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PLANES OF THE FORM b(X,Y)Z" — a(X,Y)
OVER A DVR

PROSENJIT DAS AND AMARTYA K. DUTTA

ABSTRACT. In this paper we extend an epimorphism
theorem of Wright to the case of discrete valuation rings. We
will show that if (R, t) is a discrete valuation ring, n > 2 is an
integer not divisible by the characteristic of the residue field
R/tR, and g € R[X,Y, Z] is a polynomial of the form g =
b(X,Y)Z™—a(X,Y) such that R[X,Y, Z]/(g) is a polynomial
algebra in two variables, then g and Z form a pair of variables
in R[X,Y, Z]. We will also show that the result holds over any
Noetherian domain containing Q.

1. Introduction. For a commutative ring R with unity, let R
denote the polynomial ring in n variables. An important question in
affine algebraic geometry is the following epimorphism problem:

Question 1. Let K be a field of characteristic 0. Let g € K[X,Y, Z]
(= KBl) be such that K[X,Y,Z]/(g) = K. Is then K[X,Y,Z] =
K[g]P)?

While the problem is open in general, a few special cases have been
investigated by Russell [12], Russell and Sathaye [13], Sathaye [14)]
and Wright [17]; in some of these cases, Question 1 has an affirmative
answer even when K is a field of positive characteristic. In particular,
they considered polynomials of the form b(X,Y)Z" — a(X,Y) and
obtained affirmative answers when

(1) n=1, K a field of characteristic 0 [14].
(2) n =1, K a field of any characteristic [12].

(3) n > 2 and K an algebraically closed field of characteristic p > 0
with p{n [17].
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In this paper we shall first show (see Theorem 4.5) that the above
result (3) of Wright holds even when K is not necessarily algebraically
closed.

We now consider the corresponding question over a discrete valuation
ring (to be abbreviated henceforth as DVR).

Question 2. Let (R,t) be a DVR containing Q, and let g €
R[X,Y,Z] (= RPl) be such that R[X,Y,Z]/(g) = R!%. Is then
R[X,Y, Z] = R[g]"I?

As shown by Bhatwadekar-Dutta in [7, Section 4], this problem
is closely related to the problem of AZ2-fibration over a regular two-
dimensional affine spot over a field of characteristic zero. Hence, one
could explore Question 2 at least for polynomials like g = b(X,Y)Z" —
a(X,Y) for which the corresponding Question 1 has been settled. For
such polynomials, in view of the corresponding results over fields,
one could extend the investigation of Question 2 even to the positive
characteristic case.

The first investigation in this direction was made by Bhatwadekar-
Dutta in [6]. They showed [6, Theorem 3.5] that Question 2 has an
affirmative answer (in any characteristic) when g = b(X,Y)Z —a(X,Y)
with ¢ t b(X,Y), thereby partially generalizing Sathaye’s theorem on
linear planes over a field [14].

The main aim of this paper is to show that Question 2 has an
affirmative answer for polynomials of the form ¢ = b(X,Y)Z" —
a(X,Y), where n > 2 is an integer not divisible by the characteristic
of R/tR, thereby obtaining a generalization of Wright’s theorem [17]
quoted in Section 2 (Theorem 2.1). More precisely, we will prove the
following (see Theorem 5.3):

Theorem A. Let (R,t) be a DVR with field of fractions K and
residue field k. Let g € R[X,Y, Z] (= R[?’]) be of the form g =bZ"™ —a
where a,b € R[X,Y]| with b# 0 and n is an integer > 2 such that n is
not divisible by the characteristic of k. Suppose that R[X,Y,Z]/(g) =
R Then R[X,Y,Z] = Rlg, Z]"", R[X,Y] = R[a]Y) and b € R[X,]
for some Xo € R[X,Y] satisfying K[X,Y] = K[Xo, a].
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The proof of Bhatwadekar-Dutta’s theorem on linear planes over a
DVR is highly technical. However, in the case of planes of the form
bZ™ — a with n > 2, the proof turns out to be much simpler due to the
fact that g is a variable along with Z.

Using theorems on residual variables of Bhatwadekar-Dutta [5], one
can also see that the result for n > 2 holds over any Noetherian domain
containing Q. We shall prove (see Theorem 6.2):

Theorem B. Let R be a Noetherian domain containing Q. Let
g€ R[X,Y, Z] (= R{S]) be of the form g = bZ™ —a where a,b € R[X,Y]
and n is an integer > 2. Suppose that R[X,Y,Z]/(g) = R1?. Then
R[X,Y,Z] = R[g, Z]M and R[X,Y] = R[a]M.

In fact Theorem 6.2 will show that the above result also holds over
any Noetherian seminormal domain containing a field of characteristic
p>0,ifptn.

In Section 2, we state some results which will be used subsequently;
in Section 3, we review the case n = 1; in Sections 4 and 5, we prove
our main results over a field and DVR, respectively; and in Section 6,
we prove our result for rings containing a field.

2. Preliminaries. Throughout this paper all rings will be commu-
tative with unity. For a ring R, we shall use the notation A = RI" to
mean that A is isomorphic, as an R-algebra, to a polynomial ring in n
variables over R; the symbol R* will denote the group of units of R.
For a prime ideal P of R, k(P) will denote the residue field Rp/PRp.
An integral domain R with field of fractions K is called seminormal if it
satisfies the condition: an element a € K will belong to R if a?,a® € R.

We now state some results which will be used in our proofs. First
we state the result of Wright [17, page 95] which we will generalize in
Sections 4-6.

Theorem 2.1. Let k be an algebraically closed field of characteris-
ticp > 0. Let g € k[X,Y,Z] (= k[?’]) be of the form bZ™ — a where
a,b € k[X,Y] with b # 0 and n is an integer > 2 not divisible by p.
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Suppose that k[X,Y, Z]/(g) = kPl. Then there exist variables )Z, Y in

k[X,Y] such that a = 17, be k[):'] and k[X,Y,Z] = k[)?,g, AR

We now state a version of the automorphism theorem by Jung [11]
and van der Kulk [16] as presented in [17, Appendix, Theorems 2
and 3].

Theorem 2.2. Let k be a field and A = k[U,V](= k!?). Let GAx(k)
denote the group of k-automorphisms of A, Afa(k) the subgroup of
GAq(k) defined by Afa(k) = {(U, V) — (a1U + 81V + 71, U +
B2V + vy2)| @i, Bi,vi € k and a1fB2 — axfy # 0}, Ex(k) the subgroup
of GAx(k) defined by Ex(k) = {(U,V) — (aU + h(V),BV +7)| o, 8 €
E*,v € k and h(V) € k[V]} and Bfa(k) = Afa(k) N E(k). Then
GAz(k) = Afa(k) *Bg,k) E2(k). Moreover, if o € GAx(k) is of finite
order, then there exists a T € GAs(k) such that either Tor 1 € Afa(k)
or ror~ ! € &(k).

Now we state a result by Sathaye [14, Corollary 1] which we will use
to prove Lemma 4.2.

Theorem 2.3. Let L be a separable field extension of k. Assume
that there exist h € k[X,Y] and f; € L[X,Y], 1 <i <'s, such that

(1) L[X,Y]/(f;) = LM for each i.
(2) (fis £)LIX, Y] = LIX, Y] fori # .
(3) h=1I[= fi", i > 0.

Then there exist f € k[X,Y], A\; € L* and p; € L such that f; = X\ f+ui
foreach i, 1 <i<s.

We will also use the following special case of the result [8, Theorem 7].

Theorem 2.4. Let k be a field, L a separable field extension of k, A
a UFD containing k and B an A-algebra such that By L = (A®, L)1,
Then B = Al

We will use the following version of a cancelation theorem due to
Abhyankar et al. [2, Theorem 3.3].
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Theorem 2.5. Let A be an affine domain over a field k such that
k is algebraically closed in A and tr. degy(A) = 1. Suppose that B is
another k-algebra such that A™ = BI" for some n > 1. Then either
B=AorBx=A=Fkl.

We now state a version of the Russell-Sathaye criterion [13, Theorem
2.3.1] for a ring to be a polynomial algebra over a subring (see [6,
Theorem 2.6]).

Theorem 2.6. Let R C A be integral domains with A being finitely
generated over R. Suppose that there exist primes p1,p2,...,Pn n R
such that for each i, 1 <1i <mn,

(1) p; remains prime in A,

(3) A[L/(p1p2 -+ - pn)] = R[L/(prp2 - - pu)IM) and

(4) R/p;R is algebraically closed in A/p;A.

Then A = R,

The following result from [6, Lemma 2.5] will enable us to apply
Theorem 2.6.

Lemma 2.7. Let R be an integral domain, and let F € R[X,Y]
(= R1) be such that R[X,Y]/(F) = RY. Then R[F] is algebraically
closed in R[X,Y].

Finally, we state a result on residual variables which will be our

main tool to prove Theorem B. It comes as a direct consequence of
Theorem 3.1, Theorem 3.2 and Remark 3.4 in [5].

Theorem 2.8. Let R be a Noetherian domain such that either R
contains Q or R is seminormal, A be a polynomial algebra in n variables
over R and Wy, Wy,... ,W,_1 € A. Then the following are equivalent:

1. A= R[Wy,Wa,... , W, 1]1.

2. A®g k(P) = (RIWy,Wa, ... , W, 1] ®@r k(P))M for every prime
ideal P of R.
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3. Planes of the form bZ — a. We recall below the earlier result
on linear planes over a DVR [6, Theorem 3.5].

Theorem 3.1. Let (R,t) be a DVR, and let g € R[X,Y, Z] (= RF)
be of the form g = bZ — a where a,b € R[X,Y] and b ¢ tR[X,Y].
Suppose that R[X,Y, Z]/(g) = R1?l. Then R[X,Y,Z] = R[g]"?.

We now show that the result can be generalized to the case of
Dedekind domain in the following form.

Theorem 3.2. Let R be a Dedekind domain, and let g € R[X,Y, Z]
(= R[?’]) be of the form g = bZ — a where a,b € R[X,Y] and the
coefficients of b generate the unit ideal of R. Suppose that B =
R[X,Y,Z]/(g9) = RPl. Then RX,Y, Z] = R[g]".

Proof. By Theorem 3.1, Ry[X,Y,Z] = Ry[g]!? for each maximal
ideal m of R. Hence, by [3], it follows that R[X,Y,Z] is R[g]-
isomorphic to the symmetric algebra Symp,(P) for some finitely
generated projective R[g]-module P of rank two. Thus it is enough to
show that P is a free R[g]-module. Since R[g] is a retract of R[X,Y, Z],
it is enough to show that P®p, R[X,Y, Z] is a free R[X,Y, Z]-module.
Note that, since R[X,Y, Z] = Sympg4(P), we have Qg5 (R[X,Y, Z]) =
P ®pgq R[X,Y, Z]. Thus, the proof will be complete if we show that
the projective R[X,Y, Z]-module Qg[(R[X,Y, Z]) is actually free.

Now consider the exact sequence:

Qr(Rlg)) ®rjy (RIX,Y, Z]) < Qr(RX,Y, Z))
— QR[g} (R[X,Y, Z]) — 0.

Let gx, gy and gz denote the partial derivatives of g with respect
to X, Y and Z respectively. Now note that (9x, gy, 9z)R[X,Y, Z] =
R[X,Y, Z]. Since dim R = 1, by Suslin’s theorem [15, Theorem 2.6], the
unimodular row [gx, gy, gz] can be completed to an invertible matrix.
Since Qr(R[X,Y,Z]) is a free R[X,Y, Z]-module of rank three with
bases dX, dY and dZ, and since Im (0) is generated by gxdX +gydY +
gzdZ, it now follows that Qg(R[X,Y, Z])(= Qr(R[X,Y, Z])/Im (0))
is a free R[X,Y, Z] module of rank two. This completes the proof. O
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Remark 3.3. Let (R,t) be a DVR containing Q, and let ¢ = bZ — a
where b=tY%and a = -Y —tY (X +X?2)—t2X. Then R[X,Y, Z]/(9) =
R?! (see [7, Example 4.13]). In this example, ¢ | b; and it is not yet
known whether R[X,Y, Z] = R[g]!Z.

4. Planes of the form bZ™ — a over a field. In this section we
will show that Wright’s arguments in [17] can be modified to show that
his result (Theorem 2.1) can be extended over any field. We first prove
a few auxiliary results (Lemmas 4.1 and 4.2), then consider the case
when the field k contains all nth roots of unity (Proposition 4.4) and
finally show that Theorem 2.1 holds over any field (Theorem 4.5). We
first record a result on Auty (k).

Lemma 4.1. Let k be a field of characteristic p > 0 and o a k-
automorphism of B = k! of order n such that p f n. Suppose that k
contains all the nth roots of unity. Then there exist elements U,V € B
and o, B € k* such that B = k[U,V], o(U) = aU and o(V) = BV,
where o™ = ™ = 1.

Proof. By Theorem 2.2, one can choose coordinates U’, V' of B such
that either o € &(k) or o € Afa(k).

Case 0 € &E3(k). In this case o(U') = aU’' + p and o(V') =
BV' + f1(U’), where a,8 € k*, p € k and f1(U’) € k[U’']. Since
o is of order n, we have a” = ™ = 1. Note that if a = 1, then
U =0"(U')=U"+np and hence p =0, as p { n.

Set
U U’ ifa=1.
U+ (p/(e—1) ifa#l
Then kU, V'] = k[U, V'], o(U) = aU and o(V') = BV’ + f(U) for
some f(U) € k[U]. We will now show that we can choose g(U) € k[U]
such that o(V' + g(U)) = B(V' + g(U)). Let f(U) = > _,a;U".
First we show that for any i, 1 < i < r, if a; # 0, then o # f.
Suppose 3 = a'. Now, from the relation V' = o™ (V’), we get
B (U) + B2 f(al) + - + f(a"TIU) =0,
which implies that
/Bn_lai +ﬁn—2aiai +5n—3a2iai 4ot Cv(n—l)iai =0,
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i.e., nB" 'a; = 0, and hence a; = 0 (as p{n and B # 0). Thus o' # 3
if a; 7é 0.

Now, for each i, 1 < i < r, we define b; as follows:

Z'_{ai/(ﬂoﬂ') if a; #0.

Let g(U) = >i_o b;U" and set
V:=V'+g().

Then o(V) = BV. Thus kKU, V'] = k[U,V], o(U) = aU and
o(V)=pV.

Case 0 € Afz(k). In this case o(U') = ayU' + 1V’ + 711 and
a(V") = aU’' + ,6’21{' + 72 for some a;,B:,v: € k (1 = 1,2) with
a1PB2 # Pras. Let k be an algebraic closure of k. Choose A € k
such that (ag — A)(B2 — A\) — aef1 = 0. Then X is an eigenvalue of the
linear transformation (X,Y) — (a1 X + a2V, 51X + B2Y) of E. Let
(vy,12) € EQ be a non-zero eigenvector corresponding to the eigenvalue
A. Then we have

a1V + gl = )\1/1
Biv1 + Bava = Ava.

Therefore, o (v U’ +15V') = A(v1 U +voV') + p where p = v1y1 +v272.
Since o is of order n, we have A" = 1, and hence A\ € k*. Thus, we
may choose vy,vy € k. Therefore, setting U := v1U’ + 15 V', we have
o(U) = AU + pu, and hence o(V') = kV' + h(U) for some k € k* and
h(U) € k[U]. Now, by taking U and V' to be the coordinates for B,
the problem reduces to the previous case: o € (k).

Thus, in both the cases we get U,V € B and a,( € k* such that
B =k[U,V], 0(U) = aU and o(V) = V. This completes the proof. O

We now record a consequence of Sathaye’s result (Theorem 2.3).

Lemma 4.2. Let k be a field, B = kPl and b € B\k. Suppose
that there exist a separable algebraic extension E|; and an element
X' € B®y, E such that B®y, E = E[X'|M and b € E[X']. Then there
exists an X € B such that b € k[X], B = k[X]M and E[X'] = E[X].
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Proof. Without loss of generality, we assume E|j to be a finite Galois
extension. Let B = k[X;,Y1]. Then B ®; E = E[X,,Y;] = E[X']l1.
Let X' = ¢(X1,Y1). Interchanging X; and Yj, if necessary, we
may assume that the X;-degree of ¢(X;,Y]) is positive. Hence, the
leading coeflicient of X7 in ¢(X;,Y7) is a non-zero element A € E [1,
Proposition 11.12, page 85]. Let X" = X'/\.

Let G = {o; | i =1,2,...,m} be the group of k-automorphisms of
E|i. We extend each ¢ € G to a B-automorphism of B ®; F. Let k
be an algebraic closure of k containing E and b = []_; (A X" + ;)™
be the prime decomposition of b in k[X"'], where \; € E*, Wi €
and n; € N, 1 <4 < s. Since o(b) = b for each 0 € G, b =
[Ti_i(e(A)o(X")+0o(u;))™ is also a prime decomposition of b in k[X"].
This shows that for each o € G, there exists an « € k" and B € k such
that o(X") = aX"” + . Since X" and o(X") are both monic in X7, it
follows that a = 1.

Since X" is a variable of B ®j E, we have (B @ E)/(c(X")) = EIY
for each 0 € G. It is also easy to see that if o;(X") # 0;(X") for
0i,0; € G, then 0;(X") and ¢;(X") are comaximal in B®j,k and hence
comaximal in BQy E. Let fi,..., f; be the distinct elements of the set
{o(X") | o € G}. Then, for each i, 1 < i < t, there exists an m; € N
such that [[, o o(X") = [Il_, f™ € B, (Bex B)/(fi) = EM, and
for i # j, f; and f; are comaximal in B ®j, L. Since B = k[?!, applying
Theorem 2.3, we get that for each o € G there exist A € E* and p € E
such that A\o(X")+p € B. Fix 0 € G and let X = Ao (X") + p € B.
Then E[X"] = E[o(X")] = E[X] and b € E[X] N B. Since B = k%
and X € B, we have EF[X]|N B = k[X]. Hence, b € k[X] C B. Now
since B = kl?l and B @, E = E[X"]1] = E[X][Y, by Theorem 2.4, we
see that B = k[X|!!l. By construction, E[X] = E[X"] = E[X']. o

For convenience, we state below a result which follows from a lemma,
of Sathaye [14, Lemma 1].

[ =

Lemma 4.3. Let k be a field, and suppose X' is a wvariable in
k[ X1, X2, ..., X0] (: k["]) which is comazimal with X;. Then X' =
aX; + B with o, € k, o # 0.

Proposition 4.4. Let k be a field of characteristic p > 0 containing
the nth roots of unity, and let g € k[X,Y,Z] (= k[?’]) be of the form
bZ™ — a where a,b € k[X,Y] with b # 0 and n is an integer > 2 not
divisible by p. Suppose that B := k[X,Y,Z]/(g) = k1Z. Then there
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exist variables U,V in B such that V is the image of Z in B, b € k[U]
and k[X,Y] = k[U,d] = k2.

Proof. Let o be the k-automorphism of B induced by the k-
automorphism & of k[X,Y, Z] defined by o((X,Y,Z2)) = (X,Y,wZ2)
where w is a primitive nth root of unity. Obviously, o has order n.

Since B = k[?I, by Lemma 4.1, there exist elements U’, V' € B and
a,B € k* such that B = k[U',V'], o(U') = U’ and (V') = BV,
where o™ = 8™ = 1. Let 3 be the image of Z in B and A = k[X,Y][a/b].
Then 3" = a/band B = A[3] = k[X,Y]3] = A®3;A®3°Ad---d3" A
so that, for any * € B, 3 | (zx — o(x)). Thus 3 | (1 — a)U’ and
3|1 (1 =p)V'. But since U’ and V' cannot have common (non-unit)
factors and 3 ¢ k*, we have either « = 1 or 8 = 1. Interchanging U’
and V', if necessary, we assume that = 1. Then the ring of invariants
of o is A = k[X,Y][a/b] = k[U’,a/b)(= k!#). Note that V' is a unit
multiple of 3. Thus B = k[U’,3]. Set V :=3.

Now we show that we can choose U from k[X,Y] such that B =
kK[U,V], b € k[U] and k[X,Y] = Kk[U,a]. If b € k*, then k[X,Y] =
kE[X,Y][a/b] = E[U’,a/b], so that, in this case, we may set U := U’.
We now consider the case b ¢ k*. Let p1,ps,...,pm be the distinct
irreducible factors of b in A(= k%), and set p; := k[X,Y] N p;A. Note
that for each i = 1,2,... ,m, both b and a(= b.a/b) € k[X,Y]|NbA C p;.
This shows that (bZ" — a)k[X,Y, Z] G pi[Z] which implies htp; > 1.
Thus each p; is a maximal ideal of k[X,Y]. Let k denote an algebraic
closure of k, L; a subfield of k isomorphic to k[X,Y]/p;, and let L be
the subfield of k generated by the fields L1, Ly, ... , L,,. Then L; is an
algebraic extension of k£ and A/p;A = (k[X,Y]/p:)[¢;] = L;i[(;] where
¢; is the image of a/b in A/p;A. Since p; A C p; A, it follows that ¢; is
transcendental over L; and p;A is a prime ideal of A. As htp;A =1
and p; A # 0, we have p;A = p;A. This shows that p; are pairwise
comaximal in A and hence in B.

Let g(¢;) be the image of U’ in A/p;A = L;[¢;]. Then U’ — g(a/b)
is divisible by p; in A ® L;. But U’ — g(a/b) = U — g(V") is a
variable in both A ®j, L; and B ®y, L;. Hence U’ — g(a/b) is a constant
multiple of p;. Thus, A®y L; = L;[p;,a/b], B& L; = L;[p;, V], and for
i # j, (pispj)B®: L = B® L. Set U := p;. Using Lemma 4.3,
we have p; = NU + p; for A\; € L* and pu; € L. So, we have
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b € L[U]. This shows that U is integral over L[X,Y] and hence over
k[X,Y]. AsU € k[X,Y][a/b] and k[X,Y] is a normal domain, we have
U € k[X,Y]. Since L is faithfully flat, it follows that B = k[U, V]
with U € k[X,Y],V =3 and b € k[U]. Now, the argument in [17, page
98] shows that k[X,Y] = k[U, a]. O

Theorem 4.5. Let k be a field of characteristic p > 0, and let
g € k[X,Y,Z] be of the form bZ™ — a where a,b € k[X,Y] with
b # 0 and n is an integer > 2 not divisible by p. Suppose that
B = k[X,Y, Z]/(g9) = kP and identify k[X,Y] with its image in B.
Then there exist vartables U,V in B such that V is the image of Z in
B,U € k[X,Y], b e kU], k[X,Y] = k[U,a] and k[X,Y, Z] = k|U, g, Z].

Proof. Let E be the field obtained by adjoining all the nth roots of
unity to k. Since p 1 n, E is a Galois extension over k. By Proposi-
tion 4.4, we get variables U’ and V' of B® E (= k[X, Y, Z]/(g) = E?)
such that V' is the image of Z, b € E[U’'] and E[X,Y] = E[U',al.
As E|j is separable, we have k[X,Y] = k[a][l] by Theorem 2.4.
If b € k[X,Y]\k, then, by Lemma 4.2, we get U € k[X,Y] such
that k[X,Y] = k[U]M, b € k[U] and E[U] = E[U']. Since E|
is faithfully flat, E[U’,a] = E[U,a] and k[U,a] C k[X,Y], we have
k[U,a] = k[X,Y]. If b € k, then we choose U to be any complementary
variable of a in k[X,Y].

From the relation k[U, a] = k[X,Y], we have
k[X,Y, Z] = kU, a, Z] = k[U,bZ" — a, Z] = k[U, g, Z].

The relation k[X,Y, Z] = k[U, g, Z] shows that B is generated by the
images of U and Z. This completes the proof. a

Remark 4.6. Theorem 4.5 does not hold if p | n. Consider a field k of
characteristic p > 0 and the polynomial g = ZP" —Y — Y*? € k[Y, Z]
where p { s and e > 2. Then k[Y, Z]/(g) = kM but k[Y, Z] # k[g]M] (see
[1, Example 9.12, page 72]). Using a result of Hamann [10, Theorem
2.6], it follows that k[X,Y, Z] # k[g]? although k[X,Y, Z]/(g) = k2.

5. Planes of the form bZ™ — a over a DVR. In this section we
shall prove Theorem A. We first record two results on factorial domains.
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Lemma 5.1. Let R be a UFD with field of fractions K. Let
U € R[X,Y] be such that K[X,Y] = K[U]Y). Then K[U]N R[X,Y]
is an inert subring of R[X,Y] and K[U]N R[X,Y] = R[W] (= RMY),
where W is an element of R[X,Y] such that K[W] = K[U].

Proof. Let D = K[U]N R[X,Y]. Clearly, D is an inert subring
of R[X,Y] and hence a UFD of transcendence degree one over R.
Therefore, by [2, Theorem 4.1, D = R[W] (= R!) for some W €
R[X,Y]. Clearly, K[W] = K[U]. o

Lemma 5.2. Let R be a UFD of characteristic p > 0 with field of
fractions K. Let g € R[X,Y,Z] (= R[fﬂ) be of the form g = bZ™ — a
where a,b € R[X,Y] with b # 0 and n is an integer > 2 such that p t n.
Suppose that R[X,Y, Z]/(g) = R1?\. Then

(i) Rla] = K[a] N R|X,Y].
(ii) Rla] is an inert subring of R[X,Y].
(iii) tR[X,Y] N R[a] = tR[a] for every t € R.

Proof. (i) By Theorem 4.5, K[X,Y]| = K[a]!! and, by Lemma 5.1,
K[a]NR[X,Y] = R[W] for some W € R[X,Y] satisfying K[a] = K[W].
It then follows that @ = AW + p where \,u € R. We claim that
A € R*. Suppose A\ ¢ R*. Let ¢ be a prime factor of A, and
let L denote the algebraic closure of the field of fractions of R/qR.
Let @ and b denote the images of a and b, respectively, in L[X,Y].
Then we would have @(= p) € L; in fact, as L[X,Y,Z]/(g) =
L[X,Y,Z]/(bZ" — @) = LI, we would have that @ is a unit in L.
Since L[X,Y] — L[X,Y,Z]/(bZ" — a)(= L), it would follow that
b € L*. But then, as n > 2, L[X,Y, Z]/(bZ™ — a) would not be an
integral domain, contradicting that L[X,Y, Z]/(bZ™ — a) = L[2. Thus
A € R*, and hence R[a] = R[W] = K[a] N R[X,Y].

(ii) and (iii) follow from (i). ]

We now prove Theorem A.

Theorem 5.3. Let (R,t) be a DVR with residue field k, and let
p(> 0) be the characteristic of k. Let g € R[X,Y,Z] (= RBl) be of
the form g = bZ™ — a where a,b € R[X,Y] with b # 0 and n is an
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integer > 2 such that p { n. Suppose that R[X,Y, Z]/(g) = RP. Then
R[X,Y,Z] = Rlg,Z|M, RIX,Y] = R[a]") and b € R[X,] for some
Xo € R[X,Y] satisfying K[X,Y] = K[Xo, a].

Proof. Let K and k denote, respectively, the field of fractions and the
residue field of (R,t). For any f € R[X,Y, Z], let f denote the image
of f in k[X,Y, Z]. By hypothesis, K[X,Y,Z]/(bZ" — a) = K[ and
k[X,Y,Z]/(bZ" —a) = k2. Hence, by Theorem 4.5, K[X,Y] = K][a]!!]
and K[X,Y,Z] = K[Z,bZ"™ — a]l!].

If t { b, then, by Theorem 4.5, k[X,Y, Z] = k[Z,g]!"! and k[X,Y] =
k[a)lll. Hence, by Theorem 2.6, we get R[X,Y,Z] = R[g, Z]!"/ and
R[X,Y] = R[a]".

We now consider the case ¢t | b. Now g = @ so that
kKXY, Z]/(a) (= k[X,Y]/@)M = k[X,Y,Z]/(g) = kP

Hence, by Theorem 2.5, k[X,Y]/(@) = k["l. Therefore, by Lemma 2.7,
we see that k[a] is algebraically closed in k[X,Y]. Since ¢ is prime
in both R[a)(= RM) and R[X,Y], and since a is a generic variable
of R[X,Y], using Theorem 2.6, we see that R[X,Y] = R[a]/!l. By a
similar argument, we have R[X,Y, Z] = R[g, Z]!l.

Now, by Theorem 4.5, one can choose U € R[X,Y] such that
K|X,Y] = K[U,a] and b € K[U]. By Lemma 5.1, K|U] N R[X,Y] =
R[X] for some Xy, € R[X,Y] satisfying K[U] = K[Xp]. Thus,
b € R[Xy] where K[Xy,a] = K[U,a] = K[X,Y]. Hence, the result. O

Note that, in the case R is a Q-algebra, the hypothesis in Theorem 5.3
regarding n (p t n) is automatically satisfied. Thus, in particular,
Theorem 5.3 holds when R is a DVR containing Q. In the next section
we shall see a generalization of this result (Theorem 6.2).

Remark 5.4. Note that, in the notation of Theorem 5.3, Xy need not
be a variable in R[X,Y]. Consider a DVR (R,t). Let g = bZ™ —a
where a = =Y and b = t2X + tY?2, and let Xy = tX + Y2 Then
RIX, 1[/,}2] /(g) = R1%, b € R[Xy], K[X,Y] = K[X,,Y] but R[X,Y] #
R[ X,
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The following example shows that, without the hypothesis p { n,
Theorem 5.3 need not hold even over a DVR of characteristic 0.

Example 5.5. Let R = Z, where p is a prime in Z, K =
Qt(R) = Q and k = R/pR = Z/pZ. Let a = YP +Y + pX and
g = ZP —a € R[X,Y,Z]. Then R[X,Y,Z] = R|[g]?; in particular,
R[X,Y,Z]/(g9) = R1?. But R[X,Y] # R[a]!*].

Proof. Let Z' = Z —Y. Then R[X,Y,Z] = R[X,Y,Z'] and
g=2""—pf(Z',Y)~Y —pX for some f € R[Z',Y]. Let D = R[g, Z'].
We have K[X,Y,Z] = Klg,Y,Z] = Klg,Z'|"l and k[X,Y,Z] =
k[g,X,Z'] = k[g, Z']M) where g denotes the image of g in k[X,Y, Z].
Since p is prime in R, p is prime in both R[X,Y,Z] and D. Hence,
by Theorem 2.6, R[X,Y, Z] = DIl = R[g]!?l. Let @ denote the image
of a in k[X,Y]. Since k[a] = k[Y + YP] is not algebraically closed in
k[X,Y], @ is not a variable in k[X,Y] and hence a is not a variable in
R[X,Y]. o

However the next result shows that Theorem 5.3 extends to any DVR
(R,t) of characteristic 0 (without assuming that the characteristic of
R/tR does not divide n), if the element a is such that (R/tR)[a] is
algebraically closed in (R/tR)[X,Y].

Proposition 5.6. Let (R,t) be a DVR of characteristic 0 with
residue field k, and let g € R[X,Y, Z] (: R{?’]) be of the form g =
bZ"™ — a where a,b € R[X,Y], b # 0 and n is an integer > 2. Suppose
that R[X,Y,Z]/(g) = R? and k[a] is algebraically closed in k[X,Y].
Then R[X,Y] = R[a]" and R[X,Y, Z] = R[Z,g]M.

Proof. We see that R[1/t][X,Y] = R[1/t][a]™ by Theorem 4.5, t is
prime in both Ra] and R[X,Y], tR[X,Y]|NR[a] = tR[a] by Lemma 5.2
and (R/tR)[a] is algebraically closed in (R/tR)[X,Y] by hypothesis.
Hence, by Theorem 2.6, R[X,Y] = R[a]). Let B := R[X,Y, Z]/(g)
(= Rm), and denote the image of Z in B by 3. Then B/(3) =
RIX,Y,Z]/(Z,bZ" — a) = R[X,Y]/(a) = R, and hence, by the
generalized epimorphism theorem of Bhatwadekar [4, Theorem 3.7],
we have B = R[3]'). Let C = R[Z]. Identifying the image of Z in B



PLANES OF THE FORM b(X,Y)Z"™ — a(X,Y) OVER A DVR 505

with Z itself, we have C[X,Y]/(g) = C!!l. Since C is a normal domain
of characteristic 0, again by Bhatwadekar’s result [4, Theorem 3.7], we
have C[X,Y] = C[g]!1), ie., R[X,Y,Z] = R[g,Z]}). ©

In view of Example 5.5, we ask:

Question 5.7. Let (R,t) be a DVR of characteristic 0 such that
the characteristic of the residue field is positive, say p. Let g =
bZP™ — a € R[X,Y,Z] be such that R[X,Y,Z]/(g9) = RI? where
a,b(#0) € R[X,Y] and m > 1. Is then R[X,Y, Z] = R[g]!*!?

6. Planes of the form bZ™ — a over rings containing a field.
In this section we prove a generalized version of Theorem B (Theorem
6.2). We shall essentially follow the approach of Bhatwadekar in [4]
and then apply the result on residual variables (Theorem 2.8). We first
state a result which will be needed in the proof of Theorem 6.2.

Lemma 6.1. Let R be a Noetherian domain, and let b (# 0) € R.
Then, for each non-zero prime ideal P of R, there exists a discrete
valuation ring V' with mazimal ideal my together with a homomorphism
¢ : R — V such that ¢(b) # 0, ¢~ 1(my) = P and V/my is algebraic
over k(P).

Proof. Let P be a non-zero prime ideal of R, and let n be the height
of P. Since R is a Noetherian domain, there exists a prime ideal @} of
R of height n — 1 such that Q & P and b ¢ Q. Let D = R/Q and
p = P/Q be the image of P in D. Let C be the normalization of D
and P a prime ideal of C' lying over p. Set V := Cp and my := PV,
the maximal ideal of the local ring V. Since the height of p (and hence
that of P) is one, V is a DVR. Now let ¢ denote the composite map
R — D(= R/Q) — C — V(= Cp). Clearly, ¢ 1(my) = P, ¢(b) # 0
and V/my is algebraic over k(P). o

We now prove the main result of this section.

Theorem 6.2. Let R be a Noetherian domain containing a field
of characteristic p > 0. Let g € R[X,Y,Z] (= RB]) be of the form
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bZ™ — a where a,b € R[X,Y], b # 0, and n is an integer > 2 such that
ptn. Suppose that R[X,Y,Z]/(g) = R?. Then R[X,Y,Z] ®r k(P) =
(Rlg, Z) ®r k(P))M and R[X,Y]| ®r k(P) = (R[a] ®& k(P))!Y for all
P € Spec(R). Thus, if R contains Q or if R is seminormal, then
R[X,Y,Z] = R[g, Z]M and R[X,Y] = R[a]MM.

Proof. Fix P € Spec (R). Let the images of b, a and g in R[X,Y, Z|®r
k(P) be b, @ and g, respectively. Let k denote k(P). We show that
k[X,Y] = k[a)lVl and k[X,Y, Z] = k[g, Z]!"].

If ht P = 0, we are done by Theorem 4.5. So we assume that
ht P =n > 1. If b # 0, then by Theorem 4.5, we are through. So
we assume that b = 0 (and hence § = a).

Using Lemma 6.1, we have a DVR (V, m) with a homomorphism
¢ : R — V such that ¢(b) # 0, ¢~'(r) = P and V/(n) is alge-
braic over k(P). Note that V[X,Y,Z]/(g) = V!, and hence, by
Theorem 5.3, we have V[X,Y,Z] = Vg, Z]!!! and V[X Y] = Vi]a]Y;
in particular, (V/(r)[X,Y,Z] = V/(n))[g,Z]" and (V/(n)[X,Y] =
V/(x))@Ml. Now, since (k[X,Y]/(@))[Z] = kP, by Theorem 2.5,
we have k[X,Y]/(a@) = k. Since V/(n) is algebraic over k and
since (V/(m)[X,Y] = V/(r))[@M, by [9, Proposition 1.16], we have
k[X,Y] = k[a]!!! and hence k[X,Y, Z] = k[g, Z]!!].

Thus,

RIX,Y,Z] @ k(P) = (Rlg, Z] ®r k(P))I!
and

R[X,Y]®r k(P) = (Rla] ®r k(P))!"

for all P € Spec(R).

Now, if R is seminormal or contains Q, then R[X,Y,Z] = R|g, Z]!!]
and R[X,Y] = R[a]l" by Theorem 2.8. o

Remark 6.3. (1) If R is seminormal or R contains Q, then under
the hypotheses of Theorem 6.2, one can show, by suitable reductions,
that R[X,Y,Z] = Rlg, Z]!Y and R[X,Y] = R[a]!}, even when R is
non-Noetherian.
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(2) If R is a UFD, then the proof of Theorem 5.3 shows that,
under the hypotheses of Theorem 6.2, there exists an X, € R[X,Y]
such that b € R[Xy] and K[X,Y] = K[Xo,a]. However, unlike in
Theorem 5.3 (Theorem A), in the situation of Theorem 6.2 (even for
Theorem B), there may not exist Xo € R[X,Y] for which b € R[X]
and K[X,Y] = K[Xy, a]. Consider the following example.

Example 6.4. Let k be any field, and let R be the normal affine k-
domain R = k[U,V,W]/(UV — W?), where U, V, W are indeterminates
over k. Let u, v, w denote, respectively, the images of U, V, W in R. Let
K denote the field of fractions of R. Now set

X1 = uX + wY,
a:=Y,
b= X:%/u=u*X> + 3uwX?Y + 3uvXY? + vwY?,
g :=bZ" — a,where n is any positive integer, and
Xy = (X1 +wg)/u =X+ (uwX? + 3w’ X?Y + 3vwXY? +0?Y?)Z".

We first show that R[X,Y, Z] = R[g, Z, X5]; in particular, R[X,Y, Z]/(g)
= R, Let B = R[g,Z, X] and A = R[X,Y,Z]. Then B C A and

B[1/u]=R[1/ullg, Z, X1]=R[1/u][Z, X1, Y]=R[1/u][X, Y, Z] = A[1/u].
Note that B = R[l. Set

H:= —g(1+vwg’Z™) and

G = (Xo —v*H*Z™)(1 - 3vwH?*Z").

Then H,G € B and, under the canonical map ¢ : B — A/uA, we have
#(H) =Y and ¢(G) = X in A/uA. Tt follows that the induced map

¢:B/uB — AJuA

is surjective and hence an isomorphism because both B/uB and A/uA
are (R/uR)®l. In particular, uA N B = uB. Thus, B = A (cf. [6,
Lemma 2.1]).

Now suppose, if possible, that there exists an Xy € R[X, Y] for which
b € R[Xy] and K[X,Y] = K[Xo,a] = K[X0,Y]. Then K[X,,Y] =
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K[X,,Y]. Since b € (K[Xo] N K[X1]) \ K, it would follow that
K[Xo] = K[X;1]. Hence, we would have ¢,d € K such that Xy =
cX1+d = cuX + cwY +d. But as Xy € R[X,Y], we would have
cu,cw,d € R. Let cu = r. Replacing Xy by X¢ — d, we have Xy = cX3
and b = X1 /u = (u?/r®)Xo°. Since b € R[Xy)], we get u? € r*R. Since
R is a graded ring with Ry = k and u is a homogeneous element in R
of degree 1, it would follow that rR = R. But as cw(= rw/u) € R, we
would then have w € uR, which does not hold. Thus there does not
exist such an Xj.
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