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MULTIPLICATIVE INVARIANTS
AND LENGTH FUNCTIONS
OVER VALUATION DOMAINS

PAOLO ZANARDO

ABSTRACT. The notion of length function ¢ of Mod R was
introduced by Northcott and Reufel in [6]. They described
length functions when R is a valuation domain. Vamos [11]
investigated additive functions for Noetherian rings. These
functions take values that are either nonnegative real numbers
or co. We define a multiplicative invariant as a map p
from Fin R, the class of finitely generated R-modules, to
a partially ordered multiplicative semigroup I', such that
w(X) = p(Y)u(X/Y), for Y C X finitely generated. We
investigate the annihilator sets of finitely generated modules
over valuation domains. The results we find allow us to show
that a certain map p7 is a multiplicative invariant that enjoys
a universal property. Using pz we re-obtain a description of
length functions over valuation domains, in an alternative way
to that in [6].

Introduction. The starting point of the present paper is the notion
of length function of Mod R, introduced by Northcott and Reufel, in
the 1965 paper [6], as a generalization of the classical Jordan-Holder
length of modules. Namely, if R is any ring, a real-valued map ¢ defined
on ModR is a length function if for any left R-modules N C M,
we have {(M) = ¢(N) + ¢{(M/N), and ¢(M) = sup{¢(X)}, where X
ranges over the finitely generated submodules of M. Northcott and
Reufel gave some general results and characterized length functions over
valuation domains. Shortly after, Vamos in [11] distinguished the two
defining properties of a length function, calling a real-valued function ¢
additive if it satisfies the first above property, and upper continuous if it
satisfies the second one. In fact, it is easy to show that these properties
are independent (see, for instance, our next Remark 3.1). V&mos
thoroughly investigated additive functions over Noetherian rings.
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In 1976 Ribenboim [7] extended the notion of length function to
maps A with values into an ordered abelian group G. Due to the fact
that G is not complete, in general, he had to confine A to a class of
finitely presented modules, called constructible. The main purpose of
Ribenboim’s paper was to give correspondences between special length
functions A over a domain R, the valuation overrings of R, and the
endomorphisms of the Grothendieck group of constructible R-modules.

The aim of the present paper is two-fold. On the one hand, in the
first section we investigate the so-called annihilator sets of finitely
generated modules over a valuation domain. The results we find,
specifically Theorem 1.2, naturally lead to the notion of multiplicative
invariant p, defined on Fin R, the class of finitely generated R-modules
(R a commutative ring), and with values into a partially ordered
multiplicative semigroup (T, -, <). A multiplicative invariant u satisfies
the following natural properties, for Y C X finitely generated R-
modules: u(X) = p(Y)u(X/Y); u(Y) < p(X); if Z is a homomorphic
image of X, then u(Z) < pu(X). In case R is a valuation domain, we
prove (Theorems 2.4 and 2.5) that a special map pz is a multiplicative
invariant that enjoys a universal property for the class of the so-called
valuative invariants (this term is borrowed from [7]). The definition
of pz naturally derives from the discussion made in the first section.
Namely, if X is a finitely generated R-module, and By,... , B, is any
annihilator set of X, we have uz(X) = By --- B,. The importance of
w7 justifies our choice of the multiplicative notation for the semigroup
T.

The second purpose of our paper is to apply the notion of multi-
plicative invariant to re-obtain a description of length functions over
valuation domains, in a way alternative and more direct than that in
[6], and using a different point of view. We briefly summarize it. The
infinite length functions ¢ (i.e., whose image is an infinite set) lie in two
disjoint classes. Either £ is an L-rank, for some prime ideal L of R, or it
is valuative (Proposition 4.5). In Proposition 4.2 one finds a character-
ization of L-ranks, analogous to some results in [6]. In Theorem 4.7 we
characterize the valuative length functions using the universal property
of HZ-

It is worth ending this introduction indicating a relevant motivation
for the study of length functions, and, more generally, of multiplicative
invariants, namely, the developing theory of algebraic entropy.
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A sketchy definition of the concept of algebraic entropy for endomor-
phisms of Abelian groups was given in a 1965 paper by Adler et al. [1],
dedicated to topological entropy. In 1975 this concept was resumed and
developed by Weiss [12], in a paper that related algebraic and topo-
logical entropies using Pontryagin duality. In the algebraic context, as
well as in other areas of mathematics and physics, entropy is viewed as
a measure of the “average disorder” created by a transformation when
we repeatedly apply it. Following this philosophy, in [3] Dikranjan
et al. thoroughly investigated the algebraic entropy of [1, 12], which
turned out to be a very useful tool in the study of endomorphism rings
of Abelian p-groups. Thereafter, Salce and Zanardo [10] defined the
algebraic entropy for R a commutative ring, and used the rank as an
invariant to deal with the case of torsion-free Abelian groups. Many
more papers devoted to algebraic entropy in its different aspects have
been published, or are going to appear. We quote [2, 5, 9, 13].

In general, to define algebraic entropy, one needs an invariant ¢ of
Mod R that measures the “size” of R-modules. As explained in [10],
to get a correct definition such ¢ must satisfy a property called “sub-
additivity,” which is weaker than additivity. However, the importance
of length functions is crucial. In fact, starting with results in [3,
10], Salce et al. [8] have shown in full generality that, when ¢ is
a discrete length function, the related algebraic entropy satisfies the
Addition Theorem (see [3, 10] for the statement and a discussion on
this fundamental result). In view of the result in [8], in this paper we
give some emphasis to the case where £ is discrete, i.e., the image of ¢
is a discrete subset of R.

1. Annihilator sets of finitely generated modules. In the
present section, R is a valuation domain, with maximal ideal P and
field of quotients ). By v we denote a fixed valuation on @ such that
R, ={z €@ :v(z) >0} = R. In view of the discussion we will make
in Section 4, it is worth noting that v is not unique. If vy is another
valuation of @ such that R,, = R, we can ounly say that v(Q*) and
v1(Q*) are isomorphic ordered groups (here Q* = @ \ {0}).

Recall that a valuation v of a field @ has rank one if v(Q*) is an
ordered subgroup of R. In this case, we also say that R = R, is a rank-
one valuation domain. The valuation domain R has rank one if and
only if it has Krull dimension one, that is, P is the only nonzero prime
ideal of R. A valuation domain of rank one is also called Archimedean.
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When I is an ideal of a rank-one valuation domain R, we can define
v(I) = inf{v(r) : » € I'}, which is either a nonnegative real number, or
the symbol co when I = 0. We have v(IJ) = v(I) + v(J) for all ideals
1,J.

For a general treatment of valuation domains and their modules we
refer to the book by Fuchs and Salce [4].

The aim of this section is to investigate the annihilator sets (defined
below) of finitely generated modules over a valuation domain. The
results we prove will be applied in our subsequent discussion. For
a basic exposition of the theory of finitely generated modules over
valuation domains, see [4, Chapter 5.5].

A submodule N of the R-module M is said to be pureif NNrM = rN
for every r € R (see [4, Chapter 1]). For M an R-module, we denote by
Ann (M) its annihilator. We define gen M to be the minimal cardinality
of a generating system of M, when M is finitely generated; otherwise,
we set gen M = oco. As usual, by S, we denote the group of the
permutations of the set {1,... ,n}

Let X be a finitely generated R-module over the valuation domain
R. Presently, gen X = dimpg,/p(X/PX). Say genX = n, and let
{z1,...,zn} be a generating set for X. Then there exists a reordering
2; = x,(;) of the generators z; (T a suitable permutation of S,,) such
that, setting Zp = 0 and Z; = (z1,...z;), for 1 < i < n, the following
properties are satisfied

(a) each Z; is pure in X;
(b) for 1 <i < n, Z;/Z; 1 is isomorphic to R/A;, where

A1 CA C---C A,

The above sequence of ideals is determined by X, and is called the
annihilator sequence of X. Note that A; = Ann (z; + Z;_1).

The above results may be found in [4, Chapter 5.5]. Now we
reconsider the arbitrary minimal generating set G = {x1,... ,2,} of X.
For our purposes, we must take care of the order of the x;. Hence we
write G = (21, ... ,2,), and we say that G is an ordered basis of X. For
1 S _] S n, let XO = 0, Xj = <CE1, e ,iL’j>, and B]' = Ann (LEJ' + X]'_l).
Then we say that By,... , B, is the G-annihilator set of X. We remark
that the submodule X; is not necessarily pure in X.
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We define ag(X) = B1Bz - - By,. The ideal ag(X), a priori, depends
upon the choice of the ordered basis. However, the next Theorem 1.2
shows that uniqueness is valid.

We prove a preliminary lemma, useful also in other contexts.

Lemma 1.1. Let R be a valuation domain, X = (x1,x2) a two-
generated module, where Rr1NRxo # 0. Let us consider the ideals By =
Ann (z1), By = Ann (22 + Rxy), Co = Ann (z3), C; = Ann (z1 + Rz2).
Then there exists a ¢ € Q> such that By = qCy and By = ¢~ 1C;.

Proof. By symmetry, we assume that By = Ann (z;) = Ann X and
Rz is pure in X, so that Bo O Bj. Since, by hypothesis, Rx1NRxo # 0,
we have By # Ann (z3) = Cy. Therefore, we get B; C Cy C Bg. Since
Rz, is pure in X, for every r € B \ By we get a relation

rre =rg,xr1, 3q. € R.

Now we show that v(g,) = v(gs), whenever r,s € Bz \ C2. In fact,
assuming without loss of generality that s € rR, we get the relation
s(gs — gr)x1 = 0. Since szy = sqszy # 0, it follows that v(g.) = v(gs).
Then we may fix ¢ € R such that v(¢) = v(g,), for all r € By \ Cy. We
want to show that Ann(zs) = Co = ¢~ !B;. In fact, any t € Cs is a
multiple of some r € By \ Cy. Thus we get 0 = txy = tg.x1 = tqxy,
whence t € ¢7'B;. It follows that Co C ¢~ 'B;. Conversely, if r € By
and r ¢ Co, then rq, ¢ By; hence, r ¢ ¢ 1By, and Cy O ¢~ !B follows.

Now we prove that C; = Ann(z; + Rzs) = ¢Bs2. For r € By, we
get rqry1 = rq-(¢/q-)x1 € Rxa, since ¢/q, is a unit of R, and therefore
qB> C Cy. Now assume, for contradiction, that ¢Bs C (', and choose
t ¢ Bo such that t¢ € Cy. Then tqry = szo # 0, for a suitable
s € R (note that tq ¢ By = qCy C ¢Bs3). Then s € Bs, and hence
0 # sxy = sqsx1 = tqry. It follows that tg — s¢s € Ann(x1) = B;. But
v(tq — sgs) = v(tq), being v(q) = v(gs) and v(t) < v(s), since t ¢ Bo
and s € By. Therefore tgzy = 0, a contradiction. We conclude that
qB> = (1, as desired. O

We note that the preceding lemma is no longer true if Rz; N Rxy = 0,
that is, X = Rz; & Rxs. To get a counterexample, just choose
B; = Ann (z7) not isomorphic to Cy = Ann (z2).
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We introduce a further notation. If G = (z1,...,2,) is an ordered
basis of X, for any permutation o € S, we set Go = (2, (1), .-+ » Lo (n))-

Theorem 1.2. Let R be a valuation domain, X a finitely generated
R-module, with ordered basis G = (x1,... ,z,). Let By,..., By, be the
G-annihilator set of X. Then ag(X) = B1By -+ B, does not depend
upon the choice of G.

Proof. Tt suffices to show that ag(X) = ag, (X) for any permutation
o € S,. In fact, for any ordered basis H of X, there is a suitable
permutation 7 such that oy (X) = Ay--- A, where A C A3 C.-. C
A, is the annihilator sequence of X, as explained above. Moreover,
since any permutation is a product of transpositions, we readily realize
that we may assume o itself to be a transposition (7,7 + 1), for some
j < n. We make induction on n, the case n = 1 being obvious. Actually,
the crucial step is to check our assertion for n = 2. So let X = (z1, z3).
As in Lemma 1.1, we set B; = Ann(z;), B = Ann(zs + Rz;),
Cy = Ann(z3), C; = Ann(zy + Rzs). If now X = Rz; © Ruxs,
we get By = C; and By = (5, and the equality BiBy; = C1C5 is
trivial. Thus assume that Rz; N Rxy # 0. Then Lemma 1.1 shows
that By = ¢qCy and By = ¢~ 1C}, for some ¢ € Q*, and therefore
BBy = qCoq~1C, = C,C; yields the required equality.

For n > 3, we assume by induction that if Z is an R-module with
gen Z < n—1, then, for any ordered basis G’ of Z, ag/(Z) is independent
from G'. We write G° = (z1,...,2,—1). We pick a transposition o. If
o(n) = n, then X,_; is generated by (zy(1),..-,Zo(n-1)) = G3. By
induction, ago(Xy, 1) = ago(X, 1), hence

ag(X) =ago(Xn_1)Bn = ago (Xn-1)Bn = ag, (X).

Now we assume that o(n — 1) = n, o(n) =n—1. If Z = X,,_o,
it is readily proved that ag(X) = ag, (X) if and only if ag (X/Z) =
ag: (X/Z), where G’ = (2,1 + Z,x, + Z) is an ordered basis of X/Z
and G! = (zp, + Z,zp—1+ Z). Since X/Z is two-generated, the desired
conclusion follows. O

Example 1.3. Asexpected, Theorem 1.2 is no longer valid when R is
not a valuation domain. For an example, consider the local Noetherian
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domain R obtained by the polynomial ring K[Z;, Zs] localizing at the
maximal ideal (Z1,Z2) (K a field, the Z; indeterminates). Consider
the finitely generated R-module X = (ZR + Z»2R)/ZiR, and let
2i = Z; + RZ}, i = 1,2. Then X = (z1,27), and an easy exercise
shows that By = Ann(z1) = Z1R, By = Ann(z2 + Rz1) = ZiR,
C1 = Ann(22) = Z?R, Cy = Ann (21 + Rz3) = Z1 R + Z3R. Therefore
we get BlBQ 7& 01C2.

We remark that the preceding theorem will be crucial for the proof
of Theorem 2.4, in the next section.

The following easy lemma may be proved by a straightforward induc-
tion on k = gen (X/N).

Lemma 1.4. Let R be a valuation domain, X a finitely generated
R-module with annihilator sequence Ay C --- C A,, N a proper
submodule of X. Then the annihilator sequence of X/N has the form
Cy C -+« CCk, where k =gen (X/N) <n and C; 2 A;, for 1 <i<n.

We will need the next useful result, that easily follows from the fact
that a valuation domain is an “elementary divisor ring” (EDR). For
definitions and basic results on EDRs we refer to [4, Chapter 3.6].

Theorem 1.5. Let Y C X be finitely generated modules over the
valuation domain R, with gen X = n, genY = k. Then k < n,

and there exists an ordered basis G = (x1,x2... ,x,) of X, with G-
annihilator set By,..., By, such that Y = (ayz1,ass,... ,a5x), for
suitable a1, ... ,a € R, where aj ¢ Bj, for 1 <j <k.

The next lemma is folklore. We give a proof for the sake of complete-
ness.

Lemma 1.6. Let R be a valuation domain, X = (z1,...,2,), Y =
(a1@1, ... ,anxy) finitely generated R-modules, where gen X = genY =
n (a; € R). Then X/Y = @;_, R(z; +Y), where R(z; +Y) = R/a;R,
forl1 <i<n.
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Proof. Let us verify that X/Y = @, , R(z; + Y). Assume, for
contradiction, that there exist elements r; € R\ a;R, i € F C

{1,...,n}, such that

Zrixi ey.

icF
Say a; = r;t;, where t; € P for all i € F. Pick j € F such that v(t;)
is maximum. Then ¢;7; € a; R, say t;r; = s;a;, for all i € F, i # j.
Multiplying the above relation by ¢;, we get

a;x; + Z S$;a;x; € th C PY.
1EF,iF£]

It follows that gen Y < n—1, a contradiction. A similar argument shows
that Ann (z; +Y) C a;R, for 1 < i < n, and the reverse inclusion is
trivial. a

The final result of this section is also crucial to establish the next
Theorem 2.4.

Proposition 1.7. Let X = (z1,...,2zy), Y = (a121,... ,anT,) be
finitely generated modules over the valuation domain R, with gen X =
genY =n (a; € R). For1<i<nmn, define Xo =0, X; = (x1,...,2;),
Yo =0, = <a1x1,.. . ,aimi>, A; = Ann(a:i + Xifl) and B; =
Ann (a;z; +Yi—1). Then B; = ai_lAi, for1<i<n.

Proof. Let us fix an index k, with 1 < k < n. If k =1, we readily get
B; = Ann(ayzy) = aflAl, since Ay = Ann(z1). So we assume that
k > 2. Pick any s € By; then sagpzy € Yy 1 C X1 yields sap € Ag,
and hence we conclude that By C a,;lAk. Conversely, let us verify that
any r € a,zlAk, lies in By. Since ray € Ay, we get

k—1
rapTy = Zqimi (3 q; € R).
i=1

First suppose that a; divides ¢;, for all i < k — 1; say a;s; = ¢;.
Then rapx, = Zi:ll s;a;x; € Yi_1 yields r € Bg. Assume now, for
contradiction, that there is a nonempty subset F of {1,... ,k—1} such
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that, for all i € F, a; = t;¢;, with ¢, € P. Choose j € F such that v(¢;)
is maximum. Then, multiplying the preceding relation by ¢;, we easily
get a;x; € (a;x; : 1 < i < k,i# j), which implies that genY < n —1,
against our hypothesis. The desired conclusion follows. ]

2. Multiplicative invariants. Let R be a commutative ring,
(T, -, <) a partially ordered semigroup, with commutative multiplica-
tion, and denote by Fin R the class of finitely generated R-modules.
An dnvariant of Fin R is a map g : Fin R — I' such that u(X) = p(Y)
whenever the R-modules X,Y are isomorphic.

The invariant p is said to be multiplicative if for any short exact
sequence of finitely generated R-modules 0 - Y — X — X/Y — 0
the following conditions are satisfied:

(i) p(X) = p(Y)u(X/Y);
(i) p(Y) < p(X);
(iii) if Z is a homomorphic image of X, then p(Z) < p(X).

One might compare the above definition with that of length function
of constructible modules, given by Ribenboim in [7, Section 2].

Example 2.1. We give a pair of examples of multiplicative invariants
for Fin Z, the class of finitely generated Abelian groups. Let N* be
the multiplicative semigroup of strictly positive integers, and define a
map py as follows: p1(G) = |G|, if G is a finite Abelian group, and
p1(G) = oo, if G is finitely generated and infinite. Adopting the usual
conventions for the symbol co, namely, n < oo, n-00 = 0000 = 00, for
all n € N*, T';y = N* U {oo} becomes an ordered semigroup. Then
Lagrange theorem shows that p; : FinZ — I'; is a multiplicative
invariant.

In the same spirit, consider the multiplicative semigroup I's =
[I;50 Ni U {oo}, where N; = N* for all 4 > 0, and the multiplica-
tion is pointwise. We endow I's \ {oo} either with the component-wise
partial order, or with the lexicographic (total) order. In both cases, let
P = {pi}i>o0 be the set of prime numbers and, for m = [[,., p;"* a posi-
tive integer (where almost all the n; are zero), define s(m) = (p}'*)i>0 €
[I;50 Ni- Then the map po : FinZ — T defined by u2(G) = s(|G|) if
G is finite, and p(G) = oo otherwise, is a multiplicative invariant.
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Proposition 2.2. Let p be a multiplicative invariant of Fin R, where
R is a commutative ring. Let X = (z1,... ,z,) be a finitely generated
R-module, and, for 1 < i < n, define Xo = 0, X; = (x1,...,2;).
If X;/X;_1 =2 R/A; (1 < i < n), then p(X) = [, p(R/A;). In
particular, p is determined by the values p(R/I), where I is an ideal
of R (possibly improper).

Proof. The desired formula follows at once by induction, using
property (i). O

Let p: Fin R — I' be a multiplicative invariant, and ¢ : I' = I'; an
ordered morphism of partially ordered semigroups. Then, clearly, the
map p; = o : Fin R — I’y is also a multiplicative invariant of Fin R.

Lemma 2.3. Let p be a multiplicative invariant of Fin R, where R
is an integral domain. Then u(R/yzR) = u(R/yR)u(R/zR), for all
Y,z € R.

Proof. The exact sequence
0 — R/yR — R/yzR — R/zR — 0
vields p(R/yzR) = p(R/yR)u(R/2R). O

In general, the property proved in Lemma 2.3 is valid only for cyclic
modules with principal annihilator. We say that the multiplicative
invariant p is valuative if the following property holds

(iv) p(R/Du(R/J) = u(R/IJ), for all ideals I,.J of R.

The reason for the choice of the term valuative, that derives from [7,
Section 3], is explained in the forthcoming Remark 4.6. In the final
section we will see that the invariants related to the so-called L-ranks
do not satisfy (iv).

Now we take R to be a valuation domain, and denote by Z(R) the
multiplicative semigroup of the ideals of R (that includes the improper
ideal R as the neutral element). We consider the total order on Z(R)
defined by I < J if and only if I D J.

We define a map pz : Fin R — Z(R) as follows:
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if X is a finitely generated R-module, uz(X) = Bj---B,, where
By,..., B, is the G-annihilator set of X, for some ordered basis G of
X.

Theorem 2.4. Let R be a valuation domain. Then the map pz is a
well-defined multiplicative invariant of Fin R.

Proof. To simplify the notation, we write uz = p. Proposition 1.2
shows that p is well-defined, since p(X) does not depend on the
choice of G. We note that p is also valuative, by definition. Let
us prove that p is multiplicative. The main point is to show that
property (i) holds, that is, for any ¥ C X finitely generated R-
modules we have u(X) = u(Y)u(X/Y). Applying Theorem 1.5, we

choose an ordered set of generators G = (z1,...,2,) of X, with G-
annihilator set By, ... , B, such that Y = (ay21, ... , axzy), for suitable
ai,...,ar € R, with a; ¢ B; for all j < k. By induction on

gen (X/Y) we may also assume that a; € P, for all i < k, so that
Go = (a121,... ,arzi) and G; = (21 +Y, ... ,z, +Y) are ordered bases
of Y and X/Y, respectively. By Proposition 1.7, the Gp-annihilator set
of Yis alel, e ,a,;lBk. Moreover, using Lemma 1.6, it is easily seen
that the G;-annihilator set of X/Y is a1 R,...,arR, Bg+1,..-,Bpn. It
follows that u(X) = p(Y)u(X/Y).

Now we easily see that (ii) holds, namely, u(Y) = Hle a;'B; <
pw(X) =[], B;, since H?Zl a;'B; D[]\, B;. Similarly, an applica-
tion of Lemma 1.4 shows that property (iii) holds. o

The invariant pz enjoys a universal property for valuative invariants.

Theorem 2.5. Let R be a wvaluation domain, p : FinR — I' a
valuative invariant. Then there exists an ordered morphism ¢ : Z(R) —
I" such that the following diagram commutes
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Proof. Using Proposition 2.2, we easily see that it suffices to show that
the map ¢ : I — u(R/I) is an ordered morphism from Z(R) to I'. Since
 is valuative, we get o(IJ) = p(R/IJ) = p(R/DHp(R/J) = (I)p(J).
Moreover, if I < J, then, by definition, I O J, and so R/I is a
quotient of R/J. Then property (iii) implies u(R/I) < u(R/J), hence
p(I) <e(J). o

Remark 2.6. The importance of the invariant uz justifies our choice
of the multiplicative notation for the semigroup I'. As a matter of fact,
in the next section we will use the traditional additive notation for the
so-called generalized length functions, introduced in [6].

3. Generalities on length functions. For the basic concepts,
we will follow the ideas and terminology introduced by Northcott and
Reufel [6] and developed by Vamos [11]. Although not strictly neces-
sary at a first stage, we prefer to work in a commutative environment.

Let R be a commutative ring, and denote by Rx( the set of the
nonnegative real numbers. An Archimedean function of Mod R is a
map ¢ : Mod R — R>o U {oo} such that ¢(M) = ¢(N) whenever the R-
modules M, N are isomorphic. Note that (R>o U {0}, +, <) becomes
an ordered additive semigroup, once we assume the usual conventions
for the symbol oo, namely, for any » € R, r < 0o, r+00 = 00+ 00 =
oo. This semigroup is also complete, that is, any nonempty subset has
sup and inf. However, note that Im (¢) = {{(M) : M € Mod R}, the
image of ¢, in general neither is a subsemigroup, nor is complete in the
partial order induced by R>o U {oo}.

The Archimedean function ¢ is said to be additive if for any short
exact sequence of R-modules 0 - N — M — M/N — 0 we have
L(M) = £¢(N) + £(M/N). An additive function automatically satisfies
L(N) < {(M) and ¢(M/N) < ¢(M), for any R-modules N C M.

We note at once that there exist additive functions that are mean-
ingless. Namely, we say that the additive function £ is trivial if its set
of values is a singleton, which, necessarily, is either {0} or {co}. In
what follows, any additive function considered will be automatically
assumed to be nontrivial. Note that £(0) = 0 when ¢ is additive and
nontrivial.

Of course, every additive function ¢ gives raise to a multiplicative
invariant u, just restricting £ to Fin R and defining pu(X) = /%) (with
the convention e® = o).
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The Archimedean function ¢ is said to be upper continuous if, for any
R-module M, ¢(M) = sup{l(X)}, where X ranges over the finitely
generated submodules of M. Note that the upper continuity of ¢
implies that ¢(N) < ¢(M) whenever N C M. Moreover, ¢ is upper
continuous if and only if, for any set of R-modules {N,}o<x, we have
£(> o er No) =sup{l(Ng) : a < A} (cf. [11, Proposition 8]).

The standard examples of additive invariants are the dimension of
vector spaces, when R is a field, the torsion-free rank of R-modules,
when R is an integral domain, and, for an arbitrary ring R, the Jordan-
Holder length of R-modules. Of course, these three invariants are upper
continuous, as well.

Following [6], an additive upper continuous function is called (gener-
alized) length function.

For any assigned length functions ¢;, 2 of Mod R and nonnegative
real numbers «, 3, it is clear that af; + (8¢5 is also a length function.
However, this obvious fact will not be relevant for our discussion.

For M an R-module, we denote by Fj; the set of the finitely generated
submodules of M.

Remark 3.1. We will mostly deal with generalized length functions,
the more interesting and useful case. However, one may easily see that
the notions of additive and upper continuous are independent, even for
Archimedean functions of the class of Abelian groups or vector spaces.
Consider the following examples.

(a) Let us split the set P of prime numbers as P = H; U Hy, where
H,, H, are disjoint and nonempty. We define ¢ on the class of Abelian
groups as follows: if G is an infinite Abelian group, then £(G) = oo; if
G, is a finite p-group, with p € Hy, then 4(G,) = 0; if G, is a finite
g-group, with ¢ € Ho, then ¢(G,) = log|G,|; if G is any finite group,
then ¢(G) is the sum of the invariants of its primary components. A
direct and easy verification shows that ¢ is an additive function (cf.
[3]). However, ¢ is not upper continuous. For instance, if p € H; and
G is any infinite p-group, then ¢(G) = oo but £(X) = 0 for any finite
subgroup X of G.

(b) Let @ be a field. We define an Archimedean function ¢; of Q-
vector spaces as follows: ¢1(V) = 0if dimg (V) < 1, £, (W) = dimg (W)
if dimg(W) > 2. It is clear that ¢; is upper continuous, but not
additive.
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We have an immediate additive version of Proposition 2.2.

Proposition 3.2. Let ¢ be an additive function of Mod R, where
R is an integral domain. Let X = (x1,... ,x,) be a finitely generated
R-module, and, for 1 < i < n, define Xg =0, X; = (z1,...,z;). If

From Proposition 3.2 and upper continuity, we at once get the
following result.

Proposition 3.3. Let ¢ be a length function of Mod R, where R
is an integral domain. Then £ is completely determined by the values
L(R/I), as I ranges over the ideals of R.

The following lemma is related to Proposition 3 and Theorem 1 of
[11]. The second somehow technical property will be needed in the
final section.

Lemma 3.4. Let ¢ be an upper continuous function of Mod R, where
R is a commutative ring.

(i) ¢ is additive if and only if for any short exact sequence of R-
modules 0 - N — X — X/N — 0, with X finitely generated, we have
LX) =L4(N)+£(X/N).

(ii) Let the following additional condition be satisfied: for any R-
modules N C X with X finitely generated, ¢{(X/N) = inf{{(X/Y) :
Y € Fn}. Then { is additive if and only if for any short exact sequence
0 Y - X - X/Y — 0, with X,Y finitely generated, we have
LX) =0Y)+LX]Y).

Proof. (i) Let us consider an arbitrary exact sequence of R-modules
0—N-—M-— M/N—0.

For any finitely generated submodule X of M we get the exact sequence

0—NNX —X— (X+N)/N—0;
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hence, by hypothesis, we have {(X) = {(NNX) +4((X + N)/N) <
O(N) + ¢(M/N). Since ¢(M) = sup{{(X) : X € Fup}, we get the
inequality £(M) < ¢(N) + ¢(M/N). To end the proof, we must verify
the reverse inequality. Let us take an arbitrary X € F;;. By hypothesis
we have (M) > ¢(X) =4(X NN) + £(X/X N N); hence, we get

UM) >sup{d(XNN)+4X/XNN): X € Fu}.

Since N = )y XNN and £ is upper continuous, £(N) = sup{¢(X N
N): X € Fu}. Moreover, since for each Y € Fy and each Z € Fy/n
there exists an X € Fjs such that Z = X/X NN and Y C X NN, we
get

UM) > 6(X) = (X N N) + (X)X ON) > 6Y) +£(2);

hence, the desired inequality ¢(M) > ¢(N) + ¢(M/N) follows.

(ii) By the above proof, it suffices to show that £ is additive on the
exact sequences

0—N—X—X/N—0

where X is finitely generated. Pick any Y € Fx. By hypothesis, we
have (Y) 4+ £(X/Y) = £(X); hence, {(N) + ¢(X/Y) > £(X). Thus we
get the inequality

((X) < U(N) +inf{{(X/Y) : Y € Fy} = ((N) + ((X/N).

Conversely, from the equality 4(X) = ¢(Y) +4(X/Y) we get {(X/N) +
Y) < U(X), since {(X/N) < 4(X/Y) for all Y € Fy. Taking the sup
for Y € Fn we get £(X/N) + ¢(N) < ¢(X). We have thus proved the
equality ¢(X) = £(X/N) + ¢(N). o

Example 3.5. It is worth showing that (i) in the preceding lemma
is no longer valid if the invariant is not upper continuous. Let p # ¢ be
prime numbers, V, (respectively V;) an infinite direct sum of copies of
Z /pZ (respectively Z/qZ). Consider the Archimedean function ¢ of the
class of Abelian groups defined as follows: £(X) = 0 if X is a finitely
generated Abelian group, ¢(V, ® V;) = 1, {(G) = oo otherwise. It is
clear that /¢ is not additive, but it trivially satisfies additivity on those
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short exact sequences whose middle term is finitely generated, since
then all terms are finitely generated.

Let us also remark that, even in the case where £ is upper continuous,
(ii) can fail without the technical hypothesis {(X/N) = inf{{(X/Y) :
Y € Fn}. Let R be a valuation domain whose maximal ideal P is
not finitely generated. Define an Archimedean function ¢ on Mod R
in the following way: if X is a finitely generated R/P-module, let
{(X) = dimg,p(X); if M is any R-module, then £(M) = sup{¢{(X) :
X € Fuy, PX = 0}. Then £ is upper continuous by definition, and
the sequence 0 - P — R — R/P — 0 shows that ¢ is not additive.
As a matter of fact, the referee of the present paper observed that, if
R is not almost maximal, then ¢ is not even additive on those short
exact sequences with all terms finitely generated. However, under the
additional assumption that R is almost maximal, one may show that if
Y C X are finitely generated R-modules, then ¢(X) = 4(Y) +£(X/Y).
The proof of this fact is technical and rather long. It uses the linear
compactness of the proper quotients of R. We omit this proof, since it
is not relevant for the present paper.

Remark 3.6. In Proposition 3 and Theorem 1 of [11] it is shown
how to extend, by upper continuity, an additive function of a full
subcategory C of Mod R to an additive function of all Mod R. It is worth
showing that a similar idea is not applicable to general multiplicative
invariants g : Fin R — T'. For this reason we had to define pu(X) only
for finitely generated R-modules X, and, actually, Ribenboim in [7]
confined his discussion to constructible R-modules, a subclass of finitely
presented modules. To begin with, Fin R is not a full subcategory of
Mod R, since submodules of finitely generated modules need not be
finitely generated. Actually, this difficulty is also present for additive
functions, but in that case it might be overcome like in the preceding
Lemma 3.4. Moreover, the ordered semigroup I' is not necessarily
complete. However, the crucial property, needed by I' to make the
proof of Lemma 3.4 work, is the following

(%) if Uy, Us are subsets of T, then sup(Uy) sup(Us) = sup(U;Us).

It is enjoyed by (R>o U {o0}, +, <) but not by any complete semi-
group. As a matter of fact, the main ordered semigroup we consider,
namely Z(R), is complete: if A= {I\}» C Z(R), then sup(A4) =, Ir
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and inf(A) = U, I». However, if the valuation domain R contains a
prime ideal L which is neither maximal nor zero and satisfies L # L?,
then Z(R) does not satisfy (). Let A be the set of ideals that prop-
erly contain L. Then L = (\;c4 I, and IJ D L for all I,J € A. Tt
follows that sup(A) = L = sup(A4?) # sup(A) sup(A4) = L% If we now
extend puz to Mod R by upper continuity, defining, for an R-module
M, pr(M) = sup{pz(X) : X € Fu}, we get an invariant which is
not multiplicative. In fact, let N = @;., R/I, and consider the exact
sequence
0—  N—N&N—N—O.

It is easy to verify that uz(N) = L = uz(N®N) # pzr(N)uz(N) = L?;
hence the extension of uz to Mod R is not multiplicative.

We say that the additive function is singular if Im (¢) = {0, 00}. The
additive function ¢ is called infinite (or non-singular) if 0 < £(M) < oo,
for some M € Mod R. Note that the property {(M®&N) = ¢(M)+£4(N)
implies that the image of an infinite additive function is an infinite set.
The additive function ¢ is called discrete if Im (¢) \ {oo} is a discrete
subset of R>o.

The following easy lemma was proved in [6]. The natural properties of
its statement will be taken for granted, and applied without mentioning
the lemma.

Lemma 3.7. Let ¢ be an additive function of Mod R, where R is an
integral domain. Then

(1) if I C J are ideals of R, then {(R/J) < L(R/I);

(2) for all y,z € R we have {(R/yzR) = £{(R/yR) + {(R/zR). In
particular, {(R/y™R) = nl(R/yR), for alln > 0.

Now we take R to be a valuation domain, with maximal ideal P and
field of quotients ). By v we denote a fixed valuation on @) such that
R, =R.

We recall the following standard property of valuation domains: if
L is a prime ideal of R such that L # L?, pick any y € L\ L?; then
L={(y/a:a€ R\L)and L"™ = yL", for every n > 0.

From now on, we will deal with additive functions which are upper
continuous, that is, ¢ will always be a length function in the sense of
[6].
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Lemma 3.8. Let R be a valuation domain, £ a length function of
Mod R, and L a prime ideal of R such that L # L*. Then

(1) ¢(R/L) = ¢(R/yR) for ally € L\ L?
(2) ¢(R/L™) =nl(R/L), for all n > 0.

Proof. In case ¢{(R/L) = oo our assertions readily follow from
{(R/yR) > {(R/L). Thus we assume that ¢(R/L) < oo. Fory € L\ L?,
we consider the exact sequence

0— L/yR — R/yR — R/L — 0.

Since {(R/yR) = ¢(R/L)+{(L/yR), it suffices to show that ¢(L/yR) =
0. Recall that L = (y/a: a € R\ L); hence L/yR = U, ¢ (y/a)R/yR.
Now observe that ¢(R/aR) = 0 for all a € R\ L. In fact, we have
a”R D L for all n > 0, since L is a prime ideal, hence n¢(R/aR) =
¢(R/a™R) < {(R/L) < oo for all n. This is possible only if /(R/aR) =
0. Since R/aR = (y/a)R/yR, and ¢ is upper continuous, we conclude
that ¢(L/yR) = 0, as well. Thus, we have proved (1). In order to verify
(2), we recall that L™ = y"~'L for all n > 0. Hence we derive the exact
sequence

0 — L/yL — R/L™ — R/L" ' —0.

By induction, (2) follows if we prove that ¢(L/yL) = ¢(R/L). This last
fact is true, since L/yL = {J,¢1,(y/a)R/yL, and (y/a)R/yL = R/aL =
R/L for alla € R\ L. o

The ideals defined in the next proposition were introduced in [6,
Section 3], and point (i) of the result also follows from the discussion
there.

Proposition 3.9. Let R be a valuation domain, £ a length function
of Mod R. Consider the ideals Ly = (y € R : {(R/yR) > 0), and
L =(ye€ R:4(R/yR) = ©). Then

(i) L¢, Ly are prime ideals of R, and no prime ideal lies properly
between Ly and Ly. If the ideal I properly contains Ly, then £(R/I) = 0;

if I properly contains Ly, then ((R/I) < oo; if I is properly contained
in Ly, then {(R/I) = o0; if Ly # Ly, then £(R/L;1) = 0.
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(i) If £ is discrete and infinite, then 0 < ¢(R/L;) < co. Moreover
Ly = L? if and only if Ly = L.

(iii) If £ is non-discrete, then Ly # Ly, ¢(R/Ly) =0 and Ly = L3.

Proof. To simplify the notation, we write L = L,. Note that 1 ¢ L,
since {(R/R) = ¢(0) = 0. Hence both L and L; C L are proper ideals.

(i) For a,b € R\ L we get {(R/abR) = {(R/aR)+¢(R/bR) = 0, hence
ab ¢ L. So L is a prime ideal. In a similar way we see that L is prime,
as well. If the ideal I contains an element a ¢ L (respectively a ¢ L1),
then ¢(R/I) < {(R/aR) = 0 (respectively ¢(R/I) < {(R/aR) < o0). If
b€ Ly \ I, then co = {(R/bR) < ¢(R/I). Finally, assume that there
is a prime ideal J C L, take any z € J, and fix y € L\ J. Then
J € N,so¥" R, whence £(R/zR) > £(R/J) > {(R/y"R) = n{(R/yR),
for all n > 0. Since, by the definition of L, ¢(R/yR) > 0, we get
L(R/J) = £(R/zR) = oo, hence J C L;, since z was arbitrary. In
particular, it follows that ¢(R/L;) = co when L # L.

(ii) Since ¢ is infinite and discrete, we may assume without loss of
generality that Im (¢/) C N. If {(R/L) € {0,00}, using (i) we easily
get £(R/I) € {0, 00}, for any ideal I of R. Then Proposition 3.3 shows
that ¢(M) € {0,00} for any R-module M, impossible. Assume now
that L = L2, and pick any y € L. For every n > 0 we can write
Y =21+ 2, with z; € L. Then we get {(R/yR) = > i, {(R/zR) > n;
hence, /(R/yR) = oo, since n > 0 was arbitrary. It follows that
L = L. Conversely, if L # L?, then Lemma 3.8 shows that /(R/yR) =
¢(R/L) < oo for any y € L\ L.

(iii) Assume, for a contradiction, that L # L?. Hence, by Lemma 3.8,
{(R/L) = ¢(R/yR) > 0, for all y € L\ L% Take any ideal I of
R. If I > L, then {(R/I) = 0, by (i). If I C (),.,L" then
Lemma 3.8 shows that ¢(R/I) > nl¢(R/L), for all n > 0, whence
{(R/I) = co. So assume that L¥ O I D LF*l. Then there exist
21,...,2k € L'\ L? such that z;---2;, € I. Since by Lemma 3.8 we
have ¢(R/zR) = {(R/L) for 1 < i < k, we get k{(R/L) = ¢(R/LF) <
LR/I) <U(R/z - zR) = Zle {(R/z;R) = kf(R/L). We conclude
that ¢(R/I) is either oo or an integral multiple of ¢(R/L), for any ideal
I of R. Then from Proposition 3.3 we derive that ¢ is discrete, against
our present assumption.

Now we exclude that L = Ly. Otherwise, for any ideal I # L, we
either get ¢(R/I) =0, when I D L, or {(R/I) = 0o, when I C Ly = L.
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Again we would conclude that ¢(R/I) is either oo or an integral multiple
of ¢(R/L), impossible.

Finally, let us define § = inf{¢(R/yR) : y € L}. Take any y € L\ L;
and n > 0. Then, since L = L™, we get y = y1 - - - Yn, for suitable y; € L.
It follows that ¢(R/yR) = Y., ¢(R/y;R) > nd. This is possible only
if 6 = 0, since both y and n were arbitrary. Then ¢(R/L) < {(R/yR)
for every y € L, yields /(R/L) < § = 0. As a by-product, we have also
seen that there exists a sequence {y,}n>0 of elements of L such that
L(R/ynR) = a, > 0, and the real numbers «,, converge to zero. o

It is worth noting that the set {y € R: ¢{(R/yR) > 0} is nonempty,
and so this set actually coincides with L,. In fact, assume for contra-
diction that ¢(R/yR) = 0 for every y € R. Then £(R/I) = 0 for any
ideal I of R; hence, Proposition 3.3 yields (M) = 0 for any R-module
M, so { is trivial, against our standing assumption. On the other hand,
it is possible that {y € R: /(R/yR) = co} = &. In fact, this happens
exactly when ¢ = rank. In that case we have L; = (@) = 0.

We will say that Ly is the associated prime ideal of £.

4. Description of length functions. In this final section we re-
obtain a description of length functions over valuation domains. Our
main Theorem 4.7, based on the multiplicative invariant uz, uses a
completely different method from that in [6] and provides some new
information. Other results, like the next Proposition 4.2, could be
obtained by the discussion in [6]. We also give a proof of these results,
for the sake of completeness, and to make our paper self-contained.

As a first step, we examine the singular length functions. This is not
a trivial case, as one might guess. Clearly, under the present circum-
stances, from Im (¢) = {0,00} we get Ly = Ly. The following result
characterizes the singular length functions over valuation domains. We
omit the proof, that can be obtained adapting that of the next Propo-
sition 4.2.

Theorem 4.1. Let R be a valuation domain, { a singular length
function of Mod R, M an R-module. Then

(a) when £(R/Lg) =0, £(M) = 0 if and only if M is an R/L¢-module;
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(b) when ¢(R/L;) = oo, £(M) = 0 if and only if M is a torsion
R/L¢-module.

Conversely, let L be a prime ideal of the valuation domain R.
(1) If L # L2, the map ¢ on Mod R defined by (M) = 0 if M is a

torsion R/L-module, and ¢(M) = oo otherwise, is the unique singular
length function such that L = Ly;

(2) if L = L2, there exist exactly two singular length functions 1
and ¢ of Mod R with associated prime ideal L, respectively defined
by: ¢1(M) = 0 if M is an R/L-module, and ¢1(M) = oo otherwise;
(M) =0 if M is a torsion R/L-module, and {2(M) = co otherwise.

Now we examine the infinite length functions of Mod R, and show
that they lie in two disjoint classes. The first one is characterized by
the following proposition, which is an alternative version of [6, Theorem
6].

Proposition 4.2. Let R be a valuation domain.

(1) Let £ be an infinite length function of Mod R such that Ly = Ly =
(y € R: {(R/yR) = oo). For every R-module M we have ¢{(M) =
U(R/Lg)rankg/r, (M), when M is an R/L,-module, and {(M) = oo,
otherwise. Moreover, necessarily, 0 < {(R/L;) < oo and L, = L2.

(2) Conversely, let L be an assigned prime ideal of R such that
L = L2%. For any real number o > 0, the Archimedean function of
Mod R defined by £(M) = a rankg, (M), when M is an R/L-module,
and {(M) = oo, otherwise, is a length function.

Proof. (1) To simplify the notation, we write L = L,. It suffices to
prove our statement for every finitely generated R-module X. So, let
A; C ... C A, be the annihilator sequence of X. First assume that
X is not an R/L-module. Then Ann(X) = A; C L, and therefore,
choosing z € L\ Ay, we get £(X) > ¢(R/A1) > ¢(R/zR) = oo.
Assume now that X is an R/L-module, or, equivalently, that A; O L.
If A, O L for 1 < i < m, then X is a torsion R/L-module, and
(X)) =" U(R/A;) =0 ={(R/Ly) rankp,;,(X). Otherwise, assume
that L=A; =--- = A, C A1 C--- C A,. Then X =U @Y, where
U is the direct sum of k copies of R/L, and Y is a torsion R/L-module.
It easily follows that £(X) = k{(R/L) = {(R/L)rankg,r,(X). As a by-
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product, we have also shown that ¢ is discrete. Then 0 < ¢(R/L;) < oo
and L, = L? follow from Proposition 3.9.

(2) It suffices to show that £(X) = ¢(N) + £(X/N), for any modules
N C X, with X finitely generated. If X is an R/L-module, then
both N and X/N are R/L-modules, and the desired equality follows,
since rankp,, is a length function of Mod (R/L). If X is not an R/L-
module, then, by definition, £(X) = co. Recall that Ann (X) C L. If
now Ann (N) C L, then {(N) = oo and the desired equality reduces to
00 = 0o. Then assume that Ann(N) D L, and pick any € X such
that Ann(x) C L. Since L = L?, we may take ri,72 € L such that
rire ¢ Ann (z). Then rirox # 0 implies that rox ¢ N, since ri N = 0.
It follows that ro ¢ Ann (z+ N), hence Ann (z+ N) C L. We conclude
that X/N is not an R/L-module, hence from ¢(X/N) = oo we get the
desired equality. o

The length functions as in Proposition 4.2 are called L-rank functions.
By the definition, they are all discrete. Note that no L-rank function
¢ can be valuative. Indeed, from 0 < ¢(R/L) < oo we get {(R/L?) =
{(R/L) # ¢(R/L)+ £(R/L).

Proposition 4.3. Let R be a valuation domain, ¢ an infinite length
function of Mod R, such that Ly # Ly. Then £(R/I) = inf {{(R/yR) :
y € I} for every ideal I of R. In particular, £ is completely determined
by the values {(R/TR), r € R.

Proof. We write L = Ly. Note that ¢ is not an L-rank, since L # L.
Let I be any ideal of R. If I D L, then ¢(R/I) = 0 = {(R/rR), for
all » € I'\ L, and if I C Ly, then ¢(R/I) = oo = ¢(R/rR), for all
r € I. These facts follow from Proposition 3.9. Thus we may assume
that L O I D L;. We have to distinguish two cases, according to
whether ¢ is discrete or not. Assume that ¢ is discrete. Since L # Ly,
we get L # L2, by Proposition 3.9 (ii). So, if L¥ O I > LF*! for some
k > 0, from Lemma 3.8 we derive {(R/I) = ¢(R/yR) = k¢(R/L), for
ally € T\ L1,

Let us now assume that ¢ is non-discrete. We start observing that
the set D = {{(R/yR) < oo : y € R} is dense in R>¢. This fact
follows easily, recalling that, by the proof of Proposition 3.9 (iii), there
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exists a sequence {y, }n>0 C L such that the values /(R /y,R) converge
to zero. Then consider a non-principal ideal I, with L O I D L;.
By the density of D there exists a sequence {r,},>0 C R such that
L(R/I) < L(R/rpR), for all n, and ¢(R/I) = inf{¢{(R/r,R) : n > 0}.
Since 4(R/I) < ¢(R/yR) implies y € I, we get the desired equality
UR/I) =inf{{(R/yR) :y € I}. o

Remark 4.4. Tt is worth remarking that the values ¢(R/rR) do not
determine ¢, when the length function ¢ is an L-rank, with L # 0.
Indeed, under these circumstances we get £(R/rR) € {0, 00} for every
r € R, hence / is not determined by these values.

Theorem 4.5. Let ¢ be a length function of Mod R, where R is a
valuation domain. Then either ¢ is an L-rank function, for some prime
ideal L of R, or it is valuative.

Proof. Let us assume that ¢ is not an L-rank. Hence L, # L, and
we are in a position to apply Proposition 4.3. Take any two ideals I, J
of R. We have

UR/I)+ ¢(R/J) =sup{l(R/yR) :y € I} +sup{{(R/zR) : z € J}
=sup{{(R/yzR) :y€ I,z € J} ={(R/1J).

We have thus seen that ¢ is valuative. O

Remark 4.6. Ribenboim in [7] calls a length function valuative if
((R/YF  a;R) = min{¢(R/a;R) : 1 < i < n}, for every finitely
generated ideal Y ; a;R of R. Such a condition is trivially verified
when R is a valuation domain, whence the name. From the proof
of Theorem 4.5 and Proposition 4.3 we easily derive that ¢(R/I) =
inf{¢(R/yR) : y € I} for any ideal I if and only if ¢(R/IJ) =
O(R/I)+ ¢(R/J), for all ideals I,J. For this reason we have called
valuative the multiplicative invariants that satisfy condition (iv) of the
second section.

For the purposes of our final result, we make some remarks on the
valuations associated to a fixed valuation domain R of rank one. If
v1, Vg are two valuations of rank one of the field () that determine the
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same valuation domain R = R,, = R,,, then v1(Q*) and v2(Q*) are
isomorphic ordered subgroups of R. Then v;(Q*) = avs(Q*) for a
suitable real number o > 0, and, as a consequence, v; = avs. These
facts are well known and easy to verify.

Let L be a prime ideal of R which is not a union of a strictly ascending
chain of prime ideals. Then L properly contains a largest prime ideal
J (say), namely the union of the primes strictly contained in L. We
say that J is the immediate successor of L. Under these circumstances,
we denote by v/ a fixed valuation of the rank one valuation domain
Ry, /J; recall that the value group of vy, is an ordered subgroup of
the real numbers. For I an ideal of R, we define

vpyg(I) = inf{vg s (x+ J): x € I}.

In particular, vp,;(I) = 0if I D L, and vy, ;(I) = oo if I C J. For any
ideal I of R, it is straightforward to check that vy, ;(I) coincides with
UL/J((IRL + J)/J), and UL/J(I) = inf{’UL/J(T‘R) re I}

In Proposition 3.9 we have seen that for any length function /¢
either L, = Ly, or Ly is the immediate successor of Ly,. Moreover,
Proposition 4.2 and Theorem 4.5 show that L, # L;, whenever ¢ is
valuative.

Theorem 4.7. Let R be a valuation domain.

(1) If £ is a valuative length function of Mod R, then there exists
a real number a > 0 such that the map ¢ : Z(R) — R>o U {o0},
p: 1~ avLe/Ll(I), 18 a morphism of ordered semigroups that makes
the following diagram commute

FinR —+*% S T(R)

RN

R U {oo}

(2) Conwversely, let L be a prime ideal having an immediate successor
J, a >0 a real number, vy, ; a fived valuation of the rank one valuation
domain Ry /J. Then the map ¢ : Fin R — Rs¢ U {o0}, defined by
UX) = avgyy(pz(X)), X € FinR, extends to a unique valuative
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length function of Mod R such that Ly = L and Ly = J. Moreover
¢ is discrete if and only if L # L*.

Proof. (1) Since { is valuative, the map ¢ : Z(R) — R>o U {0}
defined by ¢ : I — ¢(R/I) is a morphism of ordered semigroups, and,
obviously £ = ¢ o pur.

Consider the valuation domain R* = Ry,/L;. In a way similar to [6,
Theorem 3|, we define a map w on R* in the following way:

w(t) = R/yR), fort=y/a+L1 € R* (yeR, ac R\L).

Using Proposition 3.9 and Lemma 2.3, it is straightforward to verify
that w is well-defined and, since w(t1t2) = w(t1) + w(tz) for any
t1,t2 € R*, can be extended to a rank-one valuation (still called w)
of the field of quotients @* of R*. Since R* is a rank-one valuation
domain and R, = Rle/Ll = R*, we know that w = avg,/r,, for a
suitable real number o > 0. Now Proposition 4.3 shows that ¢(R/I) =
inf {{(R/yR) :y € I} =inf{avy,/r,(y+L1):y €I} = v/, (I). It
follows that ¢ = avr,/r,, as required.

(2) To simplify the notation, along the present argument we write
v* =wvp,y. Since v*(IJ) = v*(I) + v*(J), av* : Z(R) — RxoU{oco}
is a morphism of totally ordered semigroups. Hence from Theorem 2.4
we readily get £(X) = £(Y) + (X/Y), for any finitely generated R-
modules Y C X. We extend ¢, by upper continuity, to a unique
Archimedean function of Mod R. We must prove that this extension,
still denoted by ¢, is a valuative length function. Note that, clearly,
L={ye R:{R/yR) >0} and J ={y € R: {(R/yR) = oo}. Tt
suffices to verify that we are in a position to apply Lemma 3.4 (ii).
Take R-modules N C X, with X finitely generated. Say gen (X) = n,
gen (X/N) = k < n. We assume that k < n, the case k = n being
treatable with a similar, but simpler argument. We choose an ordered
basis G = (z1, ... ,2n) of X, with G-annihilator set By, ... , B,, in such
a way that X/N = (1 + N,...,zx + N), and, for 1 < j < k, U; =
(¢ + N,...,z; + N) is pure in X/N. Let A; = Ann (z; + N +U;_1)
(1 <j <k, U =0). Note that z,, + N € U, = X/N, for k <m < n,
that is, z,, — Zle bimx; € N, for suitable b;,, € R. By the definition
we get {(X/N) = 042?:1 v*(4;). Now, for 1 < j < k, we pick any
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r; € Aj. Since U;j_y is pure in Uy, we get

j-1

Tix; —Tj Zaijxi S N,

i=1
for suitable a;; € R. For 1 <j <k, let z; =x; — ZZ;II a;;x;, and, for
k+1<m<n,let z,, = mm—Zle bimz; € N, as above. Then, clearly,
X = <Zl, . ,Zn> and Y = <7“121, v 3 T2k Zkg1y - - - ,Zn> € Fn. Now,
using Lemma 1.6, it is readily seen that ¢(X/Y) = 0‘2?:1 v*(r;R).
Recall that v*(A) = inf{v*(rR) : r € A}, for any ideal A of R. Since
the r; € A; were arbitrary, we conclude that ¢(X/N) = inf{{/(X/Y) :
Y € Fn}, hence { satisfies the hypothesis of Lemma 3.4 (ii).

Finally, from Proposition 3.9 (ii) and (iii) we readily derive that ¢ is
discrete if and only if L # L%2. 0
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