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SEMILOCAL FORMAL FIBERS
OF PRINCIPAL PRIME IDEALS

JOHN CHATLOS, BRIAN SIMANEK

NATHANIEL G. WATSON AND SHERRY X. WU

ABSTRACT. Let (T,m) be a complete local (Noetherian)
ring, C a finite set of pairwise incomparable nonmaximal
prime ideals of T , and p ∈ T a nonzero element. We provide
necessary and sufficient conditions for T to be the completion
of an integral domain A containing the prime ideal pA whose
formal fiber is semilocal with maximal ideals the elements
of C.

1. Introduction. One way to better understand the relationship
between a commutative local ring and its completion is to examine the
formal fibers of the ring. Given a local ring A with maximal ideal m
and m-adic completion ̂A, the formal fiber of a prime ideal P ∈ SpecA
is defined to be Spec ( ̂A⊗Ak(P )), where k(P ) := AP /PAP . Since there
is a one-to-one correspondence between the elements in the formal fiber
of P and the prime ideals in the inverse image of P under the map from
Spec ̂A to SpecA given by Q → Q ∩ A, we can think of Q ∈ Spec ̂A as
being in the formal fiber of P if and only if Q ∩ A = P .

One fruitful way of researching formal fibers has been, instead of
directly computing the formal fibers of rings, to investigate “inverse”
formal fiber questions that is, given a complete local ring T , when does
there exist a local ring A such that ̂A = T and both A and the formal
fibers of prime ideals in A meet certain prespecified conditions? One
important result of this type is due to Charters and Loepp, who show
in [1] that, given a complete local ring T with maximal ideal m and
G ⊂ Spec T where G is a finite set of prime ideals which are pairwise
incomparable by inclusion, a local domain A exists such that ̂A = T
and the formal fiber of the zero ideal of A is semilocal with maximal
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ideals exactly the elements of G if and only if certain relatively weak
conditions are satisfied.

In this paper we address a similar question: what are the necessary
and sufficient conditions for T to be the completion of a local domain
A possessing a principal prime ideal with a specified semilocal formal
fiber?

Partial results on this subject were achieved by Dundon et al. in [2],
under the constraint that the specified set C = {Q1, Q2, . . . , Qk} of
nonmaximal ideals in the formal fiber is such that ∩k

i=1Qi contains
a nonzero regular prime element p of T . In particular, suppose this
holds and with Π denoting the prime subring of T , we have that either
Π ∩Qi = (0) for every i or Π ∩Qi = pΠ for every i. In [2] it is shown

that, if dim T > 1, then a local domain A exists such that ̂A = T ,
p ∈ A, pA ∈ SpecA, and the formal fiber of pA is semilocal with
maximal ideals the elements of C if and only if p ∈ Qi for every i and
m /∈ C (here m is the maximal ideal of T ). The authors in [2] also
consider the case dimT = 1, but the subject of formal fibers is not a
rich one when considering rings of dimension 1 or smaller. Therefore,
we will always assume throughout this paper that all of our rings have
dimension strictly larger than 1.

The main theorem in this paper is an improvement on the results
in [2]. We eliminate the assumption that p is a prime element in T .
Theorem 1.1 in this paper provides necessary and sufficient conditions
for a complete local ring to be the completion of an integral domain
containing a height one principal prime ideal with specified semilocal
formal fiber. If, for an integral domain R, we define FR to be the
quotient field of R then we can state our main result as follows:

Theorem 1.1. Let (T,m) be a complete local ring, Π the prime
subring of T , and C = {Q1, Q2, . . . , Qk} a finite set of non-maximal
incomparable prime ideals of T . Let p ∈ ∩k

i=1Qi with p �= 0. Then

a local domain A ⊆ T exists with p ∈ A such that ̂A = T and pA is
a prime ideal whose formal fiber is semilocal with maximal ideals the
elements of C if and only if:

(1) P ∩ Π[p] = (0) for all P ∈ AssT ,

(2) for every P ′ ∈ Ass (T/pT ), we have P ′ ⊆ Qi for some i ∈
{1, 2, . . . , k},
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(3) FΠ[p] ∩Qi ⊆ pT for all i ∈ {1, 2, . . . , k}.

Remark. Notice that, if p ∈ ∩k
i=1Qi is a prime element in T , then

condition (2) is trivially satisfied (see [6, 9.41]). Therefore, under the
hypotheses used in [2], the statement of our theorem can be simplified.

The proof that the above conditions are necessary is relatively short.
Therefore, most of this paper is devoted to showing that they are suf-
ficient by constructing an integral domain A with the desired proper-
ties. The general strategy behind our construction, which is similar to
constructions in both [1, 2], is to start with the prime subring of T
localized at its maximal ideal and recursively build up an ascending
chain of subrings maintaining some specific properties. Our final ring
A will be the union of all the subrings in the chain. Most of the work
in the construction goes toward ensuring that A simultaneously meets
three conditions: the map A → T/J is onto for every ideal J such that
J � Qi for all i ∈ {1, 2, . . . , k}; IT ∩A = I for every finitely generated
ideal I of A; and FA ∩ Qi ⊆ pT for all i ∈ {1, 2, . . . , k}. These con-

ditions will ensure that ̂A = T and that pA ∈ SpecA has a semilocal
formal fiber with maximal ideals precisely the elements of C.

Throughout this paper, all rings will be commutative with unity.
When we say a ring is “quasilocal” we mean that it has one maximal
ideal. A “local” ring will be a Noetherian quasilocal ring.

2. Semilocal formal fibers of principal prime ideals of a
domain. Suppose we are given a complete local ring (T,m), and a
finite set C = {Q1, Q2, . . . , Qk} ⊆ SpecT of pairwise incomparable
(that is, Qi ⊆ Qj if and only if Qi = Qj) nonmaximal prime ideals.
In this section we answer the following question. When is it true that
there is a local domain A such that ̂A = T and there is some principal
prime P ∈ SpecA such that the formal fiber of P is semilocal with
maximal ideals {Q1, Q2, . . . , Qk}?
As mentioned in the introduction, the proof of necessity of the

conditions in Theorem 1.1 is relatively short and we give it now.

Proof of necessity in Theorem 1.1. Suppose we have an A ⊆ T with
̂A = T and that pA is a prime ideal with a semilocal formal fiber
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with maximal ideals exactly the elements of C. Since the extension
A ⊆ ̂A = T is faithfully flat, any zero divisor of T which is in A must
be a zero divisor of A. Since we assume A is a domain, A can contain no
such nonzero zero divisor, and in particular, since certainly Π[p] ⊆ A,
we must have P ∩Π[p] = (0) for all P ∈ AssT . Furthermore, since the
completion of A/(pT ∩ A) = A/pA is T/pT , we can say that all zero
divisors of T/pT (that is, all elements in the image of ∪AssT/pT under
the canonical map T → T/pT ) contained in A/pA are zero divisors of
A/pA. But A/pA is a domain since pA is prime; thus, A/pA cannot
contain any nonzero zero divisor of T/pT and so A does not contain
any element of ∪Ass (T/pT ) which is not in pT . Let P ∈ Ass (T/pT ).
The argument above shows that P ∩ A ⊆ pT ∩ A = pA, and since
p ∈ P , we also have pA ⊆ A ∩ P giving us P ∩ A = pA. Thus, P is in
the formal fiber of pA, and since we have assumed this formal fiber is
semilocal with maximal ideals {Q1, Q2, . . . , Qk}, we know P ⊆ Qi for
some i.

Finally, suppose that for some i there is a q ∈ FΠ[p] ∩ (Qi \ pT ). We
know qg = h for some g, h ∈ Π[p] ⊆ A with g �= 0. Since we showed
above it is necessary that P∩Π[p] = (0) for all P ∈ AssT , we know that
g is not a zero divisor of T . Since A ⊆ T is a faithfully flat extension,
we know gT∩A = gA (see [5, Chapter 8]) and so gq ∈ gA which implies
q ∈ A. Therefore Qi∩A � pT , contradicting the assumption that Qi is
in the formal fiber of pA. Thus, it is necessary that FΠ[p]∩(Qi\pT ) = ∅
for all i.

Now we proceed with the construction that will guarantee the suffi-
ciency in Theorem 1.1.

Definition 2.1. Let S be a set. Define Γ(S) = sup(|S|,ℵ0).

Note that, clearly, if T and S are sets, Γ(S)Γ(T ) = sup(Γ(S),Γ(T )).
This definition simplifies the statement of some of our lemmas.

Definition 2.2. Let (T,m) be a complete local ring, and suppose
we have a finite, pairwise incomparable set C = {Q1, Q2, . . . , Qk} ⊆
SpecT . Let p ∈ ∩k

i=1Qi be a nonzero regular element of T . Suppose
that (R,R ∩ m) is a quasilocal subring of T containing p with the
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following properties:

(1) Γ(R) < |T |;
(2) If P is an associated prime ideal of T then R ∩ P = (0);

(3) For all i ∈ {1, 2, . . . , k}, FR ∩Qi ⊆ pT .

Then we call R a pT -complement avoiding subring of T , which we
shorten to pca subring.

Remark. Observe that condition (2) in Definition 2.2 implies every
pca subring is an integral domain.

To show the existence of our local domain A, we construct a chain of
intermediate pca subrings and then let A be the union of these subrings.
The following two lemmas give us ways in which we can enlarge pca
subrings to obtain new pca subrings.

Lemma 2.3. If R is a pca subring, then FR∩T is also a pca subring.

Proof. We begin by checking that FR ∩ T is in fact quasi-local and,
for this, it suffices to show that x ∈ FR ∩ T is a non-unit if and only if
x ∈ m ∩ FR ∩ T . Clearly, if x ∈ m, then x is not a unit. Now, suppose
for contradiction, that x is not a unit, but x /∈ m. Since T is local, x
must be a unit in T , so we write xt = 1 in T . However, if rx = r′ with
r, r′ ∈ R, then we get r′t = r in T , and hence t ∈ FR ∩T so x is a unit,
which is a contradiction. It remains to check the three conditions in
Definition 2.2.

Condition (1) is obvious. For condition (2), we suppose q ∈ P ∩(FR∩
T ) where P ∈ AssT . Since q ∈ FR, we write qr2 = r1 with r1, r2 ∈ R
so r1 ∈ R ∩ P = (0) so q = 0 since r2 is not a zero divisor in T . To
check condition (3), suppose q ∈ FFR∩T ∩ Qi. Then qs2 = s1 where
r3s1 = r4 and r5s2 = r6 with ri ∈ R for all i. This implies qr3r6 = r4r5
so q ∈ FR ∩Qi, and hence q ∈ pT as desired.

We will eventually need the following lemma, which will allow us to
retain the property of being a pca subring after adjoining an element
and localizing.

Lemma 2.4. Let (T,m), C and p be as in Definition 2.2, and suppose
˜R is a subring of (T,m). If ˜R satisfies any of conditions (1), (2) or (3)
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in Definition 2.2 (with ˜R in place of R), then ˜S := ˜R
R̃∩m

satisfies those
same conditions. In particular, if all three conditions are satisfied by
˜R and p ∈ ˜R, then ˜S is a pca subring.

Remark. When we say ˜R satisfies condition (3), this implicitly

assumes ˜R is an integral domain so that we may form the ring F
R̃
.

Proof. The cardinality condition is clearly preserved under local-
ization. To see that property (2) is preserved under localization, let

P ∈ AssT and take x ∈ P ∩ ˜S. Then u2x = u1 with u1, u2 ∈ ˜R and u2

a unit in T . Since x ∈ P , we must have u2x ∈ ˜R ∩ P . Therefore, if ˜R
satisfies condition (2), then x = 0 as desired.

To see that property (3) is preserved under localization, let us assume
˜R satisfies condition (3), and suppose for contradiction that we can find

an element q ∈ (Qi \ pT ) ∩ F
S̃
where s2q = s1 with s1, s2 ∈ ˜S. We

can then write s1 = fg−1 = qf ′(g′)−1 = qs2 with f, g, f ′, g′ ∈ ˜R
with g and g′ units in T . Then we have fg′ = qf ′g, and so clearly
q ∈ (Qi \ pT ) ∩ F

R̃
, which is a contradiction.

In our later constructions, we will often need to take unions of pca
subrings at intermediate steps. The purpose of Lemma 2.5 is to avoid
repeating the arguments checking that the union is still a pca subring.

Lemma 2.5. Let (T,m) be a complete local ring, and suppose we have
a finite, pairwise incomparable set C = {Q1, Q2, . . . , Qk} ⊆ SpecT .
Let p ∈ ∩k

i=1Qi be a nonzero regular element of T . Let Ω be a well-
ordered set, and let {Rα | α ∈ Ω} be a set of pca subrings indexed
by Ω with the property Rα ⊆ Rβ for all α and β such that α < β.
Let S = ∪α∈ΩRα. Then S ∩ P = (0) for all associated primes P
of T , FS ∩ Qi ⊆ pT for each i ∈ {1, 2, . . . , k}, and S is quasi-local.
Furthermore, if Γ(Rα) ≤ λ for all α ∈ Ω we have Γ(S) ≤ λΓ(Ω) and
so, if Γ(Ω) ≤ λ and Γ(Rα) = λ for some α, we have Γ(S) = λ.

Proof. No further explanation is necessary for the cardinality con-
ditions. Clearly S ∩ P = (0) for all P ∈ AssT because the Rα are
pca subrings and so none contain a nonzero element of any associated
prime ideal of T . Next, suppose we have q ∈ FS ∩ (Qi \ pT ). Then
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qs1 = s2 for some s1, s2 ∈ S. If we choose α ∈ Ω such that s1, s2 ∈ Rα,
then q ∈ FRα ∩ (Qi \ pT ), contradicting the hypothesis that Rα is a
pca subring. To see that S is quasi-local, let x, y ∈ S be non-units, and
suppose for contradiction that z(x+ y) = 1 for some z ∈ S. Choose α
large enough so x, y, z ∈ Rα. Then x and y are non-units in Rα and
hence are both contained in Rα∩m. Therefore, x+y ∈ Rα∩m so x+y
is not a unit in Rα, contradicting the existence of z. This contradiction
shows x+ y is a non-unit in S, and it follows easily that the collection
of non-units in S is an ideal, so S is quasi-local.

For some steps of the construction we need the additional condition
that pT ∩ R = pR for our subring R. The following lemma shows
that, given a pca subring R, we can find a larger pca subring S with
this property. This lemma will allow us to present a much simpler
construction than in [2].

Lemma 2.6. Suppose we have (T,m), C and p as in the hypotheses
of Lemma 2.5. Let (R,R ∩m) be a pca subring of (T,m). Then a pca
subring S of T exists with Γ(S) = Γ(R) such that R ⊆ S ⊆ T and
pT ∩ S = pS.

Proof. We set S = FR ∩ T . By Lemma 2.3, we know S is a pca
subring. Take any x ∈ pT ∩ S. We can write pt = x and xr2 = r1 with
r1, r2 ∈ R. This implies ptr2 = r1 so that t ∈ S implying pT ∩ S ⊆ pS.
The reverse inclusion is obvious.

The following is Proposition 1 from [4]. It helps us to ensure that the
final ring we create has T as its completion.

Proposition 2.7 [4]. If (R,m ∩ R) is a quasilocal subring of a
complete local ring (T,m), the map R → T/m2 is onto, and IT ∩R = I
for every finitely generated ideal I of R, then R is Noetherian and the
natural homomorphism ̂R → T is an isomorphism.

We will construct A so that the map A → T/m2 is onto. To do this,
we will need Lemma 2.8, which lets us adjoin an element of a coset of
T/J to a pca subring R where J is an ideal of T such that J � Qi for
every i ∈ {1, 2, . . . , k} to get a new pca subring. With J = m2, we will
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get that A → T/m2 is onto as desired. Note that Lemma 2.8 is similar
in purpose to Lemma 3.9 of [2].

Lemma 2.8. Let (T,m) be a complete local ring, and suppose we
have a finite, pairwise incomparable set of nonmaximal ideals C =
{Q1, Q2, . . . , Qk} ⊆ SpecT . Let p ∈ ∩k

i=1Qi be a nonzero regular
element of T such that for every P ∈ Ass (T/pT ) we have P ⊆ ∪k

i=1Qi.

Let (R,R ∩ m) be a pca subring of T such that pT ∩ R = pR,
and let u + J ∈ T/J where J is an ideal of T with J �⊆ Qi for all
i ∈ {1, 2, . . . , k}. Then there exists a pca subring S of T meeting the
following conditions:

(1) R ⊆ S ⊆ T ,

(2) Γ(S) = Γ(R),

(3) u+ J is in the image of the map S → T/J ,

(4) if u ∈ J , then S ∩ J � Qi for each i ∈ {1, 2, . . . , k},
(5) pT ∩ S = pS.

Proof. For each i ∈ {1, 2, . . . , k}, let D(Qi) be a full set of coset
representatives of the cosets t + Qi ∈ T/Qi with t ∈ T that make
(u+ t)+Qi algebraic over R/R∩Qi. Let D := ∪k

i=1D(Qi). By Lemma
2.3 of [1], we know that |T | ≥ |R|. Thus, because Γ(R) < |T |, we have
|R| < |T |, and so |D(Qi)| < |T | for all i ∈ {1, . . . , k}, and thus we have
that |D| < |T |.
We can now employ Lemma 2.4 of [1] with I = J to find an x ∈ J

such that x /∈ ∪{r + P | r ∈ D,P ∈ C} since the set C is finite. We
claim that S′ = R[u+ x](R[u+x]∩m) is a pca subring. It is clear that S′

satisfies Γ(S′) = Γ(R).

Now consider any P ∈ AssT . We claim that P ⊆ Qi for someQi ∈ C.
To see this, let z ∈ P be arbitrary. Since P contains only zero divisors
in T , there must be some nonzero y ∈ T so that zy = 0. Let � ≥ 0
be the largest integer so that y ∈ p�T , and write y = p�t with t /∈ pT .
Since p is regular, it must be that zt = 0, and so z annihilates the
element t + pT �= 0 + pT in T/pT . Therefore, z is a zerodivisor on

T/pT and so is contained in some ˜P ∈ Ass (T/pT ). It follows that
P ⊆ ∪P ′∈Ass (T/pT )P

′ and so, by the Prime Avoidance theorem, is
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contained in one particular P ∗ ∈ Ass (T/pT ). By hypothesis P ∗ is
contained in the union of the elements of C and again by the Prime
Avoidance theorem must be contained in one of them, proving our
claim.

Now suppose we have 0 �= f = rn(u + x)n + · · · + r1(u + x) + r0 ∈
R[u+x]∩P ⊆ R[u+x]∩Qi. Let m ≥ 0 be the largest integer such that
rj ∈ (pT )m for all 0 ≤ j ≤ n. Since pT ∩R = pR, we have (pT )m∩R =
pmR, so we write f = pm(r′n(u+x)n+ · · ·+r′1(u+x)+r′0). Since p /∈ P
because p is regular, we must have r′n(u+x)n+ · · ·+ r′1(u+x)+ r′0 ∈ P
and at least one of the coefficients r′j is not in pT ⊇ R ∩ Qi (by
the maximality of m). This contradicts the fact that (u + x) + Qi

is transcendental over R/(R ∩ Qi). We thus have R[u + x] ∩ P = (0)
for every P ∈ AssT and Lemma 2.4 shows that the same is true for S′.

Finally, we claim that, for each i ∈ {1, 2, . . . , k}, (Qi \pT )∩FS′ = ∅.
First, suppose for contradiction, we have a q ∈ (Qi \ pT ) ∩ FR[u+x] for
some i. Then we have rn(u + x)n + · · · + r1(u + x) + r0 = q(sn′(u +
x)n

′
+ · · · + s1(u + x) + s0) for some r0, r1, . . . , rn, s0, s1, . . . , sn′ ∈ R

with rk �= 0 for some 0 ≤ k ≤ n. Let m be the largest integer such that
ri ∈ (pT )m for all 0 ≤ i ≤ n, and let m′ be the largest integer such that
sj ∈ (pT )m

′
for all 0 ≤ j ≤ n′. As above, we have (pT )m ∩ R = pmR

(and similarly for m′), and we can write f = pm(r′n(u + x)n + · · · +
r′1(u + x) + r′0) = qpm

′
(s′n′(u + x)n

′
+ · · · + s′1(u + x) + s′0) for some

r′0, r
′
1, . . . , r

′
n, s

′
0, s

′
1, . . . , s

′
n′ ∈ R.

By the maximality of m and m′, we know that there is an l such
that r′l /∈ pT and a j such that s′j /∈ pT . Since (Q \ pT ) ∩ FR = ∅
for all Q ∈ C, we know Q ∩ R ⊆ pT and thus r′l, s

′
j /∈ Q ∩ R for all

Q ∈ C. Since (u+x)+Q is transcendental over R/R∩Q for all Q ∈ C,
we therefore know that r′n(u + x)n + · · · + r′1(u + x) + r′0 /∈ ∪k

i=1Qi

and s′n′(u + x)n
′
+ · · · + s′1(u + x) + s′0 /∈ ∪k

i=1Qi. Now suppose
that m ≤ m′. Since p is not a zero divisor, we may cancel it on
both sides of our equation to get r′n(u + x)n + · · · + r′1(u + x) + r′0 =
qpm

′−m(s′n′(u + x)n
′
+ · · · + s′1(u + x) + s′0). The left-hand side is

not in ∪k
i=1Qi while the right-hand side is clearly in Qi, which is a

contradiction. On the other hand, suppose m > m′. Then, canceling,
we have pm−m′

(r′n(u + x)n + · · · + r′1(u + x) + r′0) = q(s′n′(u + x)n
′
+

· · · + s′1(u + x) + s′0). The left-hand side is clearly in pT but, since
s′n′(u + x)n

′
+ · · · + s′1(u + x) + s′0 is not in ∪k

i=1Qi, it is not in
any associated prime of pT and so is not a zero divisor of T/pT .
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Since q /∈ pT , we have that the right-hand side is not in pT , which
is a contradiction. Thus, we have (Qi \ pT ) ∩ FR[u+x] = ∅. By
Lemma 2.4, we know that localizing preserves this property and so
(Qi \ pT ) ∩ FS′ = ∅ for all Qi ∈ C. We have now shown that S′ is a
pca subring of T .

We now employ Lemma 2.6 to find a pca subring S with S′ ⊆ S ⊆ T
and Γ(S) = Γ(S′) = Γ(R) such that pT ∩ S = pS. Since S′ ⊆ S,
the image of S in T/J contains u + x + J = u + J . Furthermore, if
u ∈ J , then u+x ∈ J ∩S, but since (u+x)+Qi is transcendental over
R/R ∩Qi for each i ∈ {1, 2, . . . , k}, we have u+ x /∈ Qi so J ∩ S � Qi

for all i.

The following two lemmas, which are similar to Lemmas 3.10 and
3.11 of [2], allow us to construct A such that IT ∩ A = I for every
finitely generated ideal I of A. Recall that this is one of the conditions
from Proposition 2.7 needed to show that ̂A = T .

Lemma 2.9. Suppose we have (T,m), C and p as in the hypotheses
of Lemma 2.8. Let (R,R ∩ m) be a pca subring of (T,m) such that
pT ∩R = pR, let I be a finitely generated ideal of R and let c ∈ IT ∩R.
Then a pca subring S of T exists meeting the following conditions:

(1) R ⊆ S ⊆ T ,

(2) Γ(S) = Γ(R),

(3) c ∈ IS,

(4) pT ∩ S = pS.

Proof. We first show that a pca subring S′ of T exists satisfying
the first three conditions. Induct on the number of generators of I.
Suppose I = aR. If a = 0, then c = 0 so S′ = R is the desired pca
subring. If a �= 0, then c = au for some u ∈ T . We will show that
S′ = R[u](R[u]∩m) is a pca subring satisfying the first three conditions
and then apply Lemma 2.6 and set S = FS′ ∩ T to get a pca subring
satisfying all four conditions.

To verify that S′ is a pca subring, first note that the cardinality
condition is clearly satisfied. To prove condition (2), consider an
arbitrary f ∈ R[u] with f �= 0. We can write f = rnu

n + · · ·+ r1u+ r0
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for some r0, r1, . . . , rn ∈ R. Then

anf = rn(au)
n + arn−1(au)

n−1 + · · ·+ an−1r1(au) + anr0

= rnc
n + arn−1c

n−1 + · · ·+ an−1r1c+ anr0,

and thus we see anf ∈ R. Now, let P ∈ AssT , and let f ∈ P ∩ R[u].
Choose an n such that anf ∈ R. Then anf ∈ R ∩ P and so anf = 0
since R is a pca subring. Since a is not a zerodivisor, f = 0 and so
we have that P ∩ R[u] = (0). Lemma 2.4 then implies P ∩ S′ = 0.
For condition (3), suppose for contradiction that we have an element
q ∈ (Qi \ pT ) ∩ FR[u] where u2q = u1 with u1, u2 ∈ R[u]. By our
above calculation, we can find m ∈ N so that amui ∈ R for i = 1, 2.
This means amu1 = amu2q, so q ∈ FR ∩ Qi ⊆ pT giving the desired
contradiction. Lemma 2.4 now shows S′ is a pca subring as claimed.
This completes the base case of the induction.

Now let I be an ideal of R that is generated by m > 1 elements, and
assume that the lemma holds for all ideals with m− 1 generators. Let
I = (y1, . . . , ym)R. Since c ∈ IT , we can choose t1, t2, . . . , tm ∈ T such
that c = y1t1 + y2t2 + · · ·+ ymtm.

First suppose that yj /∈ pT ∩ R = pR for some j = 1, 2, . . . ,m.
Without loss of generality, reorder the yi’s so that y2 /∈ pT ∩ R. Our
goal is now to find a t ∈ T such that we may adjoin t1 + y2t to
our subring R without disturbing the pca properties. First note that
if (t1 + y2t) + Qi = (t1 + y2t

′) + Qi for any i, then we have that
y2(t − t′) ∈ Qi. However, by the assumption that y2 /∈ pR and the
fact that Qi ∩ R = pT ∩ R = pR, we know that y2 /∈ Qi. Since Qi is
prime, we must have (t− t′) ∈ Qi; thus, t+Qi = t′ +Qi. Therefore, if
t+Qi �= t′ +Qi, then (t1 + y2t) +Qi �= (t1 + y2t

′) +Qi.

For each i, let D(Qi) be a full set of coset representatives of the
cosets t + Qi that make t1 + y2t + Qi algebraic over R/R ∩ Qi. Let
D = ∪k

i=1D(Qi). Using the fact from the previous paragraph that
(t1 + y2t) + Qi �= (t1 + y2t

′) + Qi whenever t + Qi �= t′ + Qi, it can
be easily checked that |D| < |T |, and thus we use [1, Lemma 2.4] with
I = T to find an element t ∈ T such that t /∈ ∪{r+ P | r ∈ D,P ∈ C}.
We will let x = t1 + y2t so that x+Qi is transcendental over R/R∩Qi

for all i. We now know that R′ := R[x](R[x]∩m) is a pca subring of T
by the argument in the proof of Lemma 2.8.

We now both add and subtract y1y2t to see that c = y1t1 + y1y2t−
y1y2t + y2t2 + · · · + ymtm = y1x + y2(t2 − y1t) + y3t3 + · · · + ymtm.



380 J. CHATLOS, B. SIMANEK, N.G. WATSON AND S.X. WU

Let J = (y2, . . . , ym)R′ and c∗ = c − y1x. Then c∗ ∈ JT ∩ R′ and
so we use the induction assumption to find a pca subring S′ of T
with Γ(S′) = Γ(R) such that R′ ⊆ S′ ⊆ T and c∗ ∈ JS′. Then
c = y1x + c∗ ∈ IS′, and S′ is a pca subring satisfying the first three
conditions of the lemma.

Now suppose that yj ∈ pT ∩ R for all j. Then let k be the largest
integer such that yj ∈ (pT )k ∩ R for all j. Since pT ∩ R = pR, we
know (pT )k ∩ R = pkR and we can write c = pk(y′1t1 + · · · + y′mtm)
for some y′1, y′2, . . . , y′m ∈ R such that y′i /∈ pT for some i. Now let
I ′ = (y′1, . . . , y

′
m)R so that we have c′ := y′1t1 + · · ·+ y′mtm ∈ I ′T . We

can now apply the argument above to find a pca subring S′ such that
c′ ∈ I ′S′ and so c′ = y′1s1+ · · ·+ y′msm for some s1, . . . , sm ∈ S′. Then
we have c = pkc′ = pky′1s

′
1 + · · · + pky′msm = y1s1 + · · · + ymsm and

so c ∈ IS′ showing that S′ is a pca subring satisfying the first three
conditions of the lemma.

Now we apply Lemma 2.6 to find a pca subring S with R ⊆ S′ ⊆
S ⊆ T and Γ(S) = Γ(S′) = Γ(R) such that pT ∩ S = pS. We know
c ∈ IS since c ∈ IS′ and S′ ⊆ S. Thus S is a pca subring meeting the
conditions stated in the lemma.

Lemma 2.11 allows us to create a subring S of T that satisfies many
of the conditions we want to be true for our final ring A. First we
require some additional notation.

Definition 2.10. Let Ω be a well-ordered set and α ∈ Ω. We define
γ(α) = sup{β ∈ Ω | β < α}.

Lemma 2.11. Suppose we have (T,m), C and p as in the hypotheses
of Lemma 2.8. Let (R,R ∩ m) be a pca subring of T such that
pT ∩R = pR, let J be an ideal of T with J � Qi for all i ∈ {1, 2, . . . , k}
and let u+ J ∈ T/J . Then a pca subring S of T exists such that:

(1) R ⊆ S ⊆ T ,

(2) Γ(S) = Γ(R),

(3) u+ J is in the image of the map S → T/J ,

(4) If u ∈ J , then S ∩ J � Qi for each i ∈ {1, 2, . . . , k},
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(5) For every finitely generated ideal I of S, we have IT ∩ S = I.

Proof. We first apply Lemma 2.8 to find a pca subring R′ of T
satisfying conditions (1), (2), (3) and (4) and such that pT ∩R′ = pR′.
We will now construct the desired S such that S satisfies conditions
(2) and (5) and R′ ⊆ S ⊆ T which will ensure that the first, third,
and fourth conditions of the lemma hold true. Let Ω = {(I, c) |
I is a finitely generated ideal of R′ and c ∈ IT ∩R′}. Letting I = R′,
we see that |Ω| ≥ |R′|. Since R′ is infinite, the number of finitely
generated ideals of R′ is |R′|, and therefore |R′| ≥ |Ω|, giving us the
equality |R′| = |Ω| and thus Γ(Ω) = Γ(R). Well order Ω so that it
does not have a maximal element, and let 0 denote its first element.
We will now inductively define a family of pca subrings of T , one for
each element of Ω. Let R0 = R′, and let α ∈ Ω. Assume that Rβ has
been defined for all β < α and that pT ∩Rβ = pRβ and Γ(Rβ) = Γ(R)
hold for all β < α. If γ(α) < α and γ(α) = (I, c), then define Rα

to be the pca subring obtained from Lemma 2.9. Note that, clearly,
pT ∩Rα = pRα and Γ(Rα) = Γ(Rγ(α)) = Γ(R). If, on the other hand,
γ(α) = α, define Rα = ∪β<αRβ . By Lemma 2.5, Rα is a pca subring
with Γ(Rα) = Γ(R). Furthermore, if t ∈ pT ∩Rα, then t ∈ Rβ for some
β < α and so t ∈ pT ∩Rβ = pRβ ⊆ pRα. Thus, pT ∩Rα = pRα.

Now let R1 = ∪α∈ΩRα. We see from Lemma 2.5 that R1 is a pca
subring and Γ(R1) = Γ(R0) = Γ(R). Also, since we know by induction
that pT ∩Rα = pRα for all α ∈ Ω, we see by the same argument made
at the end of the last paragraph that pT ∩ R1 = pR1. Furthermore,
notice that if I is a finitely generated ideal of R0 and c ∈ IT ∩ R0,
then (I, c) = γ(α) for some α ∈ Ω with γ(α) < α. It follows from the
construction that c ∈ IRα ⊆ IR1. Thus, IT ∩ R0 ⊆ IR1 for every
finitely generated ideal I of R0.

Following this same pattern, build a pca subring R2 of T with
Γ(R2) = Γ(R1) = Γ(R) and pT ∩ R2 = pR2 such that R1 ⊆ R2 ⊆ T
and IT ∩R1 ⊆ IR2 for every finitely generated ideal I of R1. Continue
by induction, forming a chain R0 ⊆ R1 ⊆ R2 ⊆ · · · of pca subrings of
T such that IT ∩ Rn ⊆ IRn+1 for every finitely generated ideal I of
Rn and Γ(Ri) = Γ(R0) for all i.

We now claim that S = ∪∞
i=1Ri is the desired pca subring. To see

this, first note R ⊆ S ⊆ T and that we know from Lemma 2.5 that S is
indeed a pca subring and Γ(S) = Γ(R). Now set I = (y1, y2, . . . , yk)S,
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and let c ∈ IT ∩S. Then an N ∈ N exists such that c, y1, . . . , yk ∈ RN .
Thus, c ∈ (y1, . . . , yk)T ∩RN ⊆ (y1, . . . , yk)RN+1 ⊆ IS. From this, it
follows that IT ∩ S = I, so the fifth condition of the statement of the
lemma holds.

In Lemma 2.12 we construct a domain A that has the desired
completion and the formal fiber of pA is semilocal with maximal ideals
the elements of C.

Lemma 2.12. Suppose we have (T,m), C and p as in the hypotheses
of Lemma 2.8. Let Π denote the prime subring of T . Suppose FΠ[p] ∩
Qi ⊆ pT for all Qi ∈ C and that P ∩ Π[p] = (0) for all P ∈ AssT .
Then a local domain A ⊆ T exists such that

(1) p ∈ A,

(2) ̂A = T ,

(3) pA is a prime ideal in A and has a semilocal formal fiber with
maximal ideals the elements of C,

(4) If J is an ideal of T satisfying J �⊆ Qi for all i ∈ {1, 2, . . . , k},
then the map A → T/J is onto and J ∩A � Qi for all i ∈ {1, 2, . . . , k}.

Proof. Let

Ω = {u+ J ∈ T/J : J is an ideal of T with J � Qi

for all i ∈ {1, . . . , k}} ,
and for each α ∈ Ω, define Ωα := {β ∈ Ω | β ≤ α}. Since T is infinite
and Noetherian, |{J is an ideal of T with J � Q for all Q ∈ C}| ≤ |T |.
Also, if J is an ideal of T , then |T/J | ≤ |T |. It follows that |Ω| ≤ |T |.
Well order Ω so that each element has fewer than |Ω| predecessors.
Let 0 denote the first element of Ω. Define R′

0 to be Π[p] localized
at Π[p] ∩ m. We know Γ(R′

0) = ℵ0, and by [1, Lemma 2.3], we know
that |T | ≥ |R| and thus Γ(R′

0) < |T |. Our hypotheses and Lemma 2.4
imply that R′

0 is a pca subring of T . We now apply Lemma 2.6 to
find a pca subring R′′

0 with R′
0 ⊆ R′′

0 such that pT ∩ R′′
0 = pR′′

0 and
Γ(R′′

0 ) = Γ(R′
0) = ℵ0. Next apply Lemma 2.11 with J = T to find a

pca subring R0 with R′′
0 ⊆ R0 such that IT ∩R0 = I for every finitely

generated ideal I of R0 and Γ(R0) = Γ(R′′
0 ) = ℵ0.



PRINCIPAL PRIME IDEAL SEMILOCAL FORMAL FIBERS 383

Starting with R0, recursively define a family of pca subrings as follows.
Let α ∈ Ω and assume that Rβ has already been defined to be a pca
subring for all β < α with IT ∩Rβ = IRβ for every finitely generated
ideal I of Rβ and Γ(Rβ) ≤ Γ(Ωβ) (note that this condition holds for
R0 since Γ(R0) = Γ(Ω0) = ℵ0). Then γ(α) = u + J for some ideal
J of T with J � Qi for every i ∈ {1, 2, . . . , k}. If γ(α) < α, use
Lemma 2.11 to obtain a pca subring Rα with Γ(Rα) = Γ(Rγ(α)) such
that Rγ(α) ⊆ Rα ⊆ T , u + J is in the image of the map Rα → T/J
and IT ∩Rα = I for every finitely generated ideal I of Rα. Moreover,
this gives us that Rα ∩ J �⊆ Qi for every i ∈ {1, 2, . . . , k} if u ∈ J .
Also, since Γ(Rα) = Γ(Rγ(α)) and Γ(Ωα) = Γ(Ωγ(α)) we have that
Γ(Rα) ≤ Γ(Ωα).

If γ(α) = α, define Rα = ∪β<αRβ . Then, by Lemma 2.5, we see that
Rα is a pca subring of T . Furthermore, we have Γ(Rβ) ≤ Γ(Ωβ) ≤
Γ(Ωα) for all β < α, so by Lemma 2.5 we see that Γ(Rα) ≤ Γ(Ωα).
Now, let I = (y1, . . . , yk) be a finitely generated ideal of Rα, and
let c ∈ IT ∩ Rα. Then {c, y1, . . . , yk} ⊆ Rβ for some β < α. By
the inductive hypothesis, (y1, . . . , yk)T ∩ Rβ = (y1, . . . , yk)Rβ . As
c ∈ (y1, . . . , yk)T ∩ Rβ , we have that c ∈ (y1, . . . , yk)Rβ ⊆ I. Hence,
IT ∩Rα = I.

We now know by induction that, for each α ∈ Ω, Rα is a pca subring
with Γ(Rα) ≤ Γ(Ωα) and IT ∩Rα = I for all finitely generated ideals
I of Rα. We claim that A = ∪λ∈ΩRλ is the desired domain.

First note that by construction, condition (4) of the lemma is satisfied
and by Lemma 2.5 A is a domain and is quasi-local. We now show that
the completion of A is T . Note that as Qi is nonmaximal in T for all
i, we have that m2 � Qi for all i. Thus, by the construction, the map
A → T/m2 is onto. Furthermore, by an argument identical to the one
used to show that IT ∩Rα = I for all finitely generated ideals I of Rα

in the case γ(α) = α, we know I ′T ∩ A = I ′ for all finitely generated
ideals I ′ of A. It follows from Proposition 2.7 that A is Noetherian and
̂A = T .

Now we show that the formal fiber of pA is semilocal with maximal
ideals exactly the ideals in C. We know that if P ∈ SpecT with P � Qi

for all i, then P ∩A � Qi for all i, and so P ∩A �= pA which shows that
P is not in the formal fiber of pA. Furthermore, since each Rα is pca,
the argument in Lemma 2.5 tells us that (Qi \ pT ) ∩ FA = ∅, and so
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in particular (Qi \ pT )∩A = ∅ for all i. Thus, Qi ∩A = pT ∩A = pA
for each i and so pA is prime and Qi is in its formal fiber for every
i ∈ {1, 2, . . . , k}. We have now shown the formal fiber of pA is semilocal
with maximal ideals exactly the members of C.

We are now ready to complete the proof of Theorem 1.1; our main
result.

Proof of Theorem 1.1. The condition that P ∩ Π[p] = (0) for all
P ∈ AssT ensures that p is regular. Since every P ′ ∈ Ass (T/pT ) is
contained in some Qi, we know P ′ ⊆ ∪k

i=1Qi. With these observations,
Lemma 2.12 now shows the conditions are sufficient. We have already
shown they are necessary.

We conclude with an example showing where our result can be
applied.

Example 2.13. Let T be the complete local ringR[[x, y, z, w]]/(x2−
yz) and Q the non-maximal prime ideal (x, y, z). T is a domain
as (x2 − yz) is a prime ideal in R[[x, y, z, w]]. Note that if P ∈
Ass (T/xT ) = {(x, y), (x, z)}, then P ⊆ Q. It is also the case that
Q ∩ FΠ[x] ⊆ xT . Thus, the conditions of Theorem 1.1 are satisfied,

and a domain A exists such that ̂A = R[[x, y, z, w]]/(x2 − yz), xA is
a prime ideal in A, and the formal fiber of xA is local with maximal
ideal (x, y, z).
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