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MACAULAY’S THEOREM FOR
SOME PROJECTIVE MONOMIAL CURVES

RI-XIANG CHEN

1. Introduction. Throughout this paper S stands for the poly-
nomial ring k[zi,...,x,] over a field k with the standard grading
deg(z;) = 1 for 1 < i < n. For any graded ideal J of S, the size
of J is measured by the Hilbert function

h:N—N
1 — dimyg J;,

where N = {0,1,2,...} and J; is the vector space of all homogeneous
polynomials in J of degree i. In 1927, Macaulay [9] proved that, for
every graded ideal in S, there exists a lex ideal with the same Hilbert
function. Since then, lex ideals have played a key role in the study
of Hilbert functions: in 1966, Hartshorne [5] proved that the Hilbert
scheme is connected, namely, every graded ideal in S is connected by
a sequence of deformations to the lex ideal with the same Hilbert
function; then in the 1990s, Bigatti [1], Hulett [6] and Pardue [11]
proved that every lex ideal in S attains maximal Betti numbers among
all graded ideals with the same Hilbert function.

It is interesting to know if similar results hold for graded quotient
rings of the polynomial ring S. One important class of graded quotient
rings over which Macaulay’s theorem holds is the Clements-Lindstrom
ring S/(z{, ... ,x5), where ¢; < -+ < ¢, < oco. In 1969, Clements
and Lindstrom [2] proved that Macaulay’s theorem holds over the ring
S/(x(t, ... ,xtr), that is, for every graded ideal in S/(27',...,z%),
there exists a lex ideal with the same Hilbert function. In the case
¢1 = -+ = ¢, = 2, the result was obtained earlier by Katona [7] and
Kruskal [8]. Recently, Mermin and Peeva [10] raised the problem to
find other graded quotient rings over which Macaulay’s theorem holds.

Toric varieties, cf. [3], have been extensively studied in algebraic ge-
ometry. They are very interesting because they can be studied with
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methods and ideas from algebraic geometry, combinatorics, commuta-
tive algebra and computational algebra. In [4], Gasharov, Horwitz and
Peeva introduced the notion of a lex ideal in the toric ring and raised
the question [4, 4.1] to find projective toric rings over which Macaulay’s
theorem holds. They proved in [4, Theorem 5.1] that Macaulay’s the-
orem holds for the rational normal curves. The goal of this paper is to
study whether Macaulay’s theorem holds for other projective monomial
curves.

Let A = {(%).....("")} be a subset of N2\{0}. We set A =
(all aln) to be the matrix associated to A, and assume rank A = 2.
The toric ideal associated to A is the kernel I 4 of the homomorphism:

v klxy,... xn] — klu, ]

x; — utiv.

The ideal I 4 is graded and prime. Set R = S/I4 = k[u®wv,... ,u*v].
Then R is a graded ring with deg(z;) = 1 for 1 < ¢ < n. We call
R = S/14 the toric ring associated to A. Every projective monomial
curve in P?~! can be defined by I4 for some A. For example, the
rational normal curves are defined by the toric ideals associated to

ol nzl) We say that Macaulay’s

theorem holds for a projective monomial curve defined by I 4, or that
Macaulay’s theorem holds over the toric ring R = S/I4 if, for any
homogeneous ideal J in R, there exists a lex ideal L with the same
Hilbert function. Throughout, we assume that 21 > -+ > x,.

matrices of the form A = (

In Theorem 4.1 we prove that Macaulay’s theorem holds for projective
monomial curves defined by the toric ideals associated to matrices of
the form

(0 1 -+ n—-2 n—-1+h
A_(l 1 - 1 1

>, where n >3, he Z™T.

In Theorem 5.1 we consider matrices of the form

A:<0 1+h 24+h -+ n—14+h

+
1 1 1 1 ), where n > 3,h € Z™,

and prove that if h = 1 or n = 3, Macaulay’s theorem holds; otherwise,
Macaulay’s theorem does not hold.
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Finally, in Theorem 5.5 we prove that Macaulay’s theorem does not
hold if

A 01 - m-1 m+h -+ n—-1+hnh
—\1 1 ... 1 1 1 ’

wheren>4,2<m<n-—-2and h € Z+.

2. Preliminaries. Throughout this paper, we fix the order of the
variables in S to be 1 > --- > x,, and consider the induced lex order
>lex ON S.

To define the lex ideals in the toric ring R = S/I4, we need the
following definition introduced in Section 3 in [4]:

Definition 2.1. An element m € R is a monomial if there exists a
monomial preimage x7* ---z2" of m in S. For simplicity, by writing
m =y -z in R, we mean m = z7" --- 28" + 14 in R. An ideal in
R is a monomial ideal if it can be generated by monomials in R. Let
m € R be a monomial; the set of all monomial preimages of m in S is
called the fiber of m. The lex-greatest monomial in a fiber is called the

top-representative of the fiber.

Let m,m’ € Rq be two monomials of degree d in R. Let p, p’ be the
top-representatives of the fibers of m and m’, respectively. We say that
m =1ex M’ In Ry if p >1ex p’ in S.

A d-monomial space W is a vector subspace of Ry spanned by some
monomials of degree d. A d-monomial space W is lex if the following
property holds: for monomials m € W and q € Ry, if ¢ >=1cx m then
q € W. A monomial ideal L in R is lex if, for every d > 0, the d-
monomial space Ly is lex.

By [4, Theorem 2.5], we know that for any homogeneous ideal J in
R, there exists a monomial ideal M in R such that M has the same
Hilbert function as J. So, to show that Macaulay’s theorem holds over
R, we only need to prove that, given any monomial ideal M in R, there
exists a lex ideal L in R with the same Hilbert function. Furthermore,
we will use [4, Lemma 4.2], which states:

Lemma 2.2 (Gasharov-Horwitz-Peeva). Macaulay’s theorem holds
over R if and only if, for every d > 0 and for every d-monomial space
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W, we have the inequality:
dimleLW S dimkR1W,

where Ly is the lex d-monomial space in Ry such that dimg Ly =

Remark 2.3. Let W be a d-monomial space spanned by monomials
wi, ... ,ws € Ry; then we have that

dim W = [{wy, ... ,ws}|
and

dimp R W = [{z;w; € Rg41 |1 <i<n,1<j<s}.

If W’ is another d-monomial space spanned by monomials wi, ... ,w} €

R4, then we have

dimgW N W' = {wy, ... ,ws} N {wl, ..., w}H.

Remark 2.4. Let m be a monomial in R. Pick a representative
zt - z% from the fiber of m. Then

Qn

(p(len coz® ) — gMrerttanan ot tan

)

which is independent of the choice of the representative. Define
u(m) = u(af - zo0m) == anar + - - + Qnap.
Note that degm = a7 + - -+ + a;,. Then, for monomials m, m’ € R,

m=m' < u(m) =u(m’) and degm = degm/'.

Hence, for any d > 1, we have a natural order >, on the monomials in
Rg: for monomials m,m’ € Ry, we say that m >, m’ if u(m) < u(m’).



SOME PROJECTIVE MONOMIAL CURVES 203

Note that the lex order >ox may not coincide with the natural order
>,. This is illustrated in the following example.

Example 2.5. Let A = ((1) 1 f) Then, in Ry, T123 *lex m%, but

m% >y T123.

We use lex order >0 instead of >, to define lex ideals in R because
we want to have the following crucial property: If Ly is a lex d-
monomial space in Ry, then RiLg is a lex (d + 1)-monomial space
in Rgy1. By [4, Theorem 3.4], we know that this property holds for
the lex order >.x. However, by the above example, it is easy to see
that this property does not hold for the natural order >,. Indeed,
let Ly = span{z1} C Ry. Then L is lex with respect to the natural
order >, and RyL; = span{z?,x122, 2173} C Ra; but in Ry, since
22 >, 1179 >, T3 >, T173, one sees that Ry L is not lex with respect
to the natural order >,,.

Remark 2.6. In the polynomial ring S we have the following property:
if Ly is a lex d-monomial space in Sy and m is the first monomial in
Sd\Ld, then

(*) dimpg S (Ld + km) > dimg Sy Lg,

and, in particular, x,m ¢ S;L4. However, this may not be true in R,
and we have the following example.

Example 2.7. Let A = (? 1 ? ;L), Lo = span {22, 179, 1273, 2174}
2

and m = z5. Then Lo is lex in Ry and m is the first monomial after
T1T4. Since
), u(zer3) = u(x12173),
u(z323) = u(zowi2y), u(zqr3) = u(zszi73),
it follows that R;(Ly + km) = RiLo and z4m € RyLs. Thus,
dimg R (L2 + k‘m) = dimy Ry Lo and (*) fails.

u(xlmg) u(xox129

3. Lemmas for general projective monomial curves. In this
section, we prove three lemmas which hold for projective monomial
curves. These lemmas will be used later in Sections 4 and 5.
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First we make the following observation. Let I4 be the toric ideal
associated to A = {(all ) e (aln ) }; then, without loss of generality,
we can assume that a; # a; for i # j. By changing the order of the

variables in S, we can assume a; < --- < a,. Let B = (é _fl) and
p=gecd(az —ay,...,a, —a1). Then we have

1pi_ (0 (e2=a)/p - (an—a)/p)

D 1 1 1

Since A and (BA)/p have the same kernel, they define the same toric
ideal, so that we can always assume that 0 = a; < a2 < --- < a, and
ged (ag, ... ,a,) = 1.

Given a d-monomial space W, in order to calculate dimy R, W effi-
ciently, we have the following lemma.

Lemma 3.1. Let W be a d-monomial space spanned by monomials
Wi, ... ,Ws € Rg with u(wy) < -+ <u(ws). Then

dimp R W = sn — Z AMwi, wy),
1<i<j<s
where
AMwi, wi) = [{(p,q) | 1 < p < g < nyulzg) — ulay) = u(w;) — u(w;),
and there exist nop <r <gq, i <k <j
such that w(z,) — u(zp) = w(w;) — u(wk)}|.

Proof. By induction on s. If s = 1, then the assertion is clear. If
s > 1, then setting W’ = span{wy, ... ,ws_1}, we get
dimg Ry W = dimy Ry (W' + kws)
= dimy, (RaW' + Ry (kws))
= dimp Ry W' + dimy Ry (kw) — dimi RyW' N Ry (kws).

By the induction hypothesis, we have that

dimg Ry W' = (s — 1)n — Z AMwi, wy),

1<i<j<s—1
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and
dimg Ry (kws) = n.
Note that
dimlewl N Rl(kws)
=|{1<p<n|zpws=zw; in Rgt1,
for some 1 <i<s—1,qg> p}
= Z H1 <p<n|zpws=zqw; in Rgj1,
1<i<s—1
for some ¢ > p, and there exists no
i < k < s such that zyws = z,wy, for some r > p}|
= Z AMw;, wg).
1<i<s—1
So we have

dimp W = (s — 1)n — Z Aw;, wy)

1<i<j<s—1
+n— g Mw;, wg)
1<i<s—1
=sn — E Aw;, wy). O
1<i<j<s

The following two lemmas will be helpful when we prove Theorem 5.1.

Lemma 3.2. Let A = (%7 %) and A = (bl by - bn) be

11 1 111
such that 0 = a1 < as < -+ < ap, 0 = by < by < --- < by,
and a; + bpy1—; = an for i = 1,...,n. Set S = k[x1,...,x,] and
S" = k[y1,... ,yn]. Then we have an isomorphism f : S — S’ with

-~

f(x;)) = yny1—i. Let R = S/14 be the toric ring associated to A
and R' = 8'/I4 the toric ring associated to A’; then f induces an
isomorphism [ : R — R’ such that f(x; + I4) = Yny1—i + Lar-
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Proof. Given a monomial m = z{" --- x4 in S, we have

n

u(m) +u(f(m)) = u(@f? - a5m) +ulyst - yi")
=101+ -+ apap + a1y + -+ anhs
=ar(ar +bp) + -+ an(an + b1)
=(a1+-+ap)ay
= deg (m)ay,.

If m —m' € I4 for some monomials m, m’ € S, then by Remark 2.4
we have that u(m) = u(m’) and deg (m) = deg (m’). Hence u(f(m)) =
u(f(m')) and deg(f(m)) = deg(f(m')), so that f(m) — f(m) =
f(m —m') € Iy. Similarly, if m —m/ € Ly, then f=*(m —m’) € I4.
Thus, f(I 4) = Iy, and therefore, finduces an isomorphism f from R
to R’ such that f(x; + I4) = Ynt1—i + Lar. o

Lemma 3.3. Under the assumption of Lemma 3.2, we have the
following two properties.

(1) If W C Ry is a d-monomial space spanned by monomials
mi,...,my € Rg with u(wy) < -+ < u(w,), then f(W) C R}, is a
d-monomial space spanned by monomials f(w1),..., f(w,) € R, with
u(f(wr)) > - >u(f(wy)), and dimp Ry W = dim R} f(W).

(2) Note that we have defined a lex order »iex in Rq. Now setling
Yn > -+ > y1, we have a lex order > in S’ which induces a lex
order »iex in R). Let m be a monomial in Ry with top representative
it -x%n. Then f(m) is a monomial in R, with top representative
f(x‘fl ceexfm) =y .oy, Furthermore, if monomials m,m’ € Ry
are such that m =iex m’, then f(m) =iex f(m’) in RY; if Lq is a lex d-
monomial space in Rq, then f(Lq) is a lex d-monomial space in Rl; if
Macaulay’s theorem holds over R, then Macaulay’s theorem holds over
R.

Proof. (1) It is clear that f(W) is a d-monomial space in R/,. By the
proof of Lemma 3.2, we see that u(w;) +u(f(w;)) = day, which implies
that w(f(w;)) > u(f(wj)) for ¢ < j. Note that ap, — aq = by — b, for
any p 7 q and u(w;) — u(w;) = u(f(1;)) — u(f(w))), for any i # j, so
that the last part of the assertion follows directly from Lemma 3.1.
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(2) By contradiction, we assume that yi? - --y’f” is in the fiber of
f(m) and yPr - --y’f” Slex YO ---yP™ in S’. Then f=1(y2 ---ylﬁ") =
2Pt .28 is also in the fiber of m and & -+ 2B >i 281 - 29 in
S, which is a contradiction. So we have proved the first part of the
assertion, and the rest of the assertion follows easily. ]

Remark 3.4. If we set y1 > --- > y, in Lemma 3.3 (2), then the
assertion may not hold. Indeed, considering Example 2.7, we have that
A = A5 let m = 123 in R. Then z;2% is the top-representative of
the fiber of m, but f(z122) = y4y2 is not the top-representative of the
fiber of f(m). Also, by Theorems 4.1 and 5.1, we will see that even if
Macaulay’s theorem holds over R, it may not hold over R'.

4. A class of projective monomial curves. Throughout this
section,

(01 -+ n—=2 n—-1+h
A_(l 1o 1 1

) , wheren >3,h € ZT,
and R is the toric ring associated to A. We prove:

Theorem 4.1. Macaulay’s theorem holds over R.

For the proof of Theorem 4.1, we need Lemmas 4.2, 4.3, 4.5, 4.7-4.11.

Lemma 4.2. Let m be a monomial in R. Suppose that
uim)=a(n—1+h)+ B(n—2)+~,

where o, B and 7y are nonnegative integers such that f(n —2) +v <
n—1+h andvy <n—-2. Ify # 0, then xfeg(m)_a_ﬁ_l
top-representative of the fiber of m. If v =0, then x
is the top-representative of the fiber of m.

xr+1x§71x% 1s the

deg (m)—a—p .6

a
n—1Tn

Proof. Pick a monomial z{" - - - z&~ from the fiber of m, and run the
following algorithm.

Qn

Input: z{*---z8
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Step 1: If Z?;ll ai(i —1) < n—1+h, go to Step 2. Otherwise,
choose (a,...,08p-1 € Z such that 0 < B < ag,...,0< Br1 < a1,
S B —1) > n— 14 h and Y07 Bi(i — 1) is minimal with
respect to this property. Running the division algorithm, we get
S Bi(i—1) = Bu(n—1+h)+6, for some B, > 1and 0 < § < n—1+h.
Let 5 = min{i | 8; # 0}. Then § < j — 1; otherwise, it contradicts the

minimality of 377" 8;(i — 1). Setting

aj = a;j = B,

Qp—1 = Qn—1 — Bn-1,
Qn = Qp + Bn,
agy1 = Qs + 1,
ai ::O‘1+(ﬁj+"'+ﬁn—1)_ﬁn_1a

we get a new monomial z{* - - - x&™ which is still in the fiber of m and

is strictly bigger with respect to >jex in S. Go back to Step 1.
Step 2: If 21_12 ai(i — 1) < n — 2, stop. Otherwise, choose

52,... ,ﬁn,Q € 7Z such that 0 < ﬁg < as,...,0 < ﬂn,Q < agp_2,
S Bi(i —1) >n—2and 077 Bi(i — 1) is minimal with respect to
this property. Running the division algorithm, we get Z?;QQ Bi(i—1) =
Bn-1(n — 2) + 6, for some f,-1 > 1l and 0 < § < n —2. Let
j = min{i | B; # 0}. Then § < j — 1; otherwise, it contradicts the
minimality of 2777 (i — 1). Setting

aj = aj = fj,

Qn—2 = Qp—2 — Bn_2,

Qp_1:=0Qp_1+ Bn_1,

Q541 =541 + 1,
ar:=o1+ B+ 4 Bn2) = Bn-1—1,

we get a new monomial 2" - - z% which is still in the fiber of m and

is strictly bigger with respect to >jox in S. Go back to Step 2.

The algorithm stops after finitely many steps, and the output of
the algorithm is the monomial described in the lemma. If the top-
representative of the fiber of m is different from the monomial given in
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the lemma, then we can run the algorithm on the top-representative
to get a bigger monomial in the fiber, which is a contradiction. So the
monomial given in the lemma is the top-representative of the fiber of
m. O

Lemma 4.3. R has the following two properties.

(1) Let m be a monomial in Ry. If w € S is the top-representative
of the fiber of m, then x,w € S is the top-representative of the fiber of
Tpm € Rgi1.

(2) If Lg is alex d-monomial space in Ry and m is the first monomial
in Rg\Lq, then dimgRy(Lg + km) > dimgR1 Ly and x,m ¢ RiLg.

Proof. (1) Let m € S be the top-representative of the fiber of x,m.
Since u(xnm) >n—1+h, by Lemma 4.2 we have x,|m. Suppose that
m = xpw’ for some monomial w’' € S. Then it is easy to see that w' is
the top-representative of the fiber of m, so that v’ = w and m = z,w.
So x,w is the top-representative of the fiber of z,,m.

(2) It suffices to prove that z,m ¢ RiLgq. By contradiction, we
assume z,m € RiLg. Then there exist z;, 1 < i < n and m’ € Ly
such that x,m = x;m’' in Rg11. Let w, w’ be the top-representatives
of the fibers of m and m’, respectively; then, by (1), z,w is the
top-representative of the fiber of x,m. Since m’' =1ex m in Ry, we
have w' >jex w in S, and then z;w’ is in the fiber of x,,m such that
;W' >10x Tpw, which is a contradiction. So, z,m ¢ Ry L. o

Definition 4.4. Let W be a d-monomial space spanned by mono-
mials wy,... ,ws € Rg with 0 = u(w;) < -+ < w(ws). For i > 0,
set

W (i) = {w, | the top representative of w;
can be divided by 2!, but not by z%1}.

The set W (i) is called n-compressed it W(i) = @ or W(i) =
{Wk;, Wk; 41, - -+ s Wk, 41}, for some t > 0 and 1 < k; < s, such that

w(wg,) = i(n —14h),



210 RI-XIANG CHEN

u(wy;+1) =i(n —1+h) +

w(wg,4+¢) =i(n —14+h)+¢

We say that a d-monomial space C' is n-compressed if C(i) is n-
compressed for every i > 0.

Lemma 4.5. Let my and ma be two monomials in Rq with u(my) <
u(msz). Suppose that u(mi) = ar(n — 1 + h) + 1 and u(ms) =
as(n — 1+ h) + P2, where a1, oo, P1, P2 are nonnegative integers
and B1,82 <n—1+h.

(1) If a1 = ag, then my =jex Ma.
(2) If a1 < g and B1 — P2 < (a2 — aq)(n — 2), then my =1ex Mo.
(3) If on < ay and By — B2 > (a2 — an)(n — 2), then my iex M1

Proof. By Lemma 4.2, we can assume that a; = 0.

(1) Now u(ml) = 517 u(mg) = 52, < 51 < 52 n—1+4 h,
and we only need to prove the case 8o = (51 + 1. Suppose that
B1 = B(n —2) + ~, where 8,v are nonnegative integers and v < n — 2.
If v = 0, then 8y = B(n —2) +1, so that by Lemma 4.2, 2% %22 | and
24P poxP | are the top-representatives of the fibers of m; and ma,
respectively; thus, m >jex mo. If v > 0, then 8o = f(n—2)+~v+1, so
that by Lemma 4.2, xf_B_leHxﬁ_l and J?tli_ﬁ_ll‘,ﬁ_gxﬁ_l are the
top-representatives of the fibers of m; and msy, respectively; thus,

m1 >lex M2.

(2) Suppose that 51 = 8(n —2) + v and 52 B'(n—2)+ 4, where
B, B, v, 7' are nonnegative integers and ,v < n — 2. Then

Br—Pa=(B—-F)n—-2)+~v-7 <axn-2),

that is,

(%) (B—= (8 +a2))(n—2) <9 —1.

If y =4’ = 0, then by (), we have 8 < 8’ + a3 and, by Lemma 4.2, we
see that x‘li_ﬁxﬁ . and xd (F'+az) ﬁ 1292 are the top-representatives
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of the fibers of m; and mso, respectively, so that mi =jex mo. If y =10
and 7/ > 0, then v —+ < n—2; hence, by (*), we have 8 < '+ a3 and,
by Lemma 4.2, we see that xffﬁxfhl and xf_(B +0‘2)_1x7,+1x571xg2
are the top-representatives of the fibers of m; and mo, respectively,
so that my =jex mo. If v > 0 and ' = 0, then 7/ — v < 0;
hence, by (x), we have 8 < 8 + as. By Lemma 4.2, we see that
xf_B_leHxﬁ_l and xff('g +a2)x§_1x,"{2 are the top-representatives
of the fibers of mj and maq, respectively, so that mj =jex mo. If v >0
and 7/ > 0, then by Lemma 4.2, we see that x?7ﬁ71x7+1x5_1 and

xff(ﬁ +a2)71x¢+1x§_1xg2 are the top-representatives of the fibers of

m1 and mg, respectively. And, by (*), we have either o' > v, 8 < 3 +aq
or v <, B < B + ag; then, it follows that m; =1ex ma.

(3) We use the notations in the proof of (2). Now (8 — (8’ +a2))(n—
2) >+ —v. If 4/ > v, then 8 > B + a9, and, similar to the
proof of (2), it is easy to check that mgo =jex m1. If 4 < 7, then
v —~v > —(n—2); hence, 8 > B’ 4+ as, so that, similar to the proof of
(2), we get ma =jex M1. o

Remark 4.6. By Lemma 4.5, we make the following remarks.

(1) By Lemma 4.5, we see that the lex order »jx induces a total
order on the set of nonnegative integers.

(2) If Ly is a lex d-monomial space, then by Lemma 4.5, it is easy to
see that Lg is n-compressed and |Lq(0)| > |Lq(1)| > |La(2)| > --- .

(3) If Ly is a lex d-monomial space and |Lg4(i)] < n — 1+ h for
some ¢ > 0, then by Lemma 4.5, one easily sees that |Lq(i + 1)] <
max{0, |Lq(i)| — (n — 2)}.

(4) If L4 is a lex d-monomial space, then |Ly(i +7)| > (| Lq(7)| — 1) —
jn —2) for i,57 > 0. Indeed, if |Lq(i)| — (|La(i + J)| + 1) > j(n — 2),
then by Lemma 4.5 (3), it is easy to see that Ly is not lex, which is a
contradiction.

(5) Let Ly be a lex d-monomial space spanned by monomials

mi,... ,mg € Rg with 0 = u(my) < -+ < u(ms), and L), a
lex d’-monomial space spanned by monomials mj,...,m, € Ry
with 0 = u(mf) < .-+ < u(ml). Then, by Lemma 4.5, we have

u(m;) = u(m}) for 1 < i < s. In particular, by Lemma 3.1, we have
dimleLd = dimleLii,.
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(6) Let W be a d-monomial space spanned by monomials wy, ... ,ws €
Ry with u(w;) < -+ < u(ws). If u(ws) > d, setting o = u(ws) — d and
W' = span {zfw1, ... ,2fws} C Ryta, we have that u(zfw;) = u(w;),

u(z§ws) = d+a, and Lemma 3.1 implies that dimg Ry W = dim; R, W".
So, by (5) and the above observation, to prove Lemma 2.2, we can
always assume that u(ws) < d, and then, for any 0 < j < wu(ws),
there exists an m = z{ 7z} in Ry such that w(m) = j. Further-
more, there exists a w; € Ry such that u(w;) = u(w;) — u(wy).
Let W = span{wi,... ,ws} C Ry; then, by Lemma 3.1, we have
dimg R W = dimlew, so that, to prove Lemma 2.2, we can also
assume that u(w;) = 0.

Lemma 4.7. Let Ly be a lex d-monomial space in Rgq such that
L4 # Ra, and let m be the first monomial in Ry\Lq. Then

n ifu(m)=0
dimg Ry (Lg + km) —dimgpR1Lg=¢ 2 if 1 <u(m)<h
1 if u(m) > h.

Proof. Let ay, = dimgpRq(Lg + km) — dimy Ry Lg; by Lemma 3.1 and
Remark 4.6 (5), we see that a,, depends only upon u(m) and does not
depend upon d. If u(m) = 0, then it is clear that a,, = n. If u(m) > h,
then by Lemma 4.3 (2), we see that a,, > 1.

If 1 < wu(m) < h, then a, > 2. Indeed, if z,_1m € Ry1Lg4,
then z,_ym = z;m’ in Ry for some j # n — 1 and m’ € Lq.
Since u(zp—1m) = u(rp—1) + u(m) < n — 2+ h, it follows that
u(m’) < n— 24 h. Note that m’ >jex m. Then, by Lemma
4.5 (1), we see that u(m’) < wu(m); hence, z; = =z,, and then
w(@p—1m) = u(xy,m'’) > n — 1+ h, which is a contradiction. Thus,
Tpn—1m ¢ RiLy. By Lemma 4.3 (2), we see that x,m is also not in
Ry1Ly, so a,, > 2.

Next we set d = n + h and consider R, 4. By Lemma 4.2 it is easy
to see that, for any monomial m € R, tp, u(m) > n— 1+ h if and only
if m = x,m’ for some monomial m’ € R,,_1p, so that

n—2+h
Ryyh =20 Ry 14n @ < @ kmi>,
i=0
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where m; = x’f"’h_lxé in R,y is such that u(m;) = ¢; thus, we have

dimg Ry 4p — dimgRy—145 =n— 14 h.

On the other hand, since R,,_14y is a lex (n — 1 + h)-monomial space
and R4+ = RiRn—144, it follows that

dimk Rn+h - dimk. Rn—1+h

=m-1+ > (am—1D+ Y (am—1)

1<u(m)<h u(m)>h
>n—1+h.

Since the equality holds, we must have that a,, =2 if 1 < u(m) < h
and a,, = 1 if u(m) > h. O

Lemma 4.8. Let C be an n-compressed d-monomial space.
(1) R1C is an n-compressed (d + 1)-monomial space.

(2) If C is spanned by monomials c1, ... ,cs € Rqg with u(c;) =1 —1
and s <h+1, then |[R1C(0)] =n—2+s, |[RiC(1)| =s, |[R1C(4)| =0
for j > 2, and dimp R C =n+2(s — 1).

(3) If C is spanned by monomials c1, ... ,cs € Rq with u(c;) =1 —1
and h+2<s<n-—1+4h, then |[R1C(0)| =n—1+h, |[R1C(1)| = s,
|[R1C(j)| =0 for j > 2, and dimpyR1C =n—1+h+s.

Proof. (1) Let m be a monomial in R;C such that u(m) = p(n —
14+ h)+qforsomep >0and 1 < g <n—1+h; then m = z;m’
for some j and m’ € C. If n — 1 + h divides u(m’), then j # 1 or n,
so that z;_ym’ € RiC and u(zj_im’) = u(xz;m’') — 1 = u(m) — 1; if
n— 1+ h does not divide u(m’), then since C' is n-compressed, we have
a monomial m” € C such that u(m’) = u(m’)—1, so that ;m"” € R, C
and u(z;m"”) = u(x;m') —1 = u(m) — 1. So R1C is an n-compressed
(d + 1)-monomial space.

(2) It is clear that |[R1C(j)| = 0 for j > 2. By Lemma 3.1, we have
dimiR1C = sn — Z A(ciy civr)
1<i<s—1
=sn—(s—1)(n—-2)
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Thus, |[R1C(0)| + |R1C(1)| =n+2(s—1). By (1), we know that R;C
is n-compressed, so that u(z,—1¢s) =n—2+s—1<n—1+h and
u(xpes) = n—14+h+ s — 1 imply that |[R;C(0)] > n —2+ s and
|R1C(1)| > s. Thus, |[R1C(0)] =n—2+ s and |[R1C(1)| = s.

(3) It is clear that |[R1C(j)| = 0 for j > 2. By Lemma 3.1, we have

dimg R, C = sn — Z A¢iy cit1)

1<i<s—1
- Y Mecirnr)
1<i<s—h—1
=sn—(s—1)(n—2)—(s—h—1)
=n—14+h+s

Thus, |R1C(0)] + |[R1C(1)] = n—1+h+s. By (1), we know that
R;C is n-compressed, so that w(z,4p—scs) =n—24+h<n—1+h
and u(zpcs) =n— 14+ h+s— 1 imply that |R;C(0)] >n — 14 h and
|R1C(1)| > s. Thus, |[R1C(0)] =n—1+ h and |[R1C(1)| = s. O

Lemma 4.9. Let W be a d-monomial space spanned by monomials
Wi, ..., ws € Rg with u(wy) < -+ <u(ws) <d, and u(ws) —u(wy) <
n—1+h. Let C be the n-compressed d-monomial space spanned by
monomials ¢1,...,¢s € Rg with u(c;) =i —1 for 1 < i < s, and set
W= {monomial m € RiW | u(wy) < u(m) < u(w1) +n — 1+ h}.
Then |W| > |R1C(0)| and dimyRyW > dim; R, C.

Proof. By Remark 4.6 (6), we can assume that u(w;) = 0. Then
u(ws) < m—1+ h, and W = R;W(0). By Lemma 4.8, we see
that |R1C(1)] = s; hence, |[RiW(1)] > s = |R1C(1)]. Note that
dimg R W = |RiW(0)| + |[RiW(1)| and dimpR1C = |R1C(0)] +
|R1C(1)|; thus, we only need to prove that |[RyW(0)| > |R,1C(0)].

First we suppose s < h+ 1; then, by Lemma 4.8, we have |R1C(0)| =
n—2+s. If there exist w; and w; 1 such that u(w; 1) —u(w;) >n—2,
then 0 = u(ziw1) < u(zrws) < -+ < w(rrw;) < u(wow;) < -+ <
w(zp_1w;) < u(rrwis1) < -+ < u(zrws) < m — 1 + h, which implies
that |[RyW(0)] > s+ n —2 = |R1C(0)]. So we can assume that
w(wit1) —u(w;)) < n—2for 1 <i < s—1. For any nonnegative
integer | < u(z,—1ws), there exists a w; such that u(w;) is maximal
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with respect to the property that w(w;) < I. Then it is easy to see
that 0 < I — w(w;) < n — 3 and w(2;_y(w,)+1wi) = [. Therefore, if
w(xp—1ws) >n — 1+ h, then

[RiW(0)=n—1+h>n—-2+4+s=|R1C(0);
if u(xp_qws) <m—1+h, then
[RiW(0)| = u(zp_1ws) +1>(n—=2)+(s—1)+1
= |[R:C(0)].

Next we suppose h+2 < s < n—1+h. Then, by Lemma 4.8, we have
|[R1C(0)| = n—1+h, and it is easy to see that u(w;41) —u(w;) <n—2
for 1 <i<s—1and u(r,—1ws) > n— 1+ h. Therefore, similar to the
above argument, we have |[RiW(0)| =n — 1+ h = |R1C(0)]. O

Lemma 4.10. Let W be a d-monomial space spanned by monomials
Wi, ...,ws € Rgq with u(wy) < -+ < u(ws) < d. If there exists
1<i<j<ssuchthat j—i>h and u(w;) —u(w;) <n—1+h, then

dimleLW S dimkR1W,
where Ly is the lex d-monomial space in Rq such that dimg Ly =

Proof. By Lemma 4.7, we have that dimg Ry Ly < dimg Ly +(n—1)+
h =dimyW +n—14+h = s+n—1+h. On the other hand, it is easy to

check that, if 1 < p < i, then z1w, ¢ Rispan{wpt1,... ,W;,... ,w;};
if j < g <'s, then z,w, ¢ Rispan{wi,...,w;,... ,wg—1}. Thus, we
have

dimy Ry W > dimg Ryspan{w;, ... ,w;} + (i — 1) + (s — j).
By Lemmas 4.8 and 4.9, it is easy to see that
dimgRyspan {w;, ... ,wj} >n—14+h+(j —i+1).
Therefore, we have

dimgRiW 2>n—1+h+(G—i+1)+(E—-1)+(s—J)
=n—14+h+s
ZdimleLw. O
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Lemma 4.11. Let C be an n-compressed d-monomial space in Ry,
and suppose that there exists a t > 0 such that 0 < |C(i)] < h for
i=0,...,t and |C(:)| =0 fori>t. Then

dimk Rl Lc S dimk R1 C,

where Lo s the lex d-monomial space in Ry such that dimpLo =
dika,

Proof. It |C(j)] < |C(G+ 1)+ (n —2) for some 0 < j < ¢ — 1, then
we consider the n-compressed d-monomial space C’ such that

T =I1CHI+1,
IC'@=1CH)] -1,
[C' ()] = |C@) if i # j,t.

By Lemma 4.8, one easily sees that

[R1C(0)] = |C0)| + (n - 2),

|R1C(7)| = max{|C(i)| + (n — 2),|C(i — 1)|} for 1 < i <4,
[RAC(t+1)| = |C()],

|[R1C(1)|=0fori>t+1,

and we have similar formulas for C’. Then it is easy to check that

|R1C"(5)| < [R1C(H)] + 1,
[R.C' ()] < |[R1C(2)],

IR\C'(t+1)| = |[RiC(t + 1)| - 1,
IR1C"(i)| = |R1C(i)]| for i £ j,t.t + 1.

Therefore, we have that dimyC’ = dim;C and dim;R;C’ < dim;R;C.
If |C'(j)] = h + 1, then by Lemma 4.10, dimy Ry Lc < dimg R;C’, and
then dimy R Lo < dimgR1C. So we can assume that |C’(j)| < h, that
is, C” satisfies the assumption of the Lemma.

By the above observation, we can assume that C' is an n-compressed
d-monomial space in Ry and there exists ¢ > 0, such that 0 < |C(i)] < h
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for 0 <i <t |C>i)| > |C>E+1)|+(n—2)for 0 <i<t—1,and |C(i)| =0
for ¢ > ¢t. Then by Lemma 4.8, it is easy to see that

dimgR;C = |C0)| + (n—2)+|C0)| +|C()| +--- + |C(t)]
= [C(0)] +n — 2 + dimyC.

If |ILc(0)| > |C(0)], then by Remark 4.6 (4), we have that, for 1 <14 <t,
[Le(@)] = [Lo(0)] =1 —i(n = 2) > |C0)] —i(n—2) > [C(i)],
and then

dimi Lo > [Le(0) + [Le(1)] 4 -+ + [Le(t)]
>[CO) +[CA)| +---+C{)]
= dimC,

which is a contradiction. So we have |Lc(0)] < |C(0)] < h. By
Remark 4.6 (2), we see that |Lo(i)] < h for ¢ > 0. Thus, by
Remark 4.6 (3), one easily sees that there exists a ¢’ > 0 such that
|Le(@)| > [Le(i+ 1)+ (n—2) for 0 < ¢ <t —1, and |Le(4)] = 0 for
1 > t'. Therefore, by Lemma 4.8, it is easy to see that

dimgR1Le = |Le(0)] + (n —2) + |Le(0)] + | Le (1) + -+ + |Le ()]
=|Lc(0)] + (n — 2) + dimy Lo
<|C0)| 4+ n — 2+ dimC
= dimlec. ]

Proof of Theorem 4.1. Let W be a d-monomial space spanned by
monomials wy, ... ,ws in Ry with u(wy) < -+ < u(ws); by Lemma 2.2,
we only need to prove that

dimg R Ly < dimip R W,

where Ly is the lex d-monomial space in R4 such that dimgLy =
dimkW.

By Remark 4.6 (6), we can assume that u(w;) = 0 and u(ws) < d.
Note that there exist 1 = ig < i1 < --- < iy < s for some t > 0 such
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that u(ws) —u(w;, ) <n—1+h,and for 1 < j <, u(w;; 1) —u(w;;_,) <
n—1+hand u(w;,) —u(w;;_,) >n—1+h. Set

W[O] = {wio’ B 7wi171}7
W[l] = {wila v 7wi2—1}7

Then, by Lemma 4.10, we can assume that |W[j]| < h for 0 < j <t.

Let C be the n-compressed d-monomial space such that |C(j)| =
[W1j]| for 0 < j < t and |C(j)] = 0 for j > t + 1. Then dim;C =
dim; W, and it is easy to see that

dim B, C = [R,C(0)] + [RiC(1)] + - -
+ |RiC(t)] + |R1C(t+ 1)),
dimg By W = [(RaW)[0]] + [(RaW)[L][ + - -
+ [((RaW)[E]| + [(RaW)[E + 1],
where (RiW)[0] = RyW(0), (RiW)[t + 1] is the set of monomials m €
R W such that u(m) > u(w;,)+n—1+h,and for 1 < j <, (RiW)[j]

is the set of monomials m € RiW such that u(w;;_,) +n—-14+h <
u(m) < u(wg,;) +n — 1+ h. First, it is easy to see that

[(BW)[E+1]] = [WH| = [C(O)] = [B1C(E + 1))

Then By Lemma 4.9, we get
[ W (0)] = [R1C(0)].
Finally, by Lemma 4.8 it is easy to see that, for 1 < j <,
[R1C ()| = max{|C(j — D], |CG)| + (n = 2)};

if |[R1C(j)| = |C(j — 1), then we have

(BaW)[ll = Wi = 1] = 1C( = D] = [RC()l;
it |[R1C(j)| = |C(j)| + (n — 2), then by Lemma 4.9, we also have

|(RaW) ]| = [B1C ()]
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So, we get dimpR1W > dimiR;C. By Lemma 4.11, we know that
dimiR1C > dimg Ry Lc, where Lo is the lex d-monomial space such
that dimiyLes = dimipC. Note that Lo = Lw, so dimpyR\W >
dimleLw. O

5. Two other classes of projective monomial curves. The
main results of this section are Theorems 5.1 and 5.5.

Theorem 5.1. Let

1 1 1 1
wheren >3, heZ'.

A_(o 1+h 2+h - n—1+h>

Let R be the toric ring associated to A.
(1) If h =1, then Macaulay’s theorem holds over R.
(2) If n = 3, then Macaulay’s theorem holds over R.
(3) If h > 2 and n > 4, then Macaulay’s theorem does not hold over R.

In order to prove Theorem 5.1, we need Lemmas 5.2, 5.3 and 5.4.

Lemma 5.2. Let R be the toric ring defined in Theorem 5.1 and
R’ the toric ring defined in Section 4 such that R and R’ satisfy
the assumptions of Lemma 3.2. Then we have an isomorphism f :
S = klx1,...,xn] = S = k[y1,... ,yn] with f(z;) = ynt1-i, which
induces an isomorphism [ from R to R'. Setting x4 > --+ > x, and
Y1 > - > Y, as usual, by Definition 2.1, we have the lex orders »jex,

1ex’ 1 R and R'.

(1) Let m be a monomial in Ry such that yi™*-- -y~ is the top
representative of the fiber of the monomial f(m) € R.. Then
F et y@n) = a3 s the top-representative of the fiber of
m.

(2) Let m and m' be two monomials in Ry such that u(m) < u(m').

Then m =1ex M’ in Ry, so that the lex order »=1ox in Ry is the same as
the natural order >, defined in Remark 2.4.
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Proof. (1) Suppose that xlﬁ" ...zP1 is the top representative of
the fiber of m. Then £, > «, and ]?(x'f”xﬁl) = yfl coqyBn
is a monomial in the fiber of f(m). Since yi*---y%» is the top
representative of the fiber of f(m), by Lemma 4.2 we have ,, < ay,
so that 8, = a,, and then §,_1 > a,_1. But, by Lemma 4.2, we have
Bn-1 < ap—_1, so that 8,1 = a,_1. If there exists 2 < i < n — 2
such that 8; > «a; and B; = «; for j > 4, then the monomial
y yfyf:{l <.y ig in the fiber of f(m). By Lemma 4.2, one
easily sees that ; < «;, which is a contradiction, so we have §8; = «;
fori =2,...,n—2. Since deg(m) = S1+ -+ fn =1 + - + an,
it follows that 8; = o, and then " - 22 = zf" ... 281 is the top-
representative of the fiber of m.

(2) Let yi* -+ - y2n, ylﬁ1 -+ -y be the top-representatives of the fibers
of f(m) and f(m’). Then (1) implies that z&" ... z21, 22" ... 21 are
the top-representatives of the fibers of m and m’. Since u(m) < u(m’),
by Lemma 3.3 (1), we have u(f(m)) > u(f(m')), so that Lemma 4.2
implies a,, > B,. If a,, > B, then m =1x m’ and we are done. So
we may assume «, = [,. Then similarly, by Lemma 4.2, we have
Qp_1 > Bn_1, and if a1 > B,,_1, we are done. So we can also assume
that a,—1 = Br—1. Then, applying Lemma 4.2 again, we see that there
exist 2<r<n-—2and1<7 <r—1such that

a1 Qn __ d—l—an_1—an An—1, Oy
Y1 Y =Y YrYn—1 Yn >
B1 Bn d—l—ap_1—0an An—1 @
Y1 Unt =Y Yr'Yp—1 Yn™>
and then we have that
o «@ o QO —1 d—1—ap_1—anp
Tyt =T Tng1 - Ty !

Qe 11— _
>lex x?nxgn 1xn+17r’x7dl 1=an-1-an

— Bn ﬁl
_xl ...xn’

which implies m =jex ™. O

Lemma 5.3. Let R be the toric ring defined in Theorem 5.1, and
suppose h = 1. Let Lq be an r-dimensional lex d-monomial space in
Ry with 0 < r < dimgRy and m the first monomial in Rg\Lg. If we
set
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a, = dimi Ry (Ld + km) —dimg Ry Ly,
then ap =n, a1 =2 and a, = 1 for 1 <r < dimgRy.
Proof. Without loss of generality, we can assume d > 1. It is clear

that ag = n. If r = 1, then it is easy to see that Ly = span {z{} and
m = xf‘lxg in Ry, so that by Lemma 3.1,

dimy Ry (Lg + km) = 2n — XNz¢, 29 tay) =2n — (n —2) = n + 2;

hence, ap + a1 = n + 2, and then a; = 2. If 1 < r < dimgRy, by
Lemma 5.2, we see that u(x,m) > u(x;m’) for any 1 < j < n and
any monomial m’ € Lg; hence, x,m ¢ RjLg, and then a, > 1 for
1 < r < dimgRy. Note that dimg Ry Ry = dimpR441, and it is easy to
see that

dimgRgy1 — dimg Ry = dimp R — dimpRy =n—1+h =n,

where R’ is the toric ring defined in Lemma 5.2. Thus,

(@-D+@m-)+ >  (a—1)=n,

1<r<dimy R4

so that > . _gim, r,(@ — 1) = 0, which implies a, = 1 for 1 <7 <
dimde. O

Lemma 5.4. Let R and R’ be the toric rings defined in Lemma 5.2,
and suppose n = 3. If Lq, L!; are lex d-monomial spaces in Rq and R},
such that dimyLg = dimy L), then dim,R1Lg = dim, R} L.

Proof.  Since the toric ring R is defined by the matrix A =

((1] 1J1rh QJlrh) and Ker A has dimension 1, one easily sees that the
toric ideal I4 is generated by the binomial 22" — z12:™" so that

we have R = k[xl,xg,xg]/(ngrh - xlxéJrh), and similarly, R’ =

Ky, y2,ys]/ (5™ =y ys).
Let Ty be the set of monomials in k[z1, 22, x3]¢q which cannot be di-

vided by 22", and let T/ be the set of monomials in k[yy, y2, y3]a which
cannot be divided by y%*h. It is easy to see that, for any monomial
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m € Ry, there is one and only one monomial in the fiber of m that can-
not be divided by 23", Then it follows that the monomials in Ry are
in one-to-one correspondence with the monomials in T,;. Furthermore,
if dimy L4y = r and L4 is spanned by the monomials mq,... ,m, € Ry
with w(m1) < --- < u(m,.), then my,... ,m, have top-representatives
w1, ..., w, € Ty that are the first r monomials in Ty. Similarly, if
dimy L), = r and L/, is spanned by monomials m/,... ,m. € R}, then
mj, ... ,m) have top-representatives wi, ... ,w). € T} that are the first
r monomials in T7.

Note that the natural isomorphism g : S = k[z1,29,23] — S =
k[y1,y2, y3] with g(z;) = y; for j = 1,2,3 induces an order-preserving
bijection between Ty and T)j. Then g(w;) = w} for 1 <4 < r. Setting
W = span{wsi,... ,w,} C Sq and W' = span{wi,... ,w.} C S},
one easily sees that dimyS1W = dimyS{W’. Let p be the number of

monomials in S1W that can be divided by x§+h, and let p’ be the

number of monomials in S;W’ that can be divided by y2"; then we

have p = p’. Note that if zow; can be divided by x%Jrh for some 7, then
Tow; = xg(xlxgwi/xéJrh) in Rgy1 and xlxgwi/xgrh = w; for some
j < i. Therefore, the monomials in the lex (d 4+ 1)-monomial space
Ri1Lg are in one-to-one correspondence with the monomials in S1W

that cannot be divided by 221", so that we have
dimgy R Ly = dimip S1W — p.
Similarly, we have
dimy R L), = dim S1W —p/,

and so dimyR1Lg = dimy R} L. |

Proof of Theorem 5.1. (1) Let W be a d-monomial space spanned by
monomials wy, ... ,w, € Rg with u(w;) < -+ < u(w,). By Lemma 2.2,
it suffices to prove that dimgR; Ly < dimi R, W, where Ly is the lex
d-monomial space in Ry such that dimg Ly = dimgW = r.

We prove by induction on r. If r = 1, then dimgzRi;Ly =
dimy R W =n. If r = 2, then by Lemma 5.3, dimy Ry Ly = ag + a1 =
n + 2, and by Lemma 3.1, dimp Ry W = 2n — A\(wq,w2). It is easy to
see that A(wq,ws) < n — 2. Thus, we have

dim Ri{W > 2n — (TL — 2) =n+2=dimyR{Ly.
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If r > 2]let W be the d-monomial space spanned by monomials
wy,...,Wr—1 € Rg and LV/[\/ the lex d-monomial space in Ry such
that dikaVAV = dimkﬁ/\ = r — 1. Then, by induction we have
dimleLﬁ/ < dimle/VV. By Lemma 5.3, we see that dimi R Ly =
dimleLﬁ/ + 1. On the other hand, since u(x,w,) > u(zr;w;) for any
1 < j <n and any ;\g i <r—1, we have z,w, ¢ le, and then
dimp R W > dimpRiW + 1. Therefore,

dim Ry W > dimg Ry W + 1 > dimg Ry L, + 1 = dim Ry Ly,

and we are done.

(2) Let W be an r-dimensional d-monomial space in Ry. By
Lemma 2.2, it suffices to prove that dimg R Ly < dimiRW where
Ly is the lex d-monomial space in Ry such that dimg Ly = r.

Let f and R’ be as in Lemma 5.2. Then, by Lemma 3.3 (1),
we see that f(W) is an r-dimensional d-monomial space in R/, and
dimp Ry W = dimy R} f(W). Let L’f(W) be the lex d-monomial space
in R/, such that dika}(W) = r. Then, by Lemma 5.4, we have
dimpRi Ly = dimkR’lL’f(W). By Theorem 4.1, we see that R’ sat-
isfies Macaulay’s theorem; hence, dimkR’lL’f(W) < dimi R} f(W). So,
dimg R Ly < dimiR; W, and we are done.

(3) Considering the l-monomial space W = span{z2, 23} and the
lex 1-monomial space Ly = span{zj,x2} in Ry, we have dim;W =
dimg Ly = 2. However, by Lemma 3.1, it is easy to see that

dimg Ry W =2n — A(zg,23) =2n— (n —2) =n+ 2,
and

dimleLW
2n—1 n<h+2

=2n—A(z1,22) = {

m—(14+n—h—-2)=n+h+1 ifn>h+3.
Since h > 2 and n > 4, one can easily check that dimgR;Ly >
dimgyR1W. So, by Lemma 2.2, Macaulay’s theorem does not hold
over R. a
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Theorem 5.5. Let

A 01 .-+ m—-1 m+h -+ n—-1+4+h
“\1 1 .- 1 1 1 ’

wheren > 4,2 <m <n-—2and h € ZT. Let R be the toric ring
associated to A. Then Macaulay’s theorem does not hold over R.

Proof. We have three cases.

Case 1. h<m — 1. Let W = span{z?, 2172, ... , %12, TaZm } C Ro
and Ly = span {z%, 2172, ... ,¥1Zm, T1Tm+1} C Ro. Then W is a 2-
monomial space in Ry and Ly is a lex 2-monomial space in Ry such
that dimpW = dimg Ly = m + 1. By Lemma 3.1, we have

dimg Ry W = (m + 1)n — Z AMzias, z125)

1<i<j<m

= > Marwi, mam),

1<i<m

dimgR1 Lw = (m+ 1)n — Z AMzia;, x125)

1<i<j<m

= Y AM@zmi, m1Tmia),

1<i<m
so that we get
dimg Ry Ly — dimip Ry W
= Z AMz124, xoTm,) — Z AMx1245, 1T mt1)-

1<i<m 1<i<m
It is easy to see that
Mz1Zm, TaTm) = n — 2, Mz1rZm—, T2ym) = 1,

and
AMz124, x0xm) =0 for 1 <i<m—1andi#m—h.

Thus, we have

Z AMz12s, x2xm) =n—24+1=n—1.
1<i<m
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On the other hand, one easily sees that

1 fm-—h<i<m-1;

MorTi, 21Eme1) = {0 iti<m—h

If n—m—12> h+1, then it is easy to check that

Mx1Zm, 21Tme1) =14+ (m—1) = (h+ 1)+ 1)
+((n-m-1)—(h+1)+1)
=n—2h-1,

so that we have

Z AMzr2i, x1%me1) =h+n—2h—1=n—h—1,

1<i<m
and then
dimg R Ly — dimgRi W =n—-1—(n—h—-1)=h>1>0;

therefore, by Lemma 2.2, we see that Macaulay’s theorem does not hold
over R. If n —m — 1 < h+ 1, then it is easy to check that

Mz1ZTm, ¥1Zmy1) =14+ (m—=1)—(h+1)+1) =m — h,
so that we have

Z Nz1245, 21T y1) = h+m —h =m,
1<i<m
and then
dimgR; Ly —dimyRiW=n—-1-m>n—-1—(n—-2)=1> 0;

therefore, by Lemma 2.2, we see that Macaulay’s theorem does not hold
over R.

Case 2. h > m and m < n —2. Let W and Ly be the same 2-
monomial spaces as in Case 1. Then

dimleLW - dimlew
= Z AMz124, xoTm) — Z AMz124, 1T mt1)-

1<i<m 1<i<m
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It is easy to see that
AMx1Zm, Toy) =n — 2, and A(x124, x2Tm) =0 for 1 <i<m — 1.
Thus, we have

Z Mz124, ToXm) =n — 2.

1<i<m

On the other hand, one easily sees that
M1z, T1Tmg1) = L for 1 <i <m — 1.
If n—m—12> h+1, then it is easy to check that

Mzrzm, 21Zmy1) =14+ (n—m—-1)—(h+1)+ 1)

=n—m — h,
so that we have

Z Mzr2s, 21 Zme1) =m—14+4n—m—h=n—h-—1,
1<i<m

and then

dimg R Ly — dimpyRiW =n—-2—(n—h—1)
—h-1>m-1>1>0.

Therefore, by Lemma 2.2, we see that Macaulay’s theorem does not
hold over R. If n —m — 1 < h + 1, then it is easy to check that
Mz1Zm, Z1Tmy1) = 1, so that we have

Z AMz12s, x1Tme1) =m — 14+ 1=m,
1<i<m

and then
dimg Ry Ly — dimpyRy W =n—-2-m>n—-2—(n—2)=0.

Therefore, by Lemma 2.2, we see that Macaulay’s theorem does not
hold over R.
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Case 3. h > m and m = n — 2. Let p be the maximal integer such
that p < (h —1)/(m — 1); then p > 1. Considering R,41, we see that,
for any monomial w € Rpt1, 0 < u(w) < (p+1)(n — 1+ h). More
precisely, one can easily check that there are (n—1)+ (p—4)(m—1)+4
monomials w € Ry4q such that i(n—14+h) < u(w) < (i+1)(n—14h)
for 0 < i < p, so that

p
dimgRpp1 =1+ (n—1)+ (p—i)(m—1) +i
=0

:1+(p—|—1)<n—|—%—1).

Similarly, we have

dimgRpqo = (n—14+h)+1
p

+Y (n=1)+(p—i)(m—1)+(i+1)

=0
=n+h+p+1+(p+1)(n+l?—1>.
Setting [ =1+ (p+ 1)(n + (pm/2) — 1), we have that
dimy Ry 1 =
and

dimp R Rpy1 =dimpRpio=n+h+p+1.

Let W be the I-monomial space spanned by the monomials wy, ... ,w; €
R; such that u(w;) =¢—1for 1 <¢ <. Let monomials w},... ,w] be
a basis of R,41, and let Ly, be the I-monomial space spanned by the
monomials 2\ P w}, ... 2?7 w] € R;. Then it is easy to see that
Ly is a lex I-monomial space such that

dikaW = dimkW =1
and

dimi R Ly = dimleRpH =n+h+p+I.
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However, by Lemma 3.1, one can easily check that

dimg R W =In—(1-1)n—-2)—(1{—-1)—(h+1)+1)
=n+h—-1+1,

so that

dimg R Ly — dimpgRiW =(n+h+p+1)—(n+h—-141)
=p+1>2>0;

therefore, by Lemma 2.2, we see that Macaulay’s theorem does not hold
over R. O
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