_{0}}\right]\right) \cap \cdots \cap\left((f I) S\left[\frac{1}{X_{n}}\right]\right) \\
& =f\left(\left(I S\left[\frac{1}{X_{0}}\right]\right) \cap \cdots \cap\left(I S\left[\frac{1}{X_{n}}\right]\right)\right) \\
& =f^{s a t} I
\end{aligned}
$$

(e) This is clear by the definition of saturation or by Proposition 2.6.
(f) It is clear by combining Proposition 2.6 and the fact that the operations ${ }^{a_{i}}$ and ${ }^{h}$ preserve intersections.

3. Star operations on homogeneous and non-homogeneous ideals.

Definition 3.1. A fractional ideal J of S is homogeneous, respectively saturated, if a homogeneous polynomial $f \in S$ exists such that $f J$ is a homogeneous, respectively saturated, ideal of S.

Definition 3.2. If J is a homogeneous fractional ideal of S, then the dehomogenization of J is ${ }^{a_{i}} J:=1 /\left({ }^{a_{i}} f\right)^{a_{i}}(f J)$, where f is a homogeneous element of S such that $f J$ is a homogeneous ideal of S.

For each $i=0, \ldots, n$, if J is a fractional ideal of R_{i}, i.e., J is an R_{i}-module in F and there is an $f \in R_{i}$ such that $f J$ is an ideal of R_{i}, then the homogenization of J is ${ }^{h} J:=1 /\left({ }^{h} f\right)^{h}(f J)$.

Remark 3.3. For each $i=0, \ldots, n$, operation ${ }^{a_{i}}$ is well defined for homogeneous fractional ideals of S. For instance, let J be a homogeneous fractional ideal of S. Suppose that there are homogeneous polynomials f and g such that $f J$ and $g J$ are homogeneous ideals of S. Then:

$$
\left.\begin{array}{rl}
\frac{1}{a_{i} f} & a_{i}(f J)
\end{array}={\frac{1}{a_{i}} g}^{a_{i}}(g J) \Longleftrightarrow{ }^{a_{i}} g^{a_{i}}(f J)\right)
$$

It is also clear by a similar argument that the operation ${ }^{h}$ is well defined for fractional ideals of R_{i}, for all $i=0, \ldots, n$.

Observe that, if J is a homogeneous fractional ideal of S, then ${ }^{a_{i}} J$ is a fractional ideal of R_{i}. Conversely, given a fractional ideal I of $R_{i},{ }^{h} I$ is a homogeneous fractional ideal of S.

Definition 3.4. Let $\overline{\mathcal{H}}(S)$ denote the set of nonzero homogeneous fractional ideals of S. A homogeneous star operation on S is a mapping:

$$
\begin{aligned}
\star: \overline{\mathcal{H}}(S) & \longrightarrow \overline{\mathcal{H}}(S) \\
I & \longmapsto I^{\star}
\end{aligned}
$$

such that, for every nonzero homogeneous rational function f (i.e., $f=g / h$ with $0 \neq h$ and g homogeneous polynomials in S) in the quotient field of S and every $I, J \in \overline{\mathcal{H}}(S)$ the following conditions are satisfied:
(a) $(f)^{\star}=(f),(f I)^{\star}=f I^{\star}$;
(b) $I \subseteq I^{\star}$ and if $I \subseteq J$ then $I^{\star} \subseteq J^{\star}$;
(c) $I^{\star \star}:=\left(I^{\star}\right)^{\star}=I^{\star}$.

Remark 3.5. If $I \mapsto I^{\star}$ is a homogeneous star operation on S, it is clear that $S=(1)=(1)^{\star}=S^{\star}$, and if I is a homogeneous ideal of S, then $I \subseteq I^{\star} \subseteq S^{\star}=S$. Hence, each homogeneous star operation on S induces a map $I \mapsto I^{\star}$ from $\mathcal{H}(S)$, the set of homogeneous ideals of S, into $\mathcal{H}(S)$ satisfying conditions (a), (b) and (c). Moreover, for each operation \star from $\mathcal{H}(S)$ onto $\mathcal{H}(S)$ satisfying conditions (a), (b) and (c), if $J \in \overline{\mathcal{H}}(S)$, then there is a homogeneous element $f \in S$ such that $f J=: I$ is a homogeneous ideal of S. Set $J^{\star}=(1 / f) I^{\star}$. It is clear that \star is well defined and is a homogeneous star operation on S. From now on, we consider a homogeneous star operation on S as a map from $\mathcal{H}(S)$ onto $\mathcal{H}(S)$ satisfying conditions $(a),(b)$ and (c) (in condition (a), take f to be a homogeneous element of S).

Furthermore it is easily seen that a star operation on S which preserves homogeneous ideals is a homogeneous star operation, but, as expected, not every star operation on S is homogeneous preserving.

Next we provide some examples of homogeneous star operations (part (a)) and an example of a star operation on S that is not a homogeneous star operation (part (b)).

Example 3.6. (a) The identity is clearly, by definition, a homogeneous star operation. We saw earlier that saturation is also a homogeneous star operation (Proposition 2.7 (c), (d), (e) and (f)). We will see that the b-operation and the v-operation (whose definitions are recalled later) are homogeneous star operations on S as well.
(b) Let I be an ideal of S. Since S is a Noetherian integrally closed domain, S is completely integrally closed, so $S=(I: I)$ for each nonzero ideal I of S (see [7, Theorem 34.3]). So, by [10, Proposition 3.2], the application $v(I): \mathfrak{F}(S) \rightarrow \mathfrak{F}(S), J \mapsto(I:(I: J))$ is a star operation on S for each ideal I.

Consider the nonhomogeneous maximal ideal $M:=\left(X_{0}-1, X_{1}, \ldots\right.$, $\left.X_{n}\right)$ of S and the homogeneous ideal $I:=\left(X_{0}, \ldots, X_{n-1}\right)$. We shall prove that $I^{v(M)}:=(M:(M: I))$ is not homogeneous, and hence $v(M)$ cannot be restricted to a homogeneous star operation.

By [10, Lemma 3.1], $I^{v(M)}=\cap_{I \subseteq q M} q M$ with q in the quotient field of S. First of all we observe that $I^{v(M)} \supsetneq I$. Suppose by contradiction that $I=I^{v(M)}$. Then, since S is Noetherian, the ideal $(M: I)=\left(r_{1}, \ldots, r_{n}\right) S$ for some finite set $\left\{r_{1}, \ldots, r_{n}\right\}$ of the quotient field of S, and $(M:(M: I))=\left(M:\left(r_{1}, \ldots, r_{n}\right) S\right)=\cap_{i=1}^{n} r_{i}^{-1} M$. By setting $q_{i}:=r_{i}^{-1}$:

$$
I=\bigcap_{I \subseteq q M} q M=\bigcap_{i=1}^{n} q_{i} M=\bigcap_{i=1}^{n} q_{i} M \cap S \subseteq \bigcap_{i=1}^{n} q_{i} S \cap S=S,
$$

where the last equality holds because I is a prime ideal of height greater than 1 in an integrally closed Noetherian domain, hence, by [7, Corollary 44.8]:

$$
S=\bigcap_{I \subseteq q S} q S \subseteq \bigcap_{i=1}^{n} q_{i} S \cap S \subseteq S
$$

Then, for each $i, q_{i} S \cap S=S$ and $r_{i}:=q_{i}^{-1} \in S$. Therefore, $I=\left(1 / r_{1}\right) M \cap \cdots \cap\left(1 / r_{n}\right) M \cap S$. We can assume without loss of generality that, for all $i, r_{i} \in S \backslash M$. For, if $r_{i} \in M$ for some i, $\left(1 / r_{i}\right) M=S$ and there is no contribution in the intersection. We have then that $\left(r_{1} \cdots r_{n}\right) I=\left(r_{2} \cdots r_{n}\right) M \cap \cdots \cap\left(r_{1} \cdots r_{n-1}\right) M \cap\left(r_{1} \cdots r_{n}\right) S$. Thus, $I_{M}=M S_{M}$ (for all $i, r_{i} \notin M$), which is a contradiction because I is a prime ideal properly contained in M. So $I \subsetneq I^{v(M)} \subseteq M^{v(M)}=M$.

We prove now that I is maximal among the homogeneous ideals of S contained in M. Suppose that a homogeneous ideal J of S exists such that $I \subsetneq J \subsetneq M$. Then the set

$$
\mathfrak{F}:=\{J: J \text { is homogeneous and } I \subseteq J \subsetneq M\}
$$

is nonempty and, since S is Noetherian, each ascending chain in the set \mathfrak{F} stabilizes. By Zorn's lemma, \mathfrak{F} has a maximal element P. Suppose P is not prime. Then, by Proposition 2.1, $f, g \in S \backslash P$ homogeneous exist such that $f g \in P$. We can suppose f is in M because M is prime, so we have $P \subsetneq(P, f) \subsetneq M$, because M is not homogeneous, and this contradicts the maximality of P in \mathfrak{F}. Hence, P is prime and

$$
(0) \subsetneq\left(X_{0}\right) \subsetneq\left(X_{0}, X_{1}\right) \subsetneq \cdots \subsetneq\left(X_{0}, \ldots, X_{n-1}\right)=I \subsetneq P \subsetneq M
$$

is a chain of distinct primes of length $n+2>\operatorname{dim}(S)=n+1$, which is impossible. Therefore, I is maximal in \mathfrak{F} and, since $I \subsetneq I^{v(M)} \subseteq M$, $I^{v(M)}$ is not homogeneous.

We next turn our attention to the "dehomogenization" of a homogeneous star operation. In other words, given a homogeneous star operation \star on S, we construct star operations \star_{i} on R_{i} for each $i=0, \ldots, n$.

Proposition 3.7. Let \star be a homogeneous star operation on S. Then the map $\star_{i}: \Im\left(R_{i}\right) \rightarrow \Im\left(R_{i}\right), I \mapsto I^{\star_{i}}:={ }^{a_{i}}\left(\left({ }^{h} I\right)^{\star}\right)$, where $\mathfrak{I}\left(R_{i}\right)$ denotes the set of ideals of R_{i}, is a star operation on R_{i} for each $i=0, \ldots, n$.

Proof. We want to prove that conditions $\left(\star_{1}\right),\left(\star_{2}\right)$ and $\left(\star_{3}\right)$ defined for star operation in the introduction hold. Let $g \in R_{i}$ and I be an ideal of R_{i};

$$
(g I)^{\star_{i}}={ }^{a_{i}}\left({ }^{h}(g I)\right)^{\star}={ }^{a_{i}}\left({ }^{h} g^{h} I\right)^{\star}=g^{a_{i}}\left({ }^{h} I\right)^{\star}=g I^{\star_{i}} .
$$

Since ${ }^{h} R_{i}=S$ for each i, the first condition $\left(\star_{1}\right)$ holds. Condition $\left(\star_{2}\right)$ is straightforward. The fact that $\left(I^{\star_{i}}\right)^{\star_{i}} \supseteq I^{\star_{i}}$ follows from (\star_{2}), and we prove that the reverse inclusion holds too. By (H3) we have $X_{i}^{m h a_{i}}\left(\left({ }^{h} I\right)^{\star}\right) \subseteq\left({ }^{h} I\right)^{\star}$ for some $m \geq 1$. Since \star is a homogeneous star operation:

$$
X_{i}^{m}\left[{ }^{h a_{i}}\left(\left({ }^{h} I\right)^{\star}\right)\right]^{\star}=\left[X_{i}^{m h a_{i}}\left(\left({ }^{h} I\right)^{\star}\right)\right]^{\star} \subseteq\left({ }^{h} I\right)^{\star \star}=\left({ }^{h} I\right)^{\star} .
$$

Now, as ${ }^{a_{i}}$ preserves inclusion and ${ }^{a_{i}}\left(X_{i}^{m}\right)=1$, we have

$$
\left(I^{\star_{i}}\right)^{\star_{i}}={ }^{a_{i}}\left(\left[{ }^{h a_{i}}\left(\left({ }^{h} I\right)^{\star}\right)\right]^{\star}\right)={ }^{a_{i}}\left(X_{i}^{m}\left[a^{a_{i}}\left(\left({ }^{h} I\right)^{\star}\right)\right]^{\star}\right) \subseteq{ }^{a_{i}}\left({ }^{h} I\right)^{\star}=I^{\star_{i}}
$$

Then \star_{i} is a star operation on R_{i} for each $i=0, \ldots, n$.

We call the process described in Proposition 3.7 dehomogenization of a homogeneous star operation. Our next aim is to reverse this process. So, first of all, we investigate the properties of the set of star operations obtained by dehomogenizing a homogeneous star operation.

Proposition 3.8. Let \star be a homogeneous star operation on S, and let $\left\{\star_{0}, \ldots, \star_{n}\right\}$ be the star operations obtained by dehomogenizing \star. Then ${ }^{a_{i}}\left(I^{\star}\right)=\left({ }^{a_{i}} I\right)^{\star_{i}}$ for each homogeneous ideal I of S and each $i=0, \ldots, n$.

Proof. For each $i=0, \ldots, n,\left({ }^{h a_{i}} I\right)^{\star} \supseteq I^{\star}$, then $\left({ }^{a_{i}} I\right)^{\star_{i}}={ }^{a_{i}}\left({ }^{h a_{i}} I\right)^{\star} \supseteq$ ${ }^{a_{i}}\left(I^{\star}\right)$. Conversely, by (H3) of Remark 2.3 , some $m \geq 1$ exists such that $I^{\star} \supseteq X_{i}^{m}\left({ }^{h a_{i}} I\right)^{\star}$, so that ${ }^{a_{i}}\left(I^{\star}\right) \supseteq{ }^{a_{i}}\left(X_{i}^{m}\left({ }^{h a_{i}} I\right)^{\star}\right)=\left({ }^{a_{i}} I\right)^{\star_{i}}$ for each $i=0, \ldots, n$.

Corollary 3.9. Let \star be a homogeneous star operation on S, and let $\left\{\star_{0}, \ldots, \star_{n}\right\}$ be the star operations obtained by dehomogenizing \star. Then

$$
\operatorname{sat}\left(I^{\star}\right)={ }^{h}\left(\left({ }^{a_{0}} I\right)^{\star_{0}}\right) \cap \cdots \cap^{h}\left(\left(a_{n} I\right)^{\star_{n}}\right) .
$$

Proof. By Proposition 2.6,

$$
\begin{aligned}
\operatorname{sat}^{\left(I^{\star}\right)} & ={ }^{h a_{0}}\left(I^{\star}\right) \cap \cdots \cap^{h a_{n}}\left(I^{\star}\right) \\
& ={ }^{h}\left(\left({ }^{a_{0}} I\right)^{\star_{0}}\right) \cap \cdots \cap^{h}\left(\left({ }^{a_{n}} I\right)^{\star_{n}}\right) .
\end{aligned}
$$

The last equality is by Proposition 3.8.

The lemma below suggests a "star" version for the properties (H1), (H2) and (H3), mentioned in Remark 2.3.

Lemma 3.10. Let \star be a homogeneous star operation on S, and let $\left\{\star_{0}, \ldots, \star_{n}\right\}$ be the set of star operations on R_{0}, \ldots, R_{n} obtained as in Proposition 3.7. Then, for each homogeneous ideal I of S,
(i) $\left({ }^{a_{j}} I\right)^{\star_{j}} \subseteq{ }^{a_{j}}\left[{ }^{h}\left(\left({ }^{a_{i}} I\right)^{\star_{i}}\right)\right]$ for all $j=0, \ldots, n$ and $i=0, \ldots, n$,
(ii) For each $i=0, \ldots, n$ a nonnegative integer m_{i} exists such that $X_{i}^{m_{i} a_{j}}\left[{ }^{h}\left(\left(a_{i} I\right)^{\star_{i}}\right)\right] \subseteq\left({ }^{a_{j}} I\right)^{\star_{j}}$ for all $j=0, \ldots, n$.

Proof. For (i), for each $i=0, \ldots, n,\left({ }^{h a_{i}} I\right)^{\star} \supseteq I^{\star}$, i.e., for each $j=$ $0, \ldots, n$, for each $i=0, \ldots, n,,^{a_{j}}\left[\left({ }^{h a_{i}} I\right)^{\star}\right] \supseteq{ }^{a_{j}}\left(I^{\star}\right)$. By Proposition 3.8, $\left({ }^{a_{j}} I\right)^{\star_{j}} \subseteq{ }^{a_{j}}\left[{ }^{h}\left(\left({ }^{a_{i}} I\right)^{\star_{i}}\right)\right]$ for all $j=0, \ldots, n$ and $i=0, \ldots, n$.

For (ii), a similar argument as for (i) works by using the inclusion $X_{i}^{m_{i} h a_{i}}\left(I^{\star}\right) \subseteq I^{\star}$ for some $m_{i} \geq 1$ for each $i=0, \ldots, n$.

By homogenization and dehomogenization we can "move" an ideal of R_{i} to any of the other R_{j} 's. Condition (i) in Lemma 3.10 suggests that, just as in the case of the identity operation, the behavior of an ideal of R_{i} under the star operation \star_{i} reflects the behavior of that same ideal moved into R_{j} under \star_{j}. Since a homogeneous ideal of S collects together the behaviors of its dehomogenized components, if we want to glue together a collection of star operations on different R_{i} 's, we define two star operations to be compatible if we can move ideals from R_{i} to R_{j}, through S, preserving the behavior of the given star operations. This compatibility has to be satisfied by any pair of star operations that we want to "glue" together into a homogeneous star operation.

In particular, it will not be possible to glue together star operations of very different kinds (cf. Example 4.6).

Definition 3.11. Let $\star_{0}, \ldots, \star_{n}$ be star operations on R_{0}, \ldots, R_{n}, respectively. We say that $\star_{0}, \ldots, \star_{n}$ are pairwise compatible if $\left({ }^{a_{j}} I\right)^{\star_{j}} \subseteq$ $a_{j}\left[{ }^{h}\left(\left({ }^{a_{i}} I\right)^{\star_{i}}\right)\right]$ for all $i, j=0, \ldots, n$ and all homogeneous ideals I of S.

Proposition 3.12. Let $\left\{\star_{0}, \ldots, \star_{n}\right\}$ be a set of pairwise compatible star operations on R_{0}, \ldots, R_{n}. Then the map:

$$
\begin{aligned}
& \star: \mathcal{H}(S) \longrightarrow \mathcal{H}(S) \\
& I \longmapsto I^{\star}:=\operatorname{sat}\left[\bigcap_{i=0}^{n}\left(\left(\left(^{a_{i}} I\right)^{\star_{i}}\right)\right]\right.
\end{aligned}
$$

is a homogeneous star operation on S. Moreover, if $\left\{\star_{0}, \ldots, \star_{n}\right\}$ are the dehomogenization of a homogeneous star operation \star^{\prime} on S, then $\star=s a t \circ \star^{\prime}$.

Proof. We need to prove that \star satisfies conditions (a), (b) and (c) of Definition 3.4. It is easily seen that $S^{\star}=S$. Moreover, saturation,
homogenization and dehomogenization preserve inclusions. This is enough to prove (b).

Now suppose that f is a homogeneous element in S. We claim that $(f I)^{\star}=f I^{\star}$. We have:

$$
\begin{aligned}
{ }_{a_{j}}\left[(f I)^{\star}\right] & \subseteq{ }^{a_{j}} s a t\left({ }^{h}\left[{\left.\left.\left({ }^{a_{j}} f I\right)^{\star_{j}}\right]\right),(\text { by Definition 3.4) }} \begin{array}{rl}
a_{j} h
\end{array}\left[{ }^{a_{j}} f I\right)^{\star_{j}}\right], \quad(\text { by Proposition } 2.7(\text { a) })\right. \\
& =\left({ }^{a_{j}} f I\right)^{\star_{j}} \\
& ={ }^{a_{j}} f\left(\left(^{a_{j}} I\right)^{\star_{j}},\left(\text { since } \star_{j} \text { is a star operation }\right)\right. \\
& \subseteq{ }^{a_{j}} f^{a_{j}}\left[{ }^{h}\left(\left(\left(^{a_{i}} I\right)^{\star_{i}}\right)\right], \quad \text { (by the compatibility of the } \star_{i}{ }^{\prime}\right. \text { s) } \\
& ={ }^{a_{j}}\left[f^{h}\left(\left({ }^{a_{i}} I\right)^{\star_{i}}\right)\right] .
\end{aligned}
$$

Hence, by Proposition $2.7(\mathrm{~b})$, we have ${ }^{s a t}\left[(f I)^{\star}\right] \subseteq f^{s a t}\left[{ }^{h}\left(\left({ }^{a_{i}} I\right)^{\star_{i}}\right)\right]$ for all $i=0, \ldots, n$. Thus,

$$
(f I)^{\star} \subseteq s a t\left[(f I)^{\star}\right] \subseteq f^{s a t}\left[\bigcap_{i=0}^{n}{ }^{h}\left(\left({ }^{a_{i}} I\right)^{\star_{i}}\right)\right]=f I^{\star}
$$

For the other inclusion, we have

$$
a_{j}\left(f I^{\star}\right)={ }^{a_{j}} f^{a_{j}}\left(I^{\star}\right) \subseteq{ }^{a_{j}} f^{a_{j} h}\left[\left({ }^{a_{j}} I\right)^{\star_{j}}\right]={ }^{a_{j}} f\left({ }^{a_{j}} I\right)^{\star_{j}}=\left[{ }^{a_{j}}(f I)\right]^{\star_{j}} .
$$

By compatibility of the \star_{i} 's,

$$
{ }^{a_{j}}\left(f I^{\star}\right) \subseteq{ }^{a_{j}}\left[{ }^{h}\left(\left({ }^{a_{i}} f I\right)^{\star_{i}}\right)\right], \text { for all } i=0, \ldots, n
$$

i.e., $\left.{ }^{s a t}\left(f I^{\star}\right) \subseteq \operatorname{sath}^{\operatorname{sat}}\left[\left({ }^{a_{i}} f I\right)^{\star_{i}}\right)\right]$ for all $i=0, \ldots, n$, by Proposition 2.7 (b). Hence,

$$
f I^{\star}={ }^{s a t}\left(f I^{\star}\right) \subseteq \bigcap_{i=0}^{n} s a t\left({ }^{h}\left(\left({ }^{a_{i}} f I\right)^{\star_{i}}\right)\right)=(f I)^{\star}
$$

So $(f I)^{\star}=f I^{\star}$.
For the last condition (c) left, it is clear that $I^{\star} \subseteq I^{\star \star}$ on one hand. On the other hand,

$$
\begin{aligned}
\left(I^{\star}\right)^{\star} & =s a t \bigcap_{j=0}^{n} h\left(\left(^{a_{j}}\left(I^{\star}\right)^{\star_{j}}\right)\right) \subseteq{ }^{s a t} \bigcap_{j=0}^{n}{ }^{h}\left(\left(^{a_{j}} I\right)^{\star_{j} \star_{j}}\right) \\
& =\operatorname{sat} \bigcap_{j=0}^{n} h\left(\left(a^{a_{j}} I\right)^{\star_{j}}\right)=I^{\star} .
\end{aligned}
$$

If $\left\{\star_{0}, \ldots, \star_{n}\right\}$ are the dehomogenization of a homogeneous star operation \star^{\prime}, it follows directly by Corollary 3.9 that $\star=$ sat $\circ \star^{\prime}$.

We call this process homogenization of a set of pairwise compatible star operations $\left\{\star_{0}, \ldots, \star_{n}\right\}$.

Remark 3.13. Given a homogeneous star operation \star on S, we can build, by dehomogenization, star operations \star_{i} on R_{i} for each $i=0, \ldots, n$. These star operations \star_{i} 's are pairwise compatible. Therefore, by applying Proposition 3.12 to the $n+1$ star operations obtained, we get a homogeneous star operation that differs from \star by saturation, i.e., it is of the form sat $\circ \star$.

Reciprocally, starting from a set of pairwise compatible star operations $\left\{\star_{0}, \ldots, \star_{n}\right\}$ on R_{0}, \ldots, R_{n}, then we can build, by homogenization, a homogeneous star operation \star on S such that $\star=s a t \circ \star$.

By Proposition 3.16 there is a bijection between the set of $(n+1)$ tuples of compatible star operations, each defined on one of the R_{i} 's and the set of homogeneous star operations star operations on S enjoying the additional property that $\star=$ sat $\circ \star$. This motivates our next definition.

Definition 3.14. A projective star operation on S is a homogeneous star operation \star on S such that sat $\circ \star=\star$.

It is clear that a homogeneous star operation \star on S is projective if and only if $\star=$ sat $\circ \star^{\prime}$ for some homogeneous star operation \star^{\prime} on S. Consequently, the homogeneous star operation built in Proposition 3.12 is a projective star operation.

To keep a standard notation and avoid confusion between star operations defined on different domains, we shall denote on S the identity, the integral closure of ideals and the divisorial closure of ideals by d, b and v, respectively (the definitions are recalled in Section 4). The same star operations referred to R_{i} will be denoted by d_{i}, b_{i} and v_{i}, respectively.

Example 3.15. Clearly, the identity operation d on S is a homogenous star operation on S that is not projective. The identities d_{i} 's on the R_{i} 's satisfy the compatibility conditions, by Remark 2.3 . The
homogenization of $\left\{d_{0}, \ldots, d_{n}\right\}$ is, by Proposition 2.6, the saturation sat. On the other hand, by the same arguments, the saturation sat is a projective star operation on S.

More examples will be given in the next section, where the b - and v-operations are studied in detail in the context of homogeneous ideals.

We conclude the section with some more properties of projective star operations.

Proposition 3.16. Let $\left\{\star_{0}, \ldots, \star_{n}\right\}$ be a set of pairwise compatible star operations on R_{0}, \ldots, R_{n}, and let \star be the homogenization of $\left\{\star_{0}, \ldots, \star_{n}\right\}$. Then, for each $i=0, \ldots, n$ and for each ideal I of R_{i}, we have $I^{\star_{i}}={ }^{a_{i}}\left[\left({ }^{h} I\right)^{\star}\right]$.

Proof. For each $i=0, \ldots, n$, and each ideal I of R_{i}, we have:

$$
\left.\begin{array}{rl}
a_{i}\left[\left({ }^{h} I\right)^{\star}\right] & ={ }_{i}^{a_{i} s a t}\left[\bigcap _ { k = 0 } ^ { n } { } ^ { h } \left(a_{k} h\right.\right. \\
a^{\star_{k}}
\end{array}\right] .
$$

Hence,

$$
I^{\star_{i}} \supseteq I^{\star_{i}} \cap \bigcap_{\substack{k \neq i \\ k=0}}^{n} a_{i} h\left(a_{k} h I\right)^{\star_{k}} \supseteq I^{\star_{i}},
$$

by compatibility of the \star_{i} 's. So $I^{\star_{i}}={ }^{a_{i}}\left[\left({ }^{h} I\right)^{\star}\right]$.

We next prove that the same property as in Proposition 3.8 holds when we start with a set of pairwise compatible star operations.

Proposition 3.17. Let $\left\{\star_{0}, \ldots, \star_{n}\right\}$ be a set of pairwise compatible star operations on R_{0}, \ldots, R_{n} and \star the homogenization of
$\left\{\star_{0}, \ldots, \star_{n}\right\}$. Then. for any homogeneous ideal I of S, we have $\left({ }^{a_{i}} I\right)^{\star_{i}}={ }^{a_{i}}\left(I^{\star}\right)$ for all $i=0, \ldots, n$.

Proof. Let $i \in\{0, \ldots, n\}$. By Proposition 3.16, we have $\left({ }^{a_{i}} I\right)^{\star_{i}}=$ ${ }^{a_{i}}\left[\left({ }^{h a_{i}} I\right)^{\star}\right]$. On the other hand, $\left({ }^{h a_{i}} I\right)^{\star} \supseteq I^{\star}$, which implies $\left({ }^{a_{i}} I\right)^{\star_{i}}=$ $a_{i}\left(h a_{i} I\right)^{\star} \supseteq{ }^{a_{i}}\left(I^{\star}\right)$.

Conversely, $I \supseteq X_{i}^{m}\left({ }^{h a_{i}} I\right)$ for some $m \geq 1$. Since \star is a projective star operation, we have $I^{\star} \supseteq X_{i}^{m}\left({ }^{h a_{i}} I\right)^{\star}$. Therefore, ${ }^{a_{i}}\left(I^{\star}\right) \supseteq$ ${ }^{a_{i}}\left(X_{i}^{m}\left({ }^{h a_{i}} I\right)^{\star}\right)={ }^{a_{i}}\left[\left({ }^{h a_{i}} I\right)^{\star}\right]$.
4. Projective b-operation and v-operation. In this section we study the b-operation and the v-operation. First of all we observe that they are homogeneous star operations. We prove that the dehomogenization of b is the set $\left\{b_{0}, \ldots, b_{n}\right\}$, and similarly the v-operation dehomogenizes at $\left\{v_{0}, \ldots, v_{n}\right\}$. We show that the v-operation is projective, whilst the b-operation is not in general.

Let L be a field and D a subring (possibly a subfield) of L; we denote by $\Sigma(L / D):=\{V: V$ valuation rings of $L, D \subseteq V\}$, that is, the Zariski-Riemann space of L over D.

Recall that, if D is an integral domain with quotient field L and I is any nonzero fractional ideal of D :
(i) the b-operation is defined by the mapping $I \mapsto I^{b}:=\cap_{V \in \Sigma(L / D)} I V$;
(ii) the v-operation is defined by the mapping $I \mapsto I_{v}:=(D:(D$: $I)$).
For details on the b - and v-operations, the reader is referred to [7, Section 32, Section 34].

It is known that, if I is a homogeneous ideal of S, then I^{b} is a homogeneous ideal of S [16, Corollary 5.2.3]. So the b-operation is a homogeneous star operation on S. A natural question is whether the b-operation is projective in general. The example below is negative.

Example 4.1. Consider $S=K\left[X_{0}, X_{1}, X_{2}\right]$ and $I=\left(X_{0}^{2} X_{1}^{2}, X_{0}^{2} X_{2}^{2}\right.$, $X_{1}^{2} X_{2}^{2}$) a homogeneous ideal of S. It is enough to see that I has height 2 and no embedded components, so it is saturated. On the other hand, by $\left[\mathbf{1 2}\right.$, Example 2.6], the integral closure I^{b} of I has $\mathfrak{m}=\left(X_{0}, X_{1}, X_{2}\right)$
as an embedded prime, and hence it is not saturated, by Remark 2.5. So ${ }^{s a t}\left(I^{b}\right) \neq I^{b}$ and the b-operation in this case is not projective.

Now we prove that the star operations b_{i} on the R_{i} 's satisfy the compatibility condition.

Lemma 4.2. Let I be a homogeneous ideal of S. Then ${ }^{a_{i}}\left(I^{b}\right)$ is an integrally closed ideal of R_{i} for all $i=0, \ldots, n$.

Proof. For each i, we have $R_{i}=S_{M_{i}} \cap F$ where M_{i} is the multiplicatively closed subset of S consisting of powers of X_{i} and F is the quotient field of R_{i}. Now, for I a homogeneous ideal of S, ${ }^{a_{i}}\left(I^{b}\right)=I^{b} S_{M_{i}} \cap F=\left(I S_{M_{i}}\right)^{b} \cap F[\mathbf{1 7}$, VII, Section 5.(10')] and [16, Proposition 1.1.4]. Since $\left(I S_{M_{i}}\right)^{b}$ is an integrally closed ideal in $S_{M_{i}}$, $\left(I S_{M_{i}}\right)^{b} \cap F$ is integrally closed in $S_{M_{i}} \cap F=R_{i}$. So ${ }^{a_{i}}\left(I^{b}\right)$ is integrally closed in R_{i}, for each $i=0, \ldots, n$.

Lemma 4.3. Let I be a homogeneous ideal of S. Then ${ }^{a_{i}}\left(I^{b}\right)=$ $\left({ }^{a_{i}} I\right)^{b_{i}}$ for all $i=0, \ldots, n$ and the b_{i} 's are therefore pairwise compatible.

Proof. Let I be a homogeneous ideal of S. We have $I \subseteq I^{b}$. Since ${ }^{a_{i}}$ preserves inclusions for each i, we have ${ }^{a_{i}} I \subseteq{ }^{a_{i}}\left(I^{b}\right)$. But, by Lemma4.2, ${ }^{a_{i}}\left(I^{b}\right)$ is integrally closed. Therefore, $\left({ }^{a_{i}} I\right)^{b_{i}} \subseteq{ }^{a_{i}}\left(I^{b}\right)$.

For the reverse inclusion, let $x \in{ }^{a_{i}}\left(I^{b}\right)$. Then we can write $x={ }^{a_{i}} r$ for some element $r \in I^{b}$. Thus, r satisfies an equation of integral dependence of r over I of the form $r^{s}+c_{1} r^{s-1}+\cdots+c_{s-1} r+c_{s}=0$ for some positive integer s and $c_{j} \in I^{j}$ for each $j=1, \ldots, s$. Since ${ }^{a_{i}}$ is a homomorphism, we have $\left({ }^{a_{i}} r\right)^{s}+{ }^{a_{i}} c_{1}\left({ }^{a_{i}} r\right)^{s-1}+\cdots+{ }^{a_{i}} c_{s-1}{ }^{a_{i}} r+{ }^{a_{i}} c_{s}=0$ with ${ }^{a_{i}} c_{j} \in\left({ }^{a_{i}} I\right)^{j}$ for each $j=1, \ldots, s$. Thus, $x={ }^{a_{i}} r \in\left({ }^{a_{i}} I\right)^{b_{i}}$. Hence, ${ }^{a_{i}}\left(I^{b}\right) \subseteq\left({ }^{a_{i}} I\right)^{b_{i}}$. So ${ }^{a_{i}}\left(I^{b}\right)=\left({ }^{a_{i}} I\right)^{b_{i}}$.

We just proved that the dehomogenization of the b-operation on S are exactly the b_{i}-operations on the R_{i} 's. Hence, by Lemma 3.10, the b_{i}-operations are pairwise compatible.

Remark 4.4. By Lemma 4.3, it is clear that if we start with the b operation (a homogeneous star operation) on S and dehomogenize it on
the R_{i} 's, the \star_{i} 's are exactly the b_{i}-operations on R_{i} 's. Conversely, if we start with the set of the b_{i}-operations on the R_{i} 's, we can homogenize it into a projective star operation on S, which is, by Proposition3.12, $s a t \circ b$. By Example 4.1, satob may differ from the b-operation.

Suppose I is a homogeneous ideal of S. Then $I_{v}:=(S:(S: I))$ is homogeneous too (see [17, VII, Section 2, Theorem 8]), so if we restrict the divisorial closure in S to $\mathcal{H}(S)$, we get a homogeneous star operation on S that we keep denoting by v. From the general theory on star operations we have that, for any star operation \star on S, \star is less than or equal to v, i.e., $\left(I^{\star}\right)_{v}=\left(I_{v}\right)^{\star}=I_{v}$, for each $I \in \mathfrak{F}(S)$ (cf. [7, Theorem 34.1 (4)]).

Proposition 4.5. For every $i=0, \ldots, n$, the dehomogenization of v to R_{i} is the divisorial closure, v_{i}, so in particular v_{i} and v_{j} are pairwise compatible for each $i, j=0, \ldots, n$. Furthermore, the homogenization of $\left\{v_{0}, \ldots, v_{n}\right\}$ is exactly v. Hence, sat $\circ v=v$ and v is a projective star operation.

Proof. For each $i=0, \ldots, n$, let J be an ideal of R_{i}, and let $J^{\star_{i}}:={ }^{a_{i}}\left(\left({ }^{h} J\right)_{v}\right)$. We will prove that $\star_{i}=v_{i}$.

$$
\begin{aligned}
J^{\star_{i}} & ={ }^{a_{i}}\left(\left({ }^{h} J\right)_{v}\right)\left(\text { by definition of } \star_{i}\right) \\
& \left.={ }^{a_{i}}\left(S:\left(S:{ }^{h} J\right)\right) \quad \text { by definition of } v\right) \\
& =\left({ }^{a_{i}} S:\left({ }^{a_{i}} S:{ }^{a_{i} h} J\right)\right)\left(a_{i}\right. \text { commutes with colon) } \\
& =\left(R_{i}:\left(R_{i}: J\right)\right)\left(\text { since }{ }^{a_{i}} S=R_{i}\right) \\
& =J_{v_{i}}\left(\text { by definition of } v_{i}\right) .
\end{aligned}
$$

Hence, the dehomogenization of v is the divisorial closure v_{i} on R_{i} and $\left\{v_{0}, \ldots, v_{n}\right\}$ are pairwise compatible by Lemma 3.10 (i).

If \star is the homogenization of $\left\{v_{0}, \ldots, v_{n}\right\}$, we have that $\star=s a t \circ v$, but as discussed before sat is less than or equal to v. So, for every $I \in \mathcal{H}(S),\left({ }^{s a t} I\right)_{v}={ }^{s a t}\left(I_{v}\right)=I_{v}$, and $\star=v$.

Example 4.6 (Non-compatible star operations). Let $S=K\left[X_{0}, X_{1}\right.$, $\left.X_{2}, X_{3}\right]$ and v_{0} be the v-operation on $R_{0}=K\left[\left(X_{1} / X_{0}\right),\left(X_{2} / X_{0}\right)\right.$, $\left.\left(X_{3} / X_{0}\right)\right]$, and consider the b-operation b_{i} on R_{i}, for $i=1,2,3$. We show that v_{0} is not compatible with b_{1}.

Let $P:=\left(X_{2}, X_{3}\right)$ be a homogeneous prime ideal of S. Then the ideal ${ }^{a_{0}} P=\left(\left(X_{2} / X_{0}\right),\left(X_{3} / X_{0}\right)\right)$ of R_{0} is prime and has height 2 ; hence, by [7, Corollary 44.8], $\left({ }^{a_{0}} P\right)_{v_{0}}=R_{0}$. The dehomogenization ${ }^{a_{1}} P$ in R_{1} is also a prime ideal and so it is integrally closed, i.e., $\left({ }^{a_{1}} P\right)^{b_{1}}={ }^{a_{1}} P$. Note that ${ }^{h a_{1}} P=P$. Thus, ${ }^{a_{0}}\left({ }^{h}\left[\left({ }^{a_{1}} P\right)^{b_{1}}\right]\right)={ }^{a_{0}}\left({ }^{h a_{1}} P\right)={ }^{a_{0}} P \subsetneq R_{0}=$ $\left({ }^{a_{0}} P\right)_{v_{0}}$. Therefore, condition (i) of Lemma 3.10 is not satisfied and v_{0} is not compatible with b_{1}. By a similar argument, it is possible to show that v_{0} is not compatible with b_{i}, for $i \in\{2,3\}$.
5. Projective Kronecker function rings. In this section we associate a projective Kronecker function ring to a projective star operation on S and show how this is related to Kronecker function rings of the R_{i} 's. Furthermore, we show that, by using projective star operations, we can build some F-function rings, called projective Kronecker function rings, that are not Kronecker function rings of a domain.

A star operation \star on an integral domain D is e.a.b. if, for each finitely generated ideal I, J and N of D, the following cancelation property holds:

$$
(I N)^{\star} \subseteq(J N)^{\star} \Longrightarrow I^{\star} \subseteq J^{\star}
$$

Recall also that we can represent the Kronecker function ring of D with respect to an e.a.b. star operation \star, in terms of valuation overrings of D (cf. [7, Theorem 32.12]): $\operatorname{Kr}(D, \star)=\cap_{V \in \Sigma} V^{b}$, where Σ is a subset of $\Sigma(L / D)$ and $V^{b}=V(T)$ is the trivial extension of V to $L(T)$ (cf. [4, Theorem 2.2.1]).

Halter-Koch introduced in [8] the notion of an L-function ring as a generalization of the Kronecker function ring.

Let L be a field and T an indeterminate for L. A subring $R \subseteq L(T)$ is an L-function ring if the following two axioms are satisfied:
(Ax1) $T, T^{-1} \in R$,
(Ax2) For any $f \in L[T], f(0) \in f R$.
It is easily seen that, given a valuation ring of L, V^{b} is an L-function ring and an arbitrary intersection of L-function rings is an L-function ring. It follows that every Kronecker function ring of a domain D with quotient field L is an L-function ring, but there are L-function rings that cannot be constructed by using star operations (for instance,
rings of the form $\cap_{V \in \Sigma\left(L_{1} / L_{2}\right)} V^{b}$ where L_{1} / L_{2} is a transcendental field extension，which are studied by Heubo－Kwegna in［11］）．
We start by defining the e．a．b．cancelation property for projective star operation．

Definition 5．1．A projective star operation \star on S is e．a．b．if the dehomogenization of \star consists of e．a．b．star operations on the R_{i}＇s．

It is clear by the preceding definition that if we built a projective star operation \star on S by homogenizing a set of e．a．b．star operations \star_{i}＇s on the R_{i}＇s，then \star is e．a．b．We have，in particular，that sat $\circ b$ is an e．a．b．projective star operation on S ．

Lemma 5．2．Let \star be an e．a．b．projective star operation on S ．Then， for each finitely generated homogenous ideal I, J and N of S ，

$$
(I N)^{\star} \subseteq(J N)^{\star} \Longrightarrow I^{\star} \subseteq J^{\star}
$$

Proof．Let I, J, N be finitely generated ideals of S ，and suppose that $(I N)^{\text {sato丸 }} \subseteq(J N)^{\text {sato }}$ ．Then we have by Proposition 2.7 （b）：for each $i=0, \ldots, n$ ，

$$
\begin{aligned}
{ }^{a_{i}}\left((I N)^{\star}\right) \subseteq{ }^{a_{i}}\left((J N)^{\star}\right) & \Longleftrightarrow\left({ }^{a_{i}} I^{a_{i}} N\right)^{\star_{i}} \subseteq\left({ }^{a_{i}} J J^{a_{i}} N\right)^{\star_{i}} \\
& \Longrightarrow\left({ }^{a_{i}} I\right)^{\star_{i}} \subseteq\left({ }^{a_{i}} J\right)^{\star_{i}} \\
& \Longrightarrow{ }^{a_{i}}\left(I^{\star}\right) \subseteq{ }^{a_{i}}\left(J^{\star}\right) .
\end{aligned}
$$

Thus，by Proposition 2.7 （b），$I^{\text {sato丸 }} \subseteq J^{\text {sato丸．}}$ ．The result follows since $\star=s a t \circ \star$ ．

We investigate some properties of the notion of the content ideal of a homogeneous polynomial of $S[T]$ ，where T is a variable over S ． In particular，we focus on dehomogenization and homogenization of content ideals．

Note that if $f=f_{0}+f_{1} T+\cdots+f_{s} T^{s}$ is a homogenous polynomial of $S[T]=K\left[X_{0}, \ldots, X_{n}, T\right]$ in $n+2$ variables，that forces its coefficients to
be homogeneous elements of S. Then the content of f is a homogeneous ideal of S.

We will use the notation $C_{D}(h)$ to indicate the ideal of D which is the content of the polynomial $h(T) \in D[T]$.

Remark 5.3. Let $f=f_{0}+f_{1} T+\cdots+f_{s} T^{s} \in S[T]$ be homogeneous of degree m in $K\left[X_{0}, \ldots, X_{n}, T\right]$. Then

$$
\frac{f}{X_{i}^{m}}=\frac{f_{0}}{X_{i}^{m}}+\frac{f_{1}}{X_{i}^{m-1}} \frac{T}{X_{i}}+\cdots+\frac{f_{s}}{X_{i}^{m-s}}\left(\frac{T}{X_{i}}\right)^{s} \in R_{i}\left[\frac{T}{X_{i}}\right]
$$

for each $i=0, \ldots, n$.
We also have, for each $i=0, \ldots, n$:

$$
\begin{equation*}
{ }^{a_{i}} C_{S}(f)=\left({ }^{a_{i}} f_{0},{ }^{a_{i}} f_{1}, \ldots,{ }^{a_{i}} f_{s}\right)=C_{R_{i}}\left(\frac{f}{X_{i}^{m}}\right) . \tag{1}
\end{equation*}
$$

Now set

$$
F^{\prime}:=\left\{\frac{f}{g}: f, g \text { homogeneous of same degree in } S[T] \text { and } g \neq 0\right\} .
$$

It is clear that F^{\prime} is a field, and it is not hard to see that F^{\prime} is in fact the field $K\left(\left(X_{0} / T\right), \ldots,\left(X_{n} / T\right)\right)$. Let \star be an e.a.b. projective star operation on S. Let

$$
\begin{aligned}
\operatorname{PKr}(S, \star): & =\left\{\frac{f}{g}: f, 0 \neq g \text { homogeneous of same degree in } S[T]\right. \\
& \left.C(f)^{\star} \subseteq C(g)^{\star}\right\} \\
& =\left\{\frac{f}{g} \in F^{\prime}: C(f)^{\star} \subseteq C(g)^{\star}\right\}
\end{aligned}
$$

We can immediately note by Lemma 5.2 that the set $\operatorname{PKr}(S, \star)$ is well defined using the fact that, for all $f, g \in S[T] \backslash\{0\}, C(f g)^{\star}=$ $(C(f) C(g))^{\star}$ (cf. [7, Lemma 32.6]). We also note that $\operatorname{PKr}(S, \star)$ "looks" quite like the classical Kronecker function ring, but contrary
to the classical one $S \nsubseteq \operatorname{PKr}(S, \star)$. In fact, X_{i} is not in $\operatorname{PKr}(S, \star)$ for any $i=0, \ldots, n$. A natural question is whether $\operatorname{PKr}(S, \star)$ is a ring. We give an answer in the next proposition:

Proposition 5.4. Let \star be an e.a.b. projective star operation on S. $\operatorname{PKr}(S, \star)$ is a domain with quotient field $F^{\prime}=K\left(\left(X_{0} / T\right), \ldots,\left(X_{n} / T\right)\right)$ (we do have $K\left[\left(X_{0} / T\right), \ldots,\left(X_{n} / T\right)\right] \subseteq \operatorname{PKr}(S, \star) \subseteq K\left(\left(X_{0} / T\right), \ldots\right.$, $\left.\left(X_{n} / T\right)\right)$).

Proof. The fact that $\operatorname{PKr}(S, \star)$ is a domain is proved using the same argument as the one of the classical Kronecker function ring [7, Proof of Theorem 32.7 (a)]. It is clear that, for each $i=0, \ldots, n,\left(T / X_{i}\right) \in$ $\operatorname{PKr}(S, \star) \subseteq K\left(\left(X_{0} / T\right), \ldots,\left(X_{n} / T\right)\right)$. Since $K \subseteq \operatorname{PKr}(S, \star)$, the result follows.

We next make a connection between the ring $\operatorname{PKr}(S, \star)$ and the classical Kronecker function rings $\operatorname{Kr}\left(R_{i}, \star_{i}\right), 0 \leq i \leq n$, when the \star_{i} 's are pairwise compatible e.a.b. star operations on R_{i} 's and \star is the homogenization of the \star_{i} 's. Note in this case that \star is an e.a.b. projective star operation on S (cf. Proposition 3.12).

Theorem 5.5. Let $\star_{0}, \ldots, \star_{n}$ be $n+1$ pairwise compatible e.a.b. star operations on R_{0}, \ldots, R_{n}, respectively. Let \star be the homogenization of $\star_{0}, \ldots, \star_{n}$; hence, \star is an e.a.b. projective star operation on S. Then $\operatorname{PKr}(S, \star)=\cap_{i=0}^{n} \operatorname{Kr}\left(R_{i}, \star_{i}\right)$.

Proof. First we note that the quotient field of $\operatorname{PKr}(S, \star)$ is $F^{\prime}=$ $K\left(\left(X_{0} / T\right), \ldots,\left(X_{n} / T\right)\right)$ and the quotient field of each $\operatorname{Kr}\left(R_{i}, \star_{i}\right), 0 \leq$ $i \leq n$, is $K\left(\left(X_{0} / X_{i}\right), \ldots,\left(X_{n} / X_{i}\right),\left(T / X_{i}\right)\right)=K\left(\left(X_{0} / T\right), \ldots,\left(X_{n} / T\right)\right)$ $=F^{\prime}$. So we consider the Kronecker function $\operatorname{ring} \operatorname{Kr}\left(R_{i}, \star_{i}\right)$ with respect to the variable T / X_{i}. We recall that, for each homogeneous element $f \in S[T]$ of degree $m,{ }^{a_{i}} C_{S}(f)=C_{R_{i}}\left(f / X_{i}^{m}\right), 0 \leq i \leq n$ (see relation (1) in Remark 5.3). That way, we have:

$$
\begin{aligned}
X \in \operatorname{PKr}(S, \star) & \Longleftrightarrow X=\frac{f}{g}, f, g \in F^{\prime}, C_{S}(f)^{\star} \subseteq C_{S}(g)^{\star} \\
\Longleftrightarrow & \Longleftrightarrow=\frac{f}{g}, f, g \in F^{\prime},{ }^{a_{i}}\left[C_{S}(f)^{\star}\right] \subseteq{ }^{a_{i}}\left[C_{S}(g)^{\star}\right] \\
& \text { for all } i=0, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
\Longleftrightarrow X= & \frac{f}{g}, f, g \in F^{\prime},\left[{ }^{a_{i}} C_{S}(f)\right]^{\star_{i}} \subseteq\left[{ }^{a_{i}} C_{S}(g)\right]^{\star_{i}} \\
& \quad \text { for all } i=0, \ldots, n, \\
\Longleftrightarrow X= & \frac{f}{g}, f, g \in F^{\prime}, C_{R_{i}}\left(\frac{f}{X_{i}^{m}}\right)^{\star_{i}} \subseteq C_{R_{i}}\left(\frac{g}{X_{i}^{m}}\right)^{\star_{i}} \\
\quad & \text { for all } i=0, \ldots, n \\
\Longleftrightarrow X= & \frac{f}{g} \in \bigcap_{i=0}^{n} \operatorname{Kr}\left(R_{i}, \star_{i}\right) . \quad \square
\end{aligned}
$$

Definition 5.6. If \star is an e.a.b. projective star operation on S, then $\operatorname{PKr}(S, \star)$ is called the projective Kronecker function ring of S with respect to \star.

Recall that we denote by F the quotient field of domain $R_{i}, i=$ $0, \ldots, n$. Our next goal is to prove that $\operatorname{PKr}(S, \star)$ is an F-function ring with \star an e.a.b. projective star operation on S.

It is easily seen that $\cap_{i=0}^{n} \operatorname{Kr}\left(R_{i}, \star_{i}\right)$ is an F-function ring, as an intersection of F-function rings.

By Theorem 5.5, we have:

Corollary 5.7. Let \star be an e.a.b. projective star operation on S. Then $\operatorname{PKr}(S, \star)$ is an F-function ring.

Although $\operatorname{Kr}(F / K):=\cap_{V \in \Sigma(F / K)} V^{b}$ is not a Kronecker function ring in the classical sense, we prove that it is a projective Kronecker function ring of S, with respect to a suitable projective star operation \star on S.

Proposition 5.8. The F-function ring $\operatorname{Kr}(F / K)=\cap_{i=0}^{n} \operatorname{Kr}\left(R_{i}, b_{i}\right)$.

Proof. We first remark that $\operatorname{Kr}\left(R_{i}, b_{i}\right)=\cap_{V \in \Sigma\left(F / R_{i}\right)} V^{b}$. Let $V \in \Sigma\left(F / R_{i}\right)$. Then $K \subseteq R_{i} \subseteq V \subseteq F$. Hence, $V \in \Sigma(F / K)$. Thus, $\operatorname{Kr}(F / K) \subseteq \operatorname{Kr}\left(R_{i}, b_{i}\right)$, for all $i=0, \ldots, n$. Hence, $\operatorname{Kr}(F / K) \subseteq$ $\cap_{i=0}^{n} \operatorname{Kr}\left(R_{i}, b\right)$.

Now let $V \in \Sigma(F / K)$. We have $F \subseteq K^{\prime}:=K\left(X_{0}, \ldots, X_{n}\right)$.
Let w be a valuation that extends the valuation v to K^{\prime}. Pick j such that $w\left(X_{j}\right)=\min \left\{w\left(X_{i}\right): 0 \leq i \leq n\right\}$. Then $w\left(\left(X_{i} / X_{j}\right)\right) \geq 0$ for all $i=0, \ldots, n$. Hence, $R_{j} \subseteq W \cap F=V \subseteq F$. So $V \in \Sigma\left(F / R_{j}\right)$ for some j. Thus, $\cap_{V \in \Sigma\left(F / R_{i}\right)} V^{b} \subseteq \operatorname{Kr}\left(R_{j}, b\right) \subseteq V^{b}$. Hence, $\cap_{i=0}^{n} \operatorname{Kr}\left(R_{i}, b\right) \subseteq$ $\operatorname{Kr}(F / K)$ 。

By Lemma 4.3, the b_{i} 's are pairwise compatible e.a.b. star operations on the R_{i} 's, and their homogenization is sato b which is projective and e.a.b. By Theorem 5.5, $\operatorname{PKr}(S$, sat $\circ b)=\cap_{i=0}^{n} \operatorname{Kr}\left(R_{i}, b_{i}\right)=\operatorname{Kr}(F / K)$. Thus:

Corollary 5.9. The F-function ring $\operatorname{Kr}(F / K)=\operatorname{PKr}(S$, sat $\circ b)$ and is a projective Kronecker function ring.

Acknowledgments. The authors wish to express their gratitude to their advisor, Prof. Bruce Olberding, for many helpful discussions and comments.

REFERENCES

1. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, Second edition, Springer Mono. Math., Springer-Verlag, Berlin, 1998.
2. D. Eisenbud, Commutative algebra with a view towards algebraic geometry, Grad. Texts Math., Springer, New York, 1996.
3. D. Eisenbud and J. Harris, The geometry of schemes, Grad. Texts Math., Springer Verlag, New York, 2000.
4. A.J. Engler and A. Prestel, Valued fields, Springer Mono. Math., New York, May 2005.
5. M. Fontana and K.A. Loper, Kronecker function rings: A genaral approach, in Ideal theoretic methods in commutative algebra, D.D. Anderson and I.J. Papick, eds., Lect. Notes Pure Appl. Math. 220 (2001), 189-205.
6. - Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775-4805.
7. R. Gilmer, Multiplicative ideal theory, corrected reprint of 1972 edition, Queen's Papers Pure Appl. Math. 90, Queen's University, Kingston, ON, 1992.
8. F. Halter-Koch, Kronecker function rings and generalized integral closures, Comm. Algebra 31 (2003), 45-59.
9. R. Hartshorne, Algebraic geometry, Grad. Texts Math., Springer Verlag, New York, 1977.
10. W. Heinzer, J.A. Huckaba and I.J. Papick, m-canonical ideals in integral domains, Comm. Algebra 26 (1998), 3021-3043.
11. O.A. Heubo-Kwegna, Kronecker function rings of transcendental field extensions, Comm. Algebra 38 (2010), 2701-2719.
12. A.S. Jarrah, Integral closures of Cohen-Macaulay monomial ideals, Comm. Algebra 30 (2002), 5473-5478.
13. H. Matsumura, Commutative ring theory, Cambr. Stud. Adv. Math. 8, Cambridge University Press, Cambridge, 1986.
14. A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1-21.
15. -, Kronecker function rings of semistar-operations, Tsukuba J. Math. 21 (1997), 529-540.
16. I. Swanson and C. Huneke, Integral closure of ideals, rings, and modules, Lond. Math. Soc. Lect. Note Ser. 336, Cambridge University Press, Cambridge, 2006.
17. O. Zariski and P. Samuel, Commutative algebra, Vol. II, Grad. Texts Math. 29, Springer-Verlag, New York, 1975.

Dipartimento di Matematica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo, 1, 00146, Roma, Italy
Email address: afabbri@mat.uniroma3.it
Department of Mathematical Sciences, Saginaw Valley State University, 7400 Bay Road, University Center, MI 48710
Email address: oheubokw@svsu.edu

[^0]: 2010 AMS Mathematics subject classification. Primary 13A15, 13A18, 16W50.
 Keywords and phrases. Star operations, Kronecker function rings, graded rings.
 The results in this article formed a part of the authors' theses.
 Received by the editors on November 4, 2010, and in revised form on September 7, 2011.

