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MACAULAY’S THEOREM FOR
SOME PROJECTIVE MONOMIAL CURVES

RI-XIANG CHEN

1. Introduction. Throughout this paper S stands for the poly-
nomial ring k[x1, . . . , xn] over a field k with the standard grading
deg (xi) = 1 for 1 ≤ i ≤ n. For any graded ideal J of S, the size
of J is measured by the Hilbert function

h : N −→ N

i �−→ dimkJi,

where N = {0, 1, 2, . . .} and Ji is the vector space of all homogeneous
polynomials in J of degree i. In 1927, Macaulay [9] proved that, for
every graded ideal in S, there exists a lex ideal with the same Hilbert
function. Since then, lex ideals have played a key role in the study
of Hilbert functions: in 1966, Hartshorne [5] proved that the Hilbert
scheme is connected, namely, every graded ideal in S is connected by
a sequence of deformations to the lex ideal with the same Hilbert
function; then in the 1990s, Bigatti [1], Hulett [6] and Pardue [11]
proved that every lex ideal in S attains maximal Betti numbers among
all graded ideals with the same Hilbert function.

It is interesting to know if similar results hold for graded quotient
rings of the polynomial ring S. One important class of graded quotient
rings over which Macaulay’s theorem holds is the Clements-Lindström
ring S/(xc1

1 , . . . , xcn
n ), where c1 ≤ · · · ≤ cn ≤ ∞. In 1969, Clements

and Lindström [2] proved that Macaulay’s theorem holds over the ring
S/(xc1

1 , . . . , xcn
n ), that is, for every graded ideal in S/(xc1

1 , . . . , xcn
n ),

there exists a lex ideal with the same Hilbert function. In the case
c1 = · · · = cn = 2, the result was obtained earlier by Katona [7] and
Kruskal [8]. Recently, Mermin and Peeva [10] raised the problem to
find other graded quotient rings over which Macaulay’s theorem holds.

Toric varieties, cf. [3], have been extensively studied in algebraic ge-
ometry. They are very interesting because they can be studied with
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methods and ideas from algebraic geometry, combinatorics, commuta-
tive algebra and computational algebra. In [4], Gasharov, Horwitz and
Peeva introduced the notion of a lex ideal in the toric ring and raised
the question [4, 4.1] to find projective toric rings over which Macaulay’s
theorem holds. They proved in [4, Theorem 5.1] that Macaulay’s the-
orem holds for the rational normal curves. The goal of this paper is to
study whether Macaulay’s theorem holds for other projective monomial
curves.

Let A =
{( a1

1

)
, . . . ,

( an

1

)}
be a subset of N2\{�0}. We set A =( a1 ··· an

1 ··· 1

)
to be the matrix associated to A, and assume rankA = 2.

The toric ideal associated to A is the kernel IA of the homomorphism:

ϕ : k[x1, . . . , xn] −→ k[u, v]

xi �−→ uaiv.

The ideal IA is graded and prime. Set R = S/IA ∼= k[ua1v, . . . , uanv].
Then R is a graded ring with deg (xi) = 1 for 1 ≤ i ≤ n. We call
R = S/IA the toric ring associated to A. Every projective monomial
curve in Pn−1 can be defined by IA for some A. For example, the
rational normal curves are defined by the toric ideals associated to

matrices of the form A =
(

0 1 ··· n−1

1 1 ··· 1

)
. We say that Macaulay’s

theorem holds for a projective monomial curve defined by IA, or that
Macaulay’s theorem holds over the toric ring R = S/IA if, for any
homogeneous ideal J in R, there exists a lex ideal L with the same
Hilbert function. Throughout, we assume that x1 > · · · > xn.

In Theorem 4.1 we prove that Macaulay’s theorem holds for projective
monomial curves defined by the toric ideals associated to matrices of
the form

A =

(
0 1 · · · n− 2 n− 1 + h
1 1 · · · 1 1

)
, where n ≥ 3, h ∈ Z+.

In Theorem 5.1 we consider matrices of the form

A =

(
0 1 + h 2 + h · · · n− 1 + h
1 1 1 · · · 1

)
, where n ≥ 3, h ∈ Z+,

and prove that if h = 1 or n = 3, Macaulay’s theorem holds; otherwise,
Macaulay’s theorem does not hold.
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Finally, in Theorem 5.5 we prove that Macaulay’s theorem does not
hold if

A =

(
0 1 · · · m− 1 m+ h · · · n− 1 + h
1 1 · · · 1 1 · · · 1

)
,

where n ≥ 4, 2 ≤ m ≤ n− 2 and h ∈ Z+.

2. Preliminaries. Throughout this paper, we fix the order of the
variables in S to be x1 > · · · > xn and consider the induced lex order
>lex on S.

To define the lex ideals in the toric ring R = S/IA, we need the
following definition introduced in Section 3 in [4]:

Definition 2.1. An element m ∈ R is a monomial if there exists a
monomial preimage xα1

1 · · ·xαn
n of m in S. For simplicity, by writing

m = xα1
1 · · ·xαn

n in R, we mean m = xα1
1 · · ·xαn

n + IA in R. An ideal in
R is a monomial ideal if it can be generated by monomials in R. Let
m ∈ R be a monomial; the set of all monomial preimages of m in S is
called the fiber of m. The lex-greatest monomial in a fiber is called the
top-representative of the fiber.

Let m,m′ ∈ Rd be two monomials of degree d in R. Let p, p′ be the
top-representatives of the fibers of m and m′, respectively. We say that
m 	lex m′ in Rd if p >lex p′ in S.

A d-monomial space W is a vector subspace of Rd spanned by some
monomials of degree d. A d-monomial space W is lex if the following
property holds: for monomials m ∈ W and q ∈ Rd, if q 	lex m then
q ∈ W . A monomial ideal L in R is lex if, for every d ≥ 0, the d-
monomial space Ld is lex.

By [4, Theorem 2.5], we know that for any homogeneous ideal J in
R, there exists a monomial ideal M in R such that M has the same
Hilbert function as J . So, to show that Macaulay’s theorem holds over
R, we only need to prove that, given any monomial ideal M in R, there
exists a lex ideal L in R with the same Hilbert function. Furthermore,
we will use [4, Lemma 4.2], which states:

Lemma 2.2 (Gasharov-Horwitz-Peeva). Macaulay’s theorem holds
over R if and only if, for every d ≥ 0 and for every d-monomial space
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W , we have the inequality:

dimkR1LW ≤ dimkR1W,

where LW is the lex d-monomial space in Rd such that dimkLW =
dimkW .

Remark 2.3. Let W be a d-monomial space spanned by monomials
w1, . . . , ws ∈ Rd; then we have that

dimkW = |{w1, . . . , ws}|

and

dimkR1W = |{xiwj ∈ Rd+1 | 1 ≤ i ≤ n, 1 ≤ j ≤ s}|.

If W ′ is another d-monomial space spanned by monomials w′
1, . . . , w

′
t ∈

Rd, then we have

dimkW ∩W ′ = |{w1, . . . , ws} ∩ {w′
1, . . . , w

′
t}|.

Remark 2.4. Let m be a monomial in R. Pick a representative
xα1
1 · · ·xαn

n from the fiber of m. Then

ϕ(xα1
1 · · ·xαn

n ) = uα1a1+···+αnanvα1+···+αn ,

which is independent of the choice of the representative. Define

u(m) = u(xα1
1 · · ·xαn

n ) := α1a1 + · · ·+ αnan.

Note that degm = α1 + · · ·+ αn. Then, for monomials m, m′ ∈ R,

m = m′ ⇐⇒ u(m) = u(m′) and degm = degm′.

Hence, for any d ≥ 1, we have a natural order >u on the monomials in
Rd: for monomials m,m′ ∈ Rd, we say that m >u m′ if u(m) < u(m′).
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Note that the lex order 	lex may not coincide with the natural order
>u. This is illustrated in the following example.

Example 2.5. Let A =
(

0 1 3

1 1 1

)
. Then, in R2, x1x3 	lex x2

2, but

x2
2 >u x1x3.

We use lex order 	lex instead of >u to define lex ideals in R because
we want to have the following crucial property: If Ld is a lex d-
monomial space in Rd, then R1Ld is a lex (d + 1)-monomial space
in Rd+1. By [4, Theorem 3.4], we know that this property holds for
the lex order 	lex. However, by the above example, it is easy to see
that this property does not hold for the natural order >u. Indeed,
let L1 = span {x1} ⊆ R1. Then L1 is lex with respect to the natural
order >u and R1L1 = span {x2

1, x1x2, x1x3} ⊆ R2; but in R2, since
x2
1 >u x1x2 >u x2

2 >u x1x3, one sees that R1L1 is not lex with respect
to the natural order >u.

Remark 2.6. In the polynomial ring S we have the following property:
if Ld is a lex d-monomial space in Sd and m is the first monomial in
Sd\Ld, then

(∗) dimkS1(Ld + km) > dimkS1Ld,

and, in particular, xnm /∈ S1Ld. However, this may not be true in R,
and we have the following example.

Example 2.7. Let A =
(

0 1 3 4

1 1 1 1

)
, L2 = span {x2

1, x1x2, x1x3, x1x4}
and m = x2

2. Then L2 is lex in R2 and m is the first monomial after
x1x4. Since

u(x1x
2
2) = u(x2x1x2), u(x2x

2
2) = u(x1x1x3),

u(x3x
2
2) = u(x2x1x4), u(x4x

2
2) = u(x3x1x3),

it follows that R1(L2 + km) = R1L2 and x4m ∈ R1L2. Thus,
dimkR1(L2 + km) = dimkR1L2 and (∗) fails.

3. Lemmas for general projective monomial curves. In this
section, we prove three lemmas which hold for projective monomial
curves. These lemmas will be used later in Sections 4 and 5.
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First we make the following observation. Let IA be the toric ideal
associated to A =

{( a1

1

)
, . . . ,

( an

1

)}
; then, without loss of generality,

we can assume that ai �= aj for i �= j. By changing the order of the

variables in S, we can assume a1 < · · · < an. Let B =
(

1 −a1

0 1

)
and

p = gcd (a2 − a1, . . . , an − a1). Then we have

1

p
BA =

(
0 (a2 − a1)/p · · · (an − a1)/p
1 1 · · · 1

)
.

Since A and (BA)/p have the same kernel, they define the same toric
ideal, so that we can always assume that 0 = a1 < a2 < · · · < an and
gcd (a2, . . . , an) = 1.

Given a d-monomial space W , in order to calculate dimkR1W effi-
ciently, we have the following lemma.

Lemma 3.1. Let W be a d-monomial space spanned by monomials
w1, . . . , ws ∈ Rd with u(w1) < · · · < u(ws). Then

dimkR1W = sn−
∑

1≤i<j≤s

λ(wi, wj),

where

λ(wi, wj) = |{(p, q) | 1 ≤ p < q ≤ n, u(xq)− u(xp) = u(wj)− u(wi),

and there exist no p < r < q, i < k < j

such that u(xr)− u(xp) = u(wj)− u(wk)}|.

Proof. By induction on s. If s = 1, then the assertion is clear. If
s > 1, then setting W ′ = span {w1, . . . , ws−1}, we get

dimkR1W = dimkR1(W
′ + kws)

= dimk (R1W
′ +R1(kws))

= dimkR1W
′ + dimkR1(kws)− dimkR1W

′ ∩R1(kws).

By the induction hypothesis, we have that

dimkR1W
′ = (s− 1)n−

∑
1≤i<j≤s−1

λ(wi, wj),
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and

dimkR1(kws) = n.

Note that

dimkR1W
′ ∩R1(kws)

= |{1 ≤ p ≤ n | xpws = xqwi in Rd+1,

for some 1 ≤ i ≤ s− 1, q > p}|
=

∑
1≤i≤s−1

|{1 ≤ p ≤ n | xpws = xqwi in Rd+1,

for some q > p, and there exists no

i < k < s such that xpws = xrwk for some r > p}|
=

∑
1≤i≤s−1

λ(wi, ws).

So we have

dimkR1W = (s− 1)n−
∑

1≤i<j≤s−1

λ(wi, wj)

+ n−
∑

1≤i≤s−1

λ(wi, ws)

= sn−
∑

1≤i<j≤s

λ(wi, wj).

The following two lemmas will be helpful when we prove Theorem 5.1.

Lemma 3.2. Let A =
( a1 a2 ··· an

1 1 ··· 1

)
and A′ =

(
b1 b2 ··· bn
1 1 ··· 1

)
be

such that 0 = a1 < a2 < · · · < an, 0 = b1 < b2 < · · · < bn
and ai + bn+1−i = an for i = 1, . . . , n. Set S = k[x1, . . . , xn] and

S′ = k[y1, . . . , yn]. Then we have an isomorphism f̂ : S → S′ with
f̂(xi) = yn+1−i. Let R = S/IA be the toric ring associated to A

and R′ = S′/IA′ the toric ring associated to A′; then f̂ induces an
isomorphism f : R → R′ such that f(xi + IA) = yn+1−i + IA′ .
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Proof. Given a monomial m = xα1
1 · · ·xαn

n in S, we have

u(m) + u(f̂(m)) = u(xα1

1 · · ·xαn
n ) + u(yα1

n · · · yαn

1 )

= α1a1 + · · ·+ αnan + α1bn + · · ·+ αnb1

= α1(a1 + bn) + · · ·+ αn(an + b1)

= (α1 + · · ·+ αn)an

= deg (m)an.

If m − m′ ∈ IA for some monomials m,m′ ∈ S, then by Remark 2.4
we have that u(m) = u(m′) and deg (m) = deg (m′). Hence u(f̂(m)) =

u(f̂(m′)) and deg (f̂(m)) = deg (f̂(m′)), so that f̂(m) − f̂(m′) =

f̂(m−m′) ∈ IA′ . Similarly, if m−m′ ∈ IA′ , then f̂−1(m−m′) ∈ IA.
Thus, f̂(IA) = IA′ , and therefore, f̂ induces an isomorphism f from R
to R′ such that f(xi + IA) = yn+1−i + IA′ .

Lemma 3.3. Under the assumption of Lemma 3.2, we have the
following two properties.

(1) If W ⊆ Rd is a d-monomial space spanned by monomials
m1, . . . ,mr ∈ Rd with u(w1) < · · · < u(wr), then f(W ) ⊆ R′

d is a
d-monomial space spanned by monomials f(w1), . . . , f(wr) ∈ R′

d with
u(f(w1)) > · · · > u(f(wr)), and dimkR1W = dimkR

′
1f(W ).

(2) Note that we have defined a lex order 	lex in Rd. Now setting
yn > · · · > y1, we have a lex order >lex′ in S′ which induces a lex
order 	lex′ in R′

d. Let m be a monomial in Rd with top representative
xα1
1 · · ·xαn

n . Then f(m) is a monomial in R′
d with top representative

f̂(xα1
1 · · ·xαn

n ) = yα1
n · · · yαn

1 . Furthermore, if monomials m,m′ ∈ Rd

are such that m 	lex m′, then f(m) 	lex′ f(m′) in R′
d; if Ld is a lex d-

monomial space in Rd, then f(Ld) is a lex d-monomial space in R′
d; if

Macaulay’s theorem holds over R, then Macaulay’s theorem holds over
R′.

Proof. (1) It is clear that f(W ) is a d-monomial space in R′
d. By the

proof of Lemma 3.2, we see that u(wi)+u(f(wi)) = dan, which implies
that u(f(wi)) > u(f(wj)) for i < j. Note that ap − aq = bq − bp for
any p �= q and u(wi)− u(wj) = u(f(wj))− u(f(wi)), for any i �= j, so
that the last part of the assertion follows directly from Lemma 3.1.
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(2) By contradiction, we assume that yβ1
n · · · yβn

1 is in the fiber of

f(m) and yβ1
n · · · yβn

1 >lex′ yα1
n · · · yαn

1 in S′. Then f̂−1(yβ1
n · · · yβn

1 ) =

xβ1

1 · · ·xβn
n is also in the fiber of m and xβ1

1 · · ·xβn
n >lex xα1

1 · · ·xαn
n in

S, which is a contradiction. So we have proved the first part of the
assertion, and the rest of the assertion follows easily.

Remark 3.4. If we set y1 > · · · > yn in Lemma 3.3 (2), then the
assertion may not hold. Indeed, considering Example 2.7, we have that
A = A′; let m = x1x

2
3 in R. Then x1x

2
3 is the top-representative of

the fiber of m, but f̂(x1x
2
3) = y4y

2
2 is not the top-representative of the

fiber of f(m). Also, by Theorems 4.1 and 5.1, we will see that even if
Macaulay’s theorem holds over R, it may not hold over R′.

4. A class of projective monomial curves. Throughout this
section,

A =

(
0 1 · · · n− 2 n− 1 + h
1 1 · · · 1 1

)
, where n ≥ 3, h ∈ Z+,

and R is the toric ring associated to A. We prove:

Theorem 4.1. Macaulay’s theorem holds over R.

For the proof of Theorem 4.1, we need Lemmas 4.2, 4.3, 4.5, 4.7 4.11.

Lemma 4.2. Let m be a monomial in R. Suppose that

u(m) = α(n− 1 + h) + β(n− 2) + γ,

where α, β and γ are nonnegative integers such that β(n − 2) + γ <

n−1+h and γ < n−2. If γ �= 0, then x
deg (m)−α−β−1
1 xr+1x

β
n−1x

α
n is the

top-representative of the fiber of m. If γ = 0, then x
deg (m)−α−β
1 xβ

n−1x
α
n

is the top-representative of the fiber of m.

Proof. Pick a monomial xα1
1 · · ·xαn

n from the fiber of m, and run the
following algorithm.

Input: xα1
1 · · ·xαn

n
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Step 1: If
∑n−1

i=1 αi(i − 1) < n − 1 + h, go to Step 2. Otherwise,
choose β2, . . . , βn−1 ∈ Z such that 0 ≤ β2 ≤ α2, . . . , 0 ≤ βn−1 ≤ αn−1,∑n−1

i=2 βi(i − 1) ≥ n − 1 + h and
∑n−1

i=2 βi(i − 1) is minimal with
respect to this property. Running the division algorithm, we get∑n−1

i=2 βi(i−1) = βn(n−1+h)+δ, for some βn ≥ 1 and 0 ≤ δ < n−1+h.
Let j = min{i | βi �= 0}. Then δ < j − 1; otherwise, it contradicts the

minimality of
∑n−1

i=1 βi(i− 1). Setting

αj := αj − βj,

. . . . . . ,

αn−1 := αn−1 − βn−1,

αn := αn + βn,

αδ+1 := αδ+1 + 1,

α1 := α1 + (βj + · · ·+ βn−1)− βn − 1,

we get a new monomial xα1
1 · · ·xαn

n which is still in the fiber of m and
is strictly bigger with respect to >lex in S. Go back to Step 1.

Step 2: If
∑n−2

i=1 αi(i − 1) < n − 2, stop. Otherwise, choose
β2, . . . , βn−2 ∈ Z such that 0 ≤ β2 ≤ α2, . . . , 0 ≤ βn−2 ≤ αn−2,∑n−2

i=2 βi(i− 1) ≥ n− 2 and
∑n−2

i=2 βi(i− 1) is minimal with respect to

this property. Running the division algorithm, we get
∑n−2

i=2 βi(i−1) =
βn−1(n − 2) + δ, for some βn−1 ≥ 1 and 0 ≤ δ < n − 2. Let
j = min{i | βi �= 0}. Then δ < j − 1; otherwise, it contradicts the

minimality of
∑n−2

i=2 βi(i− 1). Setting

αj := αj − βj ,

. . . . . . ,

αn−2 := αn−2 − βn−2,

αn−1 := αn−1 + βn−1,

αδ+1 := αδ+1 + 1,

α1 := α1 + (βj + · · ·+ βn−2)− βn−1 − 1,

we get a new monomial xα1
1 · · ·xαn

n which is still in the fiber of m and
is strictly bigger with respect to >lex in S. Go back to Step 2.

The algorithm stops after finitely many steps, and the output of
the algorithm is the monomial described in the lemma. If the top-
representative of the fiber of m is different from the monomial given in
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the lemma, then we can run the algorithm on the top-representative
to get a bigger monomial in the fiber, which is a contradiction. So the
monomial given in the lemma is the top-representative of the fiber of
m.

Lemma 4.3. R has the following two properties.

(1) Let m be a monomial in Rd. If w ∈ S is the top-representative
of the fiber of m, then xnw ∈ S is the top-representative of the fiber of
xnm ∈ Rd+1.

(2) If Ld is a lex d-monomial space in Rd and m is the first monomial
in Rd\Ld, then dimkR1(Ld + km) > dimkR1Ld and xnm /∈ R1Ld.

Proof. (1) Let m̂ ∈ S be the top-representative of the fiber of xnm.
Since u(xnm) ≥ n− 1+ h, by Lemma 4.2 we have xn|m̂. Suppose that
m̂ = xnw

′ for some monomial w′ ∈ S. Then it is easy to see that w′ is
the top-representative of the fiber of m, so that w′ = w and m̂ = xnw.
So xnw is the top-representative of the fiber of xnm.

(2) It suffices to prove that xnm /∈ R1Ld. By contradiction, we
assume xnm ∈ R1Ld. Then there exist xi, 1 ≤ i < n and m′ ∈ Ld

such that xnm = xim
′ in Rd+1. Let w, w′ be the top-representatives

of the fibers of m and m′, respectively; then, by (1), xnw is the
top-representative of the fiber of xnm. Since m′ 	lex m in Rd, we
have w′ >lex w in S, and then xiw

′ is in the fiber of xnm such that
xiw

′ >lex xnw, which is a contradiction. So, xnm /∈ R1Ld.

Definition 4.4. Let W be a d-monomial space spanned by mono-
mials w1, . . . , ws ∈ Rd with 0 = u(w1) < · · · < u(ws). For i ≥ 0,
set

W (i) = {wj | the top representative of wj

can be divided by xi
n but not by xi+1

n }.
The set W (i) is called n-compressed if W (i) = ∅ or W (i) =
{wki , wki+1, . . . , wki+t}, for some t ≥ 0 and 1 ≤ ki ≤ s, such that

u(wki) = i(n− 1 + h),
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u(wki+1) = i(n− 1 + h) + 1,

· · · , · · · ,
u(wki+t) = i(n− 1 + h) + t.

We say that a d-monomial space C is n-compressed if C(i) is n-
compressed for every i ≥ 0.

Lemma 4.5. Let m1 and m2 be two monomials in Rd with u(m1) <
u(m2). Suppose that u(m1) = α1(n − 1 + h) + β1 and u(m2) =
α2(n − 1 + h) + β2, where α1, α2, β1, β2 are nonnegative integers
and β1, β2 < n− 1 + h.

(1) If α1 = α2, then m1 	lex m2.

(2) If α1 < α2 and β1 − β2 ≤ (α2 − α1)(n− 2), then m1 	lex m2.

(3) If α1 < α2 and β1 − β2 > (α2 − α1)(n− 2), then m2 	lex m1.

Proof. By Lemma 4.2, we can assume that α1 = 0.

(1) Now u(m1) = β1, u(m2) = β2, 0 ≤ β1 < β2 < n − 1 + h,
and we only need to prove the case β2 = β1 + 1. Suppose that
β1 = β(n− 2) + γ, where β, γ are nonnegative integers and γ < n− 2.

If γ = 0, then β2 = β(n− 2)+1, so that by Lemma 4.2, xd−β
1 xβ

n−1 and

xd−β−1
1 x2x

β
n−1 are the top-representatives of the fibers of m1 and m2,

respectively; thus, m1 	lex m2. If γ > 0, then β2 = β(n− 2)+γ+1, so

that by Lemma 4.2, xd−β−1
1 xγ+1x

β
n−1 and xd−β−1

1 xγ+2x
β
n−1 are the

top-representatives of the fibers of m1 and m2, respectively; thus,
m1 	lex m2.

(2) Suppose that β1 = β(n − 2) + γ and β2 = β′(n − 2) + γ′, where
β, β′, γ, γ′ are nonnegative integers and γ, γ′ < n− 2. Then

β1 − β2 = (β − β′)(n− 2) + γ − γ′ ≤ α2(n− 2),

that is,

(∗) (β − (β′ + α2))(n− 2) ≤ γ′ − γ.

If γ = γ′ = 0, then by (∗), we have β ≤ β′+α2 and, by Lemma 4.2, we

see that xd−β
1 xβ

n−1 and x
d−(β′+α2)
1 xβ′

n−1x
α2
n are the top-representatives
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of the fibers of m1 and m2, respectively, so that m1 	lex m2. If γ = 0
and γ′ > 0, then γ′−γ < n−2; hence, by (∗), we have β ≤ β′+α2 and,

by Lemma 4.2, we see that xd−β
1 xβ

n−1 and x
d−(β′+α2)−1
1 xγ′+1x

β′
n−1x

α2
n

are the top-representatives of the fibers of m1 and m2, respectively,
so that m1 	lex m2. If γ > 0 and γ′ = 0, then γ′ − γ < 0;
hence, by (∗), we have β < β′ + α2. By Lemma 4.2, we see that

xd−β−1
1 xγ+1x

β
n−1 and x

d−(β′+α2)
1 xβ′

n−1x
α2
n are the top-representatives

of the fibers of m1 and m2, respectively, so that m1 	lex m2. If γ > 0
and γ′ > 0, then by Lemma 4.2, we see that xd−β−1

1 xγ+1x
β
n−1 and

x
d−(β′+α2)−1
1 xγ′+1x

β′
n−1x

α2
n are the top-representatives of the fibers of

m1 andm2, respectively. And, by (∗), we have either γ′ ≥ γ, β ≤ β′+α2

or γ′ < γ, β < β′ + α2; then, it follows that m1 	lex m2.

(3) We use the notations in the proof of (2). Now (β− (β′+α2))(n−
2) > γ′ − γ. If γ′ ≥ γ, then β > β′ + α2, and, similar to the
proof of (2), it is easy to check that m2 	lex m1. If γ′ < γ, then
γ′ − γ > −(n− 2); hence, β ≥ β′ + α2, so that, similar to the proof of
(2), we get m2 	lex m1.

Remark 4.6. By Lemma 4.5, we make the following remarks.

(1) By Lemma 4.5, we see that the lex order 	lex induces a total
order on the set of nonnegative integers.

(2) If Ld is a lex d-monomial space, then by Lemma 4.5, it is easy to
see that Ld is n-compressed and |Ld(0)| ≥ |Ld(1)| ≥ |Ld(2)| ≥ · · · .
(3) If Ld is a lex d-monomial space and |Ld(i)| < n − 1 + h for

some i ≥ 0, then by Lemma 4.5, one easily sees that |Ld(i + 1)| ≤
max{0, |Ld(i)| − (n− 2)}.
(4) If Ld is a lex d-monomial space, then |Ld(i+ j)| ≥ (|Ld(i)| − 1)−

j(n − 2) for i, j ≥ 0. Indeed, if |Ld(i)| − (|Ld(i + j)| + 1) > j(n − 2),
then by Lemma 4.5 (3), it is easy to see that Ld is not lex, which is a
contradiction.

(5) Let Ld be a lex d-monomial space spanned by monomials
m1, . . . ,ms ∈ Rd with 0 = u(m1) < · · · < u(ms), and L′

d′ a
lex d′-monomial space spanned by monomials m′

1, . . . ,m
′
s ∈ Rd′

with 0 = u(m′
1) < · · · < u(m′

s). Then, by Lemma 4.5, we have
u(mi) = u(m′

i) for 1 ≤ i ≤ s. In particular, by Lemma 3.1, we have
dimkR1Ld = dimkR1L

′
d′ .
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(6) LetW be a d-monomial space spanned by monomialsw1, . . . , ws ∈
Rd with u(w1) < · · · < u(ws). If u(ws) > d, setting α = u(ws)− d and
W ′ = span {xα

1w1, . . . , x
α
1ws} ⊆ Rd+α, we have that u(xα

1wi) = u(wi),
u(xα

1ws) = d+α, and Lemma 3.1 implies that dimkR1W = dimkR1W
′.

So, by (5) and the above observation, to prove Lemma 2.2, we can
always assume that u(ws) ≤ d, and then, for any 0 ≤ j ≤ u(ws),

there exists an m = xd−j
1 xj

2 in Rd such that u(m) = j. Further-
more, there exists a ŵi ∈ Rd such that u(ŵi) = u(wi) − u(w1).

Let Ŵ = span {ŵ1, . . . , ŵs} ⊆ Rd; then, by Lemma 3.1, we have

dimkR1W = dimkR1Ŵ , so that, to prove Lemma 2.2, we can also
assume that u(w1) = 0.

Lemma 4.7. Let Ld be a lex d-monomial space in Rd such that
Ld �= Rd, and let m be the first monomial in Rd\Ld. Then

dimkR1(Ld + km)− dimkR1Ld =

⎧⎨
⎩

n if u(m) = 0

2 if 1 ≤ u(m) ≤ h

1 if u(m) > h.

Proof. Let am = dimkR1(Ld + km)− dimkR1Ld; by Lemma 3.1 and
Remark 4.6 (5), we see that am depends only upon u(m) and does not
depend upon d. If u(m) = 0, then it is clear that am = n. If u(m) > h,
then by Lemma 4.3 (2), we see that am ≥ 1.

If 1 ≤ u(m) ≤ h, then am ≥ 2. Indeed, if xn−1m ∈ R1Ld,
then xn−1m = xjm

′ in Rd for some j �= n − 1 and m′ ∈ Ld.
Since u(xn−1m) = u(xn−1) + u(m) ≤ n − 2 + h, it follows that
u(m′) ≤ n − 2 + h. Note that m′ 	lex m. Then, by Lemma
4.5 (1), we see that u(m′) < u(m); hence, xj = xn, and then
u(xn−1m) = u(xnm

′) ≥ n − 1 + h, which is a contradiction. Thus,
xn−1m /∈ R1Ld. By Lemma 4.3 (2), we see that xnm is also not in
R1Ld, so am ≥ 2.

Next we set d = n+ h and consider Rn+h. By Lemma 4.2, it is easy
to see that, for any monomial m ∈ Rn+h, u(m) ≥ n− 1+ h if and only
if m = xnm

′ for some monomial m′ ∈ Rn−1+h, so that

Rn+h = xnRn−1+h

⊕( n−2+h⊕
i=0

kmi

)
,
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where mi = xn+h−i
1 xi

2 in Rn+h is such that u(mi) = i; thus, we have

dimkRn+h − dimkRn−1+h = n− 1 + h.

On the other hand, since Rn−1+h is a lex (n − 1 + h)-monomial space
and Rn+h = R1Rn−1+h, it follows that

dimkRn+h − dimkRn−1+h

= (n− 1) +
∑

1≤u(m)≤h

(am − 1) +
∑

u(m)>h

(am − 1)

≥ n− 1 + h.

Since the equality holds, we must have that am = 2 if 1 ≤ u(m) ≤ h
and am = 1 if u(m) > h.

Lemma 4.8. Let C be an n-compressed d-monomial space.

(1) R1C is an n-compressed (d+ 1)-monomial space.

(2) If C is spanned by monomials c1, . . . , cs ∈ Rd with u(ci) = i − 1
and s ≤ h+ 1, then |R1C(0)| = n− 2 + s, |R1C(1)| = s, |R1C(j)| = 0
for j ≥ 2, and dimkR1C = n+ 2(s− 1).

(3) If C is spanned by monomials c1, . . . , cs ∈ Rd with u(ci) = i − 1
and h+ 2 ≤ s ≤ n− 1 + h, then |R1C(0)| = n− 1 + h, |R1C(1)| = s,
|R1C(j)| = 0 for j ≥ 2, and dimkR1C = n− 1 + h+ s.

Proof. (1) Let m be a monomial in R1C such that u(m) = p(n −
1 + h) + q for some p ≥ 0 and 1 ≤ q < n − 1 + h; then m = xjm

′

for some j and m′ ∈ C. If n − 1 + h divides u(m′), then j �= 1 or n,
so that xj−1m

′ ∈ R1C and u(xj−1m
′) = u(xjm

′) − 1 = u(m) − 1; if
n− 1+h does not divide u(m′), then since C is n-compressed, we have
a monomial m′′ ∈ C such that u(m′′) = u(m′)−1, so that xjm

′′ ∈ R1C
and u(xjm

′′) = u(xjm
′) − 1 = u(m) − 1. So R1C is an n-compressed

(d+ 1)-monomial space.

(2) It is clear that |R1C(j)| = 0 for j ≥ 2. By Lemma 3.1, we have

dimkR1C = sn−
∑

1≤i≤s−1

λ(ci, ci+1)

= sn− (s− 1)(n− 2)

= n+ 2(s− 1).
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Thus, |R1C(0)|+ |R1C(1)| = n+ 2(s− 1). By (1), we know that R1C
is n-compressed, so that u(xn−1cs) = n − 2 + s − 1 < n − 1 + h and
u(xncs) = n − 1 + h + s − 1 imply that |R1C(0)| ≥ n − 2 + s and
|R1C(1)| ≥ s. Thus, |R1C(0)| = n− 2 + s and |R1C(1)| = s.

(3) It is clear that |R1C(j)| = 0 for j ≥ 2. By Lemma 3.1, we have

dimkR1C = sn−
∑

1≤i≤s−1

λ(ci, ci+1)

−
∑

1≤i≤s−h−1

λ(ci, ci+h+1)

= sn− (s− 1)(n− 2)− (s− h− 1)

= n− 1 + h+ s.

Thus, |R1C(0)| + |R1C(1)| = n − 1 + h + s. By (1), we know that
R1C is n-compressed, so that u(xn+h−scs) = n − 2 + h < n − 1 + h
and u(xncs) = n− 1 + h+ s− 1 imply that |R1C(0)| ≥ n− 1 + h and
|R1C(1)| ≥ s. Thus, |R1C(0)| = n− 1 + h and |R1C(1)| = s.

Lemma 4.9. Let W be a d-monomial space spanned by monomials
w1, . . . , ws ∈ Rd with u(w1) < · · · < u(ws) ≤ d, and u(ws) − u(w1) <
n − 1 + h. Let C be the n-compressed d-monomial space spanned by
monomials c1, . . . , cs ∈ Rd with u(ci) = i − 1 for 1 ≤ i ≤ s, and set

Ŵ = {monomial m ∈ R1W | u(w1) ≤ u(m) < u(w1) + n − 1 + h}.
Then |Ŵ | ≥ |R1C(0)| and dimkR1W ≥ dimkR1C.

Proof. By Remark 4.6 (6), we can assume that u(w1) = 0. Then

u(ws) < n − 1 + h, and Ŵ = R1W (0). By Lemma 4.8, we see
that |R1C(1)| = s; hence, |R1W (1)| ≥ s = |R1C(1)|. Note that
dimkR1W = |R1W (0)| + |R1W (1)| and dimkR1C = |R1C(0)| +
|R1C(1)|; thus, we only need to prove that |R1W (0)| ≥ |R1C(0)|.
First we suppose s ≤ h+1; then, by Lemma 4.8, we have |R1C(0)| =

n−2+s. If there exist wi and wi+1 such that u(wi+1)−u(wi) > n−2,
then 0 = u(x1w1) < u(x1w2) < · · · < u(x1wi) < u(x2wi) < · · · <
u(xn−1wi) < u(x1wi+1) < · · · < u(x1ws) < n − 1 + h, which implies
that |R1W (0)| ≥ s + n − 2 = |R1C(0)|. So we can assume that
u(wi+1) − u(wi) ≤ n − 2 for 1 ≤ i ≤ s − 1. For any nonnegative
integer l ≤ u(xn−1ws), there exists a wi such that u(wi) is maximal
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with respect to the property that u(wi) ≤ l. Then it is easy to see
that 0 ≤ l − u(wi) ≤ n − 3 and u(xl−u(wi)+1wi) = l. Therefore, if
u(xn−1ws) ≥ n− 1 + h, then

|R1W (0)| = n− 1 + h ≥ n− 2 + s = |R1C(0)|;
if u(xn−1ws) < n− 1 + h, then

|R1W (0)| = u(xn−1ws) + 1 ≥ (n− 2) + (s− 1) + 1

= |R1C(0)|.

Next we suppose h+2 ≤ s ≤ n−1+h. Then, by Lemma 4.8, we have
|R1C(0)| = n−1+h, and it is easy to see that u(wi+1)−u(wi) ≤ n−2
for 1 ≤ i ≤ s− 1 and u(xn−1ws) ≥ n− 1 + h. Therefore, similar to the
above argument, we have |R1W (0)| = n− 1 + h = |R1C(0)|.

Lemma 4.10. Let W be a d-monomial space spanned by monomials
w1, . . . , ws ∈ Rd with u(w1) < · · · < u(ws) ≤ d. If there exists
1 ≤ i < j ≤ s such that j − i ≥ h and u(wj)− u(wi) < n− 1 + h, then

dimkR1LW ≤ dimkR1W,

where LW is the lex d-monomial space in Rd such that dimkLW =
dimkW .

Proof. By Lemma 4.7, we have that dimkR1LW ≤ dimkLW+(n−1)+
h = dimkW +n−1+h = s+n−1+h. On the other hand, it is easy to
check that, if 1 ≤ p < i, then x1wp /∈ R1span {wp+1, . . . , wi, . . . , wj};
if j < q ≤ s, then xnwq /∈ R1span {w1, . . . , wj , . . . , wq−1}. Thus, we
have

dimkR1W ≥ dimkR1span {wi, . . . , wj}+ (i− 1) + (s− j).

By Lemmas 4.8 and 4.9, it is easy to see that

dimkR1span {wi, . . . , wj} ≥ n− 1 + h+ (j − i+ 1).

Therefore, we have

dimkR1W ≥ n− 1 + h+ (j − i+ 1) + (i− 1) + (s− j)

= n− 1 + h+ s

≥ dimkR1LW .
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Lemma 4.11. Let C be an n-compressed d-monomial space in Rd,
and suppose that there exists a t ≥ 0 such that 0 < |C(i)| ≤ h for
i = 0, . . . , t and |C(i)| = 0 for i > t. Then

dimkR1LC ≤ dimkR1C,

where LC is the lex d-monomial space in Rd such that dimkLC =
dimkC.

Proof. If |C(j)| < |C(j + 1)|+ (n − 2) for some 0 ≤ j ≤ t − 1, then
we consider the n-compressed d-monomial space C′ such that

|C′(j)| = |C(j)| + 1,

|C ′(t)| = |C(t)| − 1,

|C ′(i)| = |C(i)| if i �= j, t.

By Lemma 4.8, one easily sees that

|R1C(0)| = |C(0)|+ (n− 2),

|R1C(i)| = max{|C(i)|+ (n− 2), |C(i − 1)|} for 1 ≤ i ≤ t,

|R1C(t+ 1)| = |C(t)|,
|R1C(i)| = 0 for i > t+ 1,

and we have similar formulas for C′. Then it is easy to check that

|R1C
′(j)| ≤ |R1C(j)| + 1,

|R1C
′(t)| ≤ |R1C(t)|,

|R1C
′(t+ 1)| = |R1C(t+ 1)| − 1,

|R1C
′(i)| = |R1C(i)| for i �= j, t, t+ 1.

Therefore, we have that dimkC
′ = dimkC and dimkR1C

′ ≤ dimkR1C.
If |C′(j)| = h+ 1, then by Lemma 4.10, dimkR1LC ≤ dimkR1C

′, and
then dimkR1LC ≤ dimkR1C. So we can assume that |C′(j)| ≤ h, that
is, C′ satisfies the assumption of the Lemma.

By the above observation, we can assume that C is an n-compressed
d-monomial space in Rd and there exists t ≥ 0, such that 0 < |C(i)| ≤ h
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for 0 ≤ i ≤ t, |C(i)| ≥ |C(i+1)|+(n−2) for 0 ≤ i ≤ t−1, and |C(i)| = 0
for i > t. Then by Lemma 4.8, it is easy to see that

dimkR1C = |C(0)|+ (n− 2) + |C(0)|+ |C(1)|+ · · ·+ |C(t)|
= |C(0)|+ n− 2 + dimkC.

If |LC(0)| > |C(0)|, then by Remark 4.6 (4), we have that, for 1 ≤ i ≤ t,

|LC(i)| ≥ |LC(0)| − 1− i(n− 2) ≥ |C(0)| − i(n− 2) ≥ |C(i)|,

and then

dimkLC ≥ |LC(0)|+ |LC(1)|+ · · ·+ |LC(t)|
> |C(0)|+ |C(1)|+ · · ·+ |C(t)|
= dimkC,

which is a contradiction. So we have |LC(0)| ≤ |C(0)| ≤ h. By
Remark 4.6 (2), we see that |LC(i)| ≤ h for i ≥ 0. Thus, by
Remark 4.6 (3), one easily sees that there exists a t′ ≥ 0 such that
|LC(i)| ≥ |LC(i + 1)|+ (n − 2) for 0 ≤ i ≤ t′ − 1, and |LC(i)| = 0 for
i > t′. Therefore, by Lemma 4.8, it is easy to see that

dimkR1LC = |LC(0)|+ (n− 2) + |LC(0)|+ |LC(1)|+ · · ·+ |LC(t
′)|

= |LC(0)|+ (n− 2) + dimkLC

≤ |C(0)|+ n− 2 + dimkC

= dimkR1C.

Proof of Theorem 4.1. Let W be a d-monomial space spanned by
monomials w1, . . . , ws in Rd with u(w1) < · · · < u(ws); by Lemma 2.2,
we only need to prove that

dimkR1LW ≤ dimkR1W,

where LW is the lex d-monomial space in Rd such that dimkLW =
dimkW .

By Remark 4.6 (6), we can assume that u(w1) = 0 and u(ws) ≤ d.
Note that there exist 1 = i0 < i1 < · · · < it ≤ s for some t ≥ 0 such
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that u(ws)−u(wit) < n−1+h, and for 1 ≤ j ≤ t, u(wij−1)−u(wij−1 ) <
n− 1 + h and u(wij )− u(wij−1 ) ≥ n− 1 + h. Set

W [0] = {wi0 , . . . , wi1−1},
W [1] = {wi1 , . . . , wi2−1},

· · · · · · ,
W [t] = {wit , . . . , ws}.

Then, by Lemma 4.10, we can assume that |W [j]| ≤ h for 0 ≤ j ≤ t.

Let C be the n-compressed d-monomial space such that |C(j)| =
|W [j]| for 0 ≤ j ≤ t and |C(j)| = 0 for j ≥ t + 1. Then dimkC =
dimkW , and it is easy to see that

dimkR1C = |R1C(0)|+ |R1C(1)|+ · · ·
+ |R1C(t)| + |R1C(t+ 1)|,

dimkR1W = |(R1W )[0]|+ |(R1W )[1]|+ · · ·
+ |(R1W )[t]|+ |(R1W )[t+ 1]|,

where (R1W )[0] = R1W (0), (R1W )[t+ 1] is the set of monomials m ∈
R1W such that u(m) ≥ u(wit)+n− 1+h, and for 1 ≤ j ≤ t, (R1W )[j]
is the set of monomials m ∈ R1W such that u(wij−1 ) + n − 1 + h ≤
u(m) < u(wij ) + n− 1 + h. First, it is easy to see that

|(R1W )[t+ 1]| ≥ |W [t]| = |C(t)| = |R1C(t+ 1)|.

Then By Lemma 4.9, we get

|R1W (0)| ≥ |R1C(0)|.

Finally, by Lemma 4.8 it is easy to see that, for 1 ≤ j ≤ t,

|R1C(j)| = max{|C(j − 1)|, |C(j)| + (n− 2)};

if |R1C(j)| = |C(j − 1)|, then we have

|(R1W )[j]| ≥ |W [j − 1]| = |C(j − 1)| = |R1C(j)|;
if |R1C(j)| = |C(j)|+ (n− 2), then by Lemma 4.9, we also have

|(R1W )[j]| ≥ |R1C(j)|.
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So, we get dimkR1W ≥ dimkR1C. By Lemma 4.11, we know that
dimkR1C ≥ dimkR1LC , where LC is the lex d-monomial space such
that dimkLC = dimkC. Note that LC = LW , so dimkR1W ≥
dimkR1LW .

5. Two other classes of projective monomial curves. The
main results of this section are Theorems 5.1 and 5.5.

Theorem 5.1. Let

A =

(
0 1 + h 2 + h · · · n− 1 + h
1 1 1 · · · 1

)
,

where n ≥ 3, h ∈ Z+.

Let R be the toric ring associated to A.

(1) If h = 1, then Macaulay’s theorem holds over R.

(2) If n = 3, then Macaulay’s theorem holds over R.

(3) If h ≥ 2 and n ≥ 4, then Macaulay’s theorem does not hold over R.

In order to prove Theorem 5.1, we need Lemmas 5.2, 5.3 and 5.4.

Lemma 5.2. Let R be the toric ring defined in Theorem 5.1 and
R′ the toric ring defined in Section 4 such that R and R′ satisfy
the assumptions of Lemma 3.2. Then we have an isomorphism f̂ :
S = k[x1, . . . , xn] → S′ = k[y1, . . . , yn] with f̂(xi) = yn+1−i, which
induces an isomorphism f from R to R′. Setting x1 > · · · > xn and
y1 > · · · > yn as usual, by Definition 2.1, we have the lex orders 	lex,
	lex′ in R and R′.

(1) Let m be a monomial in Rd such that yα1
1 · · · yαn

n is the top
representative of the fiber of the monomial f(m) ∈ R′

d. Then

f̂−1(yα1
1 · · · yαn

n ) = xαn
1 · · ·xα1

n is the top-representative of the fiber of
m.

(2) Let m and m′ be two monomials in Rd such that u(m) < u(m′).
Then m 	lex m′ in Rd, so that the lex order 	lex in Rd is the same as
the natural order >u defined in Remark 2.4.
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Proof. (1) Suppose that xβn

1 · · ·xβ1
n is the top representative of

the fiber of m. Then βn ≥ αn and f̂(xβn

1 · · ·xβ1
n ) = yβ1

1 · · · yβn
n

is a monomial in the fiber of f(m). Since yα1
1 · · · yαn

n is the top
representative of the fiber of f(m), by Lemma 4.2 we have βn ≤ αn,
so that βn = αn, and then βn−1 ≥ αn−1. But, by Lemma 4.2, we have
βn−1 ≤ αn−1, so that βn−1 = αn−1. If there exists 2 ≤ i ≤ n − 2
such that βi > αi and βj = αj for j > i, then the monomial

yβ1

1 · · · yβi

i y
αi+1

i+1 · · · yαn
n is in the fiber of f(m). By Lemma 4.2, one

easily sees that βi ≤ αi, which is a contradiction, so we have βi = αi

for i = 2, . . . , n − 2. Since deg (m) = β1 + · · · + βn = α1 + · · · + αn,

it follows that β1 = α1, and then xαn
1 · · ·xα1

n = xβn

1 · · ·xβ1
n is the top-

representative of the fiber of m.

(2) Let yα1
1 · · · yαn

n , yβ1

1 · · · yβn
n be the top-representatives of the fibers

of f(m) and f(m′). Then (1) implies that xαn
1 · · ·xα1

n , xβn

1 · · ·xβ1
n are

the top-representatives of the fibers of m and m′. Since u(m) < u(m′),
by Lemma 3.3 (1), we have u(f(m)) > u(f(m′)), so that Lemma 4.2
implies αn ≥ βn. If αn > βn, then m 	lex m′ and we are done. So
we may assume αn = βn. Then similarly, by Lemma 4.2, we have
αn−1 ≥ βn−1, and if αn−1 > βn−1, we are done. So we can also assume
that αn−1 = βn−1. Then, applying Lemma 4.2 again, we see that there
exist 2 ≤ r ≤ n− 2 and 1 ≤ r′ ≤ r − 1 such that

yα1
1 · · · yαn

n = y
d−1−αn−1−αn

1 yry
αn−1

n−1 yαn
n ,

yβ1

1 · · · yβn
n = y

d−1−αn−1−αn

1 yr′y
αn−1

n−1 yαn
n ,

and then we have that

xαn
1 · · ·xα1

n = xαn
1 x

αn−1

2 xn+1−rx
d−1−αn−1−αn
n

>lex xαn
1 x

αn−1

2 xn+1−r′x
d−1−αn−1−αn
n

= xβn

1 · · ·xβ1
n ,

which implies m 	lex m′.

Lemma 5.3. Let R be the toric ring defined in Theorem 5.1, and
suppose h = 1. Let Ld be an r-dimensional lex d-monomial space in
Rd with 0 ≤ r < dimkRd and m the first monomial in Rd\Ld. If we
set
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ar = dimkR1(Ld + km)− dimkR1Ld,

then a0 = n, a1 = 2 and ar = 1 for 1 < r < dimkRd.

Proof. Without loss of generality, we can assume d ≥ 1. It is clear
that a0 = n. If r = 1, then it is easy to see that Ld = span {xd

1} and
m = xd−1

1 x2 in Rd, so that by Lemma 3.1,

dimkR1(Ld + km) = 2n− λ(xd
1 , x

d−1
1 x2) = 2n− (n− 2) = n+ 2;

hence, a0 + a1 = n + 2, and then a1 = 2. If 1 < r < dimkRd, by
Lemma 5.2, we see that u(xnm) > u(xjm

′) for any 1 ≤ j ≤ n and
any monomial m′ ∈ Ld; hence, xnm /∈ R1Ld, and then ar ≥ 1 for
1 < r < dimkRd. Note that dimkR1Rd = dimkRd+1, and it is easy to
see that

dimkRd+1 − dimkRd = dimkR
′
d+1 − dimkR

′
d = n− 1 + h = n,

where R′ is the toric ring defined in Lemma 5.2. Thus,

(a0 − 1) + (a1 − 1) +
∑

1<r<dimkRd

(ar − 1) = n,

so that
∑

1<r<dimkRd
(ar − 1) = 0, which implies ar = 1 for 1 < r <

dimkRd.

Lemma 5.4. Let R and R′ be the toric rings defined in Lemma 5.2,
and suppose n = 3. If Ld, L

′
d are lex d-monomial spaces in Rd and R′

d

such that dimkLd = dimkL
′
d, then dimkR1Ld = dimkR

′
1L

′
d.

Proof. Since the toric ring R is defined by the matrix A =(
0 1+h 2+h

1 1 1

)
and KerA has dimension 1, one easily sees that the

toric ideal IA is generated by the binomial x2+h
2 − x1x

1+h
3 , so that

we have R = k[x1, x2, x3]/(x
2+h
2 − x1x

1+h
3 ), and similarly, R′ =

k[y1, y2, y3]/(y
2+h
2 − y1+h

1 y3).

Let Td be the set of monomials in k[x1, x2, x3]d which cannot be di-
vided by x2+h

2 , and let T ′
d be the set of monomials in k[y1, y2, y3]d which

cannot be divided by y2+h
2 . It is easy to see that, for any monomial
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m ∈ Rd, there is one and only one monomial in the fiber of m that can-
not be divided by x2+h

2 . Then it follows that the monomials in Rd are
in one-to-one correspondence with the monomials in Td. Furthermore,
if dimkLd = r and Ld is spanned by the monomials m1, . . . ,mr ∈ Rd

with u(m1) < · · · < u(mr), then m1, . . . ,mr have top-representatives
w1, . . . , wr ∈ Td that are the first r monomials in Td. Similarly, if
dimkL

′
d = r and L′

d is spanned by monomials m′
1, . . . ,m

′
r ∈ R′

d, then
m′

1, . . . ,m
′
r have top-representatives w′

1, . . . , w
′
r ∈ T ′

d that are the first
r monomials in T ′

d.

Note that the natural isomorphism g : S = k[x1, x2, x3] → S′ =
k[y1, y2, y3] with g(xj) = yj for j = 1, 2, 3 induces an order-preserving
bijection between Td and T ′

d. Then g(wi) = w′
i for 1 ≤ i ≤ r. Setting

W = span {w1, . . . , wr} ⊆ Sd and W ′ = span {w′
1, . . . , w

′
r} ⊆ S′

d,
one easily sees that dimkS1W = dimkS

′
1W

′. Let p be the number of
monomials in S1W that can be divided by x2+h

2 , and let p′ be the
number of monomials in S′

1W
′ that can be divided by y2+h

2 ; then we
have p = p′. Note that if x2wi can be divided by x2+h

2 for some i, then
x2wi = x3(x1x

h
3wi/x

1+h
2 ) in Rd+1 and x1x

h
3wi/x

1+h
2 = wj for some

j < i. Therefore, the monomials in the lex (d + 1)-monomial space
R1Ld are in one-to-one correspondence with the monomials in S1W
that cannot be divided by x2+h

2 , so that we have

dimkR1Ld = dimkS1W − p.

Similarly, we have

dimkR
′
1L

′
d = dimkS

′
1W − p′,

and so dimkR1Ld = dimkR
′
1L

′
d.

Proof of Theorem 5.1. (1) Let W be a d-monomial space spanned by
monomials w1, . . . , wr ∈ Rd with u(w1) < · · · < u(wr). By Lemma 2.2,
it suffices to prove that dimkR1LW ≤ dimkR1W , where LW is the lex
d-monomial space in Rd such that dimkLW = dimkW = r.

We prove by induction on r. If r = 1, then dimkR1LW =
dimkR1W = n. If r = 2, then by Lemma 5.3, dimkR1LW = a0 + a1 =
n + 2, and by Lemma 3.1, dimkR1W = 2n − λ(w1, w2). It is easy to
see that λ(w1, w2) ≤ n− 2. Thus, we have

dimkR1W ≥ 2n− (n− 2) = n+ 2 = dimkR1LW .
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If r > 2,let Ŵ be the d-monomial space spanned by monomials
w1, . . . , wr−1 ∈ Rd and L

Ŵ
the lex d-monomial space in Rd such

that dimkLŴ
= dimkŴ = r − 1. Then, by induction we have

dimkR1LŴ
≤ dimkR1Ŵ . By Lemma 5.3, we see that dimkR1LW =

dimkRlLŴ
+ 1. On the other hand, since u(xnwr) > u(xjwi) for any

1 ≤ j ≤ n and any 1 ≤ i ≤ r − 1, we have xnwr /∈ R1Ŵ , and then
dimkR1W ≥ dimkR1Ŵ + 1. Therefore,

dimkR1W ≥ dimkR1Ŵ + 1 ≥ dimkR1LŴ
+ 1 = dimkR1LW ,

and we are done.

(2) Let W be an r-dimensional d-monomial space in Rd. By
Lemma 2.2, it suffices to prove that dimkR1LW ≤ dimkR1W where
LW is the lex d-monomial space in Rd such that dimkLW = r.

Let f and R′ be as in Lemma 5.2. Then, by Lemma 3.3 (1),
we see that f(W ) is an r-dimensional d-monomial space in R′

d and
dimkR1W = dimkR

′
1f(W ). Let L′

f(W ) be the lex d-monomial space

in R′
d such that dimkL

′
f(W ) = r. Then, by Lemma 5.4, we have

dimkR1LW = dimkR
′
1L

′
f(W ). By Theorem 4.1, we see that R′ sat-

isfies Macaulay’s theorem; hence, dimkR
′
1L

′
f(W ) ≤ dimkR

′
1f(W ). So,

dimkR1LW ≤ dimkR1W , and we are done.

(3) Considering the 1-monomial space W = span {x2, x3} and the
lex 1-monomial space LW = span {x1, x2} in R1, we have dimkW =
dimkLW = 2. However, by Lemma 3.1, it is easy to see that

dimkR1W = 2n− λ(x2, x3) = 2n− (n− 2) = n+ 2,

and

dimkR1LW

= 2n−λ(x1, x2) =

{
2n− 1 if n ≤ h+ 2

2n− (1 + n− h− 2) = n+ h+ 1 if n ≥ h+ 3.

Since h ≥ 2 and n ≥ 4, one can easily check that dimkR1LW >
dimkR1W . So, by Lemma 2.2, Macaulay’s theorem does not hold
over R.
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Theorem 5.5. Let

A =

(
0 1 · · · m− 1 m+ h · · · n− 1 + h
1 1 · · · 1 1 · · · 1

)
,

where n ≥ 4, 2 ≤ m ≤ n − 2 and h ∈ Z+. Let R be the toric ring
associated to A. Then Macaulay’s theorem does not hold over R.

Proof. We have three cases.

Case 1. h ≤ m− 1. Let W = span {x2
1, x1x2, . . . , x1xm, x2xm} ⊆ R2

and LW = span {x2
1, x1x2, . . . , x1xm, x1xm+1} ⊆ R2. Then W is a 2-

monomial space in R2 and LW is a lex 2-monomial space in R2 such
that dimkW = dimkLW = m+ 1. By Lemma 3.1, we have

dimkR1W = (m+ 1)n−
∑

1≤i<j≤m

λ(x1xi, x1xj)

−
∑

1≤i≤m

λ(x1xi, x2xm),

dimkR1LW = (m+ 1)n−
∑

1≤i<j≤m

λ(x1xi, x1xj)

−
∑

1≤i≤m

λ(x1xi, x1xm+1),

so that we get

dimkR1LW − dimkR1W

=
∑

1≤i≤m

λ(x1xi, x2xm)−
∑

1≤i≤m

λ(x1xi, x1xm+1).

It is easy to see that

λ(x1xm, x2xm) = n− 2, λ(x1xm−h, x2xm) = 1,

and
λ(x1xi, x2xm) = 0 for 1 ≤ i ≤ m− 1 and i �= m− h.

Thus, we have ∑
1≤i≤m

λ(x1xi, x2xm) = n− 2 + 1 = n− 1.
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On the other hand, one easily sees that

λ(x1xi, x1xm+1) =

{
1 if m− h ≤ i ≤ m− 1;

0 if i < m− h.

If n−m− 1 ≥ h+ 1, then it is easy to check that

λ(x1xm, x1xm+1) = 1 + ((m− 1)− (h+ 1) + 1)

+ ((n−m− 1)− (h+ 1) + 1)

= n− 2h− 1,

so that we have∑
1≤i≤m

λ(x1xi, x1xm+1) = h+ n− 2h− 1 = n− h− 1,

and then

dimkR1LW − dimkR1W = n− 1− (n− h− 1) = h ≥ 1 > 0;

therefore, by Lemma 2.2, we see that Macaulay’s theorem does not hold
over R. If n−m− 1 < h+ 1, then it is easy to check that

λ(x1xm, x1xm+1) = 1 + ((m− 1)− (h+ 1) + 1) = m− h,

so that we have∑
1≤i≤m

λ(x1xi, x1xm+1) = h+m− h = m,

and then

dimkR1LW − dimkR1W = n− 1−m ≥ n− 1− (n− 2) = 1 > 0;

therefore, by Lemma 2.2, we see that Macaulay’s theorem does not hold
over R.

Case 2. h ≥ m and m < n − 2. Let W and LW be the same 2-
monomial spaces as in Case 1. Then

dimkR1LW − dimkR1W

=
∑

1≤i≤m

λ(x1xi, x2xm)−
∑

1≤i≤m

λ(x1xi, x1xm+1).
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It is easy to see that

λ(x1xm, x2xm) = n− 2, and λ(x1xi, x2xm) = 0 for 1 ≤ i ≤ m− 1.

Thus, we have ∑
1≤i≤m

λ(x1xi, x2xm) = n− 2.

On the other hand, one easily sees that

λ(x1xi, x1xm+1) = 1 for 1 ≤ i ≤ m− 1.

If n−m− 1 ≥ h+ 1, then it is easy to check that

λ(x1xm, x1xm+1) = 1 + ((n−m− 1)− (h+ 1) + 1)

= n−m− h,

so that we have∑
1≤i≤m

λ(x1xi, x1xm+1) = m− 1 + n−m− h = n− h− 1,

and then

dimkR1LW − dimkR1W = n− 2− (n− h− 1)

= h− 1 ≥ m− 1 ≥ 1 > 0.

Therefore, by Lemma 2.2, we see that Macaulay’s theorem does not
hold over R. If n − m − 1 < h + 1, then it is easy to check that
λ(x1xm, x1xm+1) = 1, so that we have

∑
1≤i≤m

λ(x1xi, x1xm+1) = m− 1 + 1 = m,

and then

dimkR1LW − dimkR1W = n− 2−m > n− 2− (n− 2) = 0.

Therefore, by Lemma 2.2, we see that Macaulay’s theorem does not
hold over R.
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Case 3. h ≥ m and m = n − 2. Let p be the maximal integer such
that p ≤ (h− 1)/(m− 1); then p ≥ 1. Considering Rp+1, we see that,
for any monomial w ∈ Rp+1, 0 ≤ u(w) ≤ (p + 1)(n − 1 + h). More
precisely, one can easily check that there are (n−1)+(p− i)(m−1)+ i
monomials w ∈ Rp+1 such that i(n− 1+h) ≤ u(w) < (i+1)(n− 1+h)
for 0 ≤ i ≤ p, so that

dimkRp+1 = 1 +

p∑
i=0

(n− 1) + (p− i)(m− 1) + i

= 1 + (p+ 1)

(
n+

pm

2
− 1

)
.

Similarly, we have

dimkRp+2 = (n− 1 + h) + 1

+

p∑
i=0

(n− 1) + (p− i)(m− 1) + (i + 1)

= n+ h+ p+ 1 + (p+ 1)

(
n+

pm

2
− 1

)
.

Setting l = 1 + (p+ 1)(n+ (pm/2)− 1), we have that

dimkRp+1 = l

and

dimkR1Rp+1 = dimkRp+2 = n+ h+ p+ l.

LetW be the l-monomial space spanned by the monomials w1, . . . , wl ∈
Rl such that u(wi) = i− 1 for 1 ≤ i ≤ l. Let monomials w′

1, . . . , w
′
l be

a basis of Rp+1, and let LW be the l-monomial space spanned by the

monomials xl−p−1
1 w′

1, . . . , x
l−p−1
1 w′

l ∈ Rl. Then it is easy to see that
LW is a lex l-monomial space such that

dimkLW = dimkW = l

and

dimkR1LW = dimkR1Rp+1 = n+ h+ p+ l.
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However, by Lemma 3.1, one can easily check that

dimkR1W = ln− (l − 1)(n− 2)− ((l − 1)− (h+ 1) + 1)

= n+ h− 1 + l,

so that

dimkRlLW − dimkR1W = (n+ h+ p+ l)− (n+ h− 1 + l)

= p+ 1 ≥ 2 > 0;

therefore, by Lemma 2.2, we see that Macaulay’s theorem does not hold
over R.
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