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ON THE SECOND POWERS OF
STANLEY-REISNER IDEALS

GIANCARLO RINALDO, NAOKI TERAI AND KEN-ICHI YOSHIDA

ABSTRACT. In this paper, we study several properties of
the second power IZ of a Stanley-Reisner ideal In of any
dimension. As the main result, we prove that S/Ia is Goren-
stein whenever S/IzA is Cohen-Macaulay over any field K.
Moreover, we give a criterion for the second symbolic power
of Ia to satisfy (S2) and to coincide with the ordinary power,
respectively. Finally, we provide new examples of Stanley-
Reisner ideals whose second powers are Cohen-Macaulay.

0. Introduction. It is proved in [24] that a simplicial complex A
is a complete intersection if the third power I3 of its Stanley-Reisner
ideal is Cohen-Macaulay, using a result in [17, 27]. On the other hand,
there is a simplicial complex A which is not a complete intersection
such that I is Cohen-Macaulay. The simplicial complex associated
with a pentagon is such an example. Among one-dimensional simplicial
complexes, the above example is a unique one, as shown in [16]. As
for the two-dimensional case, such simplicial complexes are classified in

[26]. In [17] a characterization of Cohen-Macaulayness of the second

(2)

symbolic power [ A2 is given.

A main motivation of this paper is to study the Cohen-Macaulayness
of the second ordinary powers of Stanley-Reisner ideals of any dimen-
sion. We consider the following two questions:

1) What constraints does Cohen—MacauIayness of 1 2 impose upon a
SlmphClal complex A?

(2) Do there exist many simplicial complexes A such that I% are
Cohen-Macaulay?
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As for the second question we give two families of examples. One
is a simplicial join of pentagons; the other is a stellar subdivision of a
complete intersection complex.

For the first question we treat more general properties and give
necessary conditions for Cohen-Macaulayness of the square, as a result.
In each section we pick up a different condition: in Sections 2, 3, and
4 we consider quasi-Buchsbaum property, Serre’s condition (S3), and
unmixedness of a (symbolic) square, respectively. Summarizing results
in these sections, we have the following theorem:

Theorem 0.1. Let A be a simplicial complex on [n] = {1,2,... ,n}.
Let S = Klz1,...,T,] be a polynomial ring. Suppose that S/I3 is
Cohen-Macaulay over any field K. Then the following conditions are
satisfied:

(1) A is Gorenstein.

(2) diam ((linka F)M) < 2 for any face F € A with dim linka F > 1.

(3) For Fy, Fy, F3 € 21"l \ A there exist G1,Gy € 2" \ A such that
GiUGy C FFUFyUF3 and G1 NGy C Fy N FyN Fs.

As shown in Corollary 3.3, condition (2) is equivalent to Serre’s
condition (S3) of S/I(AZ). And, as shown in Theorem 4.3, condition
(3) is equivalent to the condition I3 = I,

We may ask the converse:

Question 0.2. Do conditions (1), (2) and (3) imply that S/I% is
Cohen-Macaulay?

It is known that Cohen-Macaulayness of I% is equivalent to Cohen-

Macaulayness of I(Az) and I% = I(AZ). Hence the above question will
be affirmative if so is the following one, which is interesting in its own
right:

Question 0.3. Do conditions (1) and (2) imply that S/I(AZ) is Cohen-
Macaulay?
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Stronger versions of the first question are as follows:

Question 0.4. Do conditions (1) and (3) imply that S/I% is Cohen-
Macaulay?

Question 0.5. Do conditions (2) and (3) imply that S/I% is Cohen-
Macaulay?

By [16], the above questions are true if simplicial complexes are one-
dimensional.

For the case that edge ideals I(G) of graphs G without isolated
vertices are unmixed with the condition 2 height I(G) = n, the above
questions are also true. If I(G) is Gorenstein, then it is a complete
intersection by [6]. Hence I(G)? is Cohen-Macaulay and Questions 0.3
and 0.4 are affirmative. On the other hand, it is proved in [7] that
there is some face F in the simplicial complex Ay corresponding to the
polarization of the second symbolic power I(G)?) such that linka, F’
is not strongly connected, if I(G) is not a complete intersection.
This implies that the polarization of I(G)® does not satisfy Serre’s
condition (S3). By [18], I(G)? does not satisfy Serre’s condition (Sz),
either. It means that I(G) is a complete intersection if I(G)(?) satisfies
Serre’s condition (S2). Hence Question 0.5 is also affirmative.

Now let us summarize the organization of the paper. In Section 1,
we fix the terminology which we need later.

In Section 2 we consider quasi-Buchsbaum property, which is weaker
than Cohen-Macaulay property. And we prove the following theorem
as a main result in this section:

Theorem 2.1. Let A be a simplicial complex on [n] of dimension
d—1>2. Let S = Klz1,...,2,] be a polynomial ring. Suppose that
S/IZ% is quasi-Buchsbaum over any field K. Then S/Ia is Gorenstein.

Since the Cohen-Macaulay property implies Serre’s condition (S2),
in Section 3 we give a criterion for I(Az) to satisfy (Sz2), which is a
generalization of [17, Theorem 2.3]; see Theorem 3.2 and Corollary 3.3.

As an application, we show that, for Reisner’s complex (a triangulation
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of the real projective plane) A, S/I(AZ) satisfies (S2) but is not Cohen-
Macaulay.

In Section 4 we consider the problem when I®) = I2 holds for a
Stanley-Reisner ideal I, which is also a necessary condition for Cohen-
Macaulayness of I?. It is also discussed in [26]. We give a criterion
for the second symbolic power to be equal to the ordinary power for
Stanley-Reisner ideals in terms of the hypergraph of the generators,
see Theorem 4.3. This generalizes a similar criterion for edge ideals.
As an application, we show that the second powers of the edge ideals
of finitely many disjoint union of pentagons are Cohen-Macaulay as in
the second symbolic power case in [17].

In Section 5, we give examples of the complexes whose second powers
of the Stanley-Reisner ideals are Cohen-Macaulay. More precisely,
we prove the following theorem, which is a generalization of a two-
dimensional complex in [26, Theorem 3.7 (iii)].

Theorem 5.4. Let A be a stellar subdivision of a mon-acyclic
complete intersection complez T'. Then S/I3 is Cohen-Macaulay.

1. Preliminaries. In this section we recall several definitions and
properties that we will use later. See also [3, 14, 21, 22].

1.1. Stanley-Reisner ideals. Let V = [n]. A nonempty subset A
of the power set 2V is called a simplicial complex on V if (i) F € A,
F' CF=F eAand(i){v} € Aforallv € V. Anelement F € A is
called a face of A. The dimension of F' is defined by dim F' = #§(F) — 1,
where #(F) denotes the cardinality of a set F. The dimension of A,
denoted by dim A, is the maximum of the dimensions of all faces. A
maximal face of A is called a facet of A, and let F(A) denote the set
of all facets of A.

In the following, let A be a simplicial complex with dimA =d — 1,
and let K be a field. Then A is called pure if all the facets of A
have the same cardinality d. Put f;(A) = ${F € A : dim F = i} for
eachi=0,1,...,d— 1. For each i, ﬁ[i(A; K) (respectively, fIi(A; K))
denotes the ith reduced simplicial homology (respectively cohomology)
of A with values in K. We omit the symbol K unless otherwise
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specified. The reduced Euler characteristic of A is defined by

X(A) = -1+ i fi(A) = i (—1)idim x H;(A).

For each face F' € A, the star and the link of F' are defined by

staraF ={He€A : HUF € A},
linknF' = {H € staraF : HNF = @},
Note that these are also simplicial complexes. For any integer k& with

0 < k < d— 1, the k-th skeleton of A is defined by A% = {F ¢
Aj; dim F < k}. Then A®) is a subcomplex of A with dim A®) = £,

The Stanley-Reisner ideal of A, denoted by Ia, is the squarefree
monomial ideal of S = K|[z1, ... ,x,] generated by

{Ziy @iy -, 1540 <--- <idp <y {mgy,... 2, } E A},

and K[A] = K[z1,... ,z,]/Ia is called the Stanley-Reisner ring of A.
Note that the Krull dimension of K[A] is equal to d. For any subset o of
V, z, denotes the squarefree monomial in K|z, ... ,z,]| with support
o.

For a simplicial complex A on V, we put coreV = {z € V :
stara{z} # A}. Moreover, we define the core of A by core A = {F €
A:F CcoreV}.

For a given face F' of A with dim F' > 1 and a new vertex v, the stellar
subdivision of A on F is the simplicial complex Ap on the vertex set
V U {v} defined by

Ap=(A\{H|F CHecA)})
U{HU{v}|HeA, FZ H FUH € A}.

Notice that Ar is homeomorphic to A.

T g— @22 1 T2
stellar subdivision

—_—

Y2 ¢—eoY1 Y2 o—@UY1
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Let G be a graph, which means a finite graph without loops and
multiple edges. Let V(G) (respectively E(G)) denote the set of vertices
(respectively edges) of G. Put V(G) = [n]. Then the edge ideal of G,
denoted by I(G), is a squarefree monomial ideal of S = K[xzy,... ,2,]
defined by

I(G) = (ziz; : {i,j} € E(G)).

For an arbitrary graph G, the simplicial complex A(G) with I(G) =
In(q) is called the complementary simplicial complex of G.

Let G be a connected graph, and let p,g be two vertices of G. The
distance between p and ¢, denoted by dist (p, ¢), is the minimal length
of paths from p to q. The diameter, denoted by diam G, is the maximal
distance between two vertices of G. We set diam G = oo if G is a
disconnected graph.

Let A be a simplicial complex on V' of dimension 1. Then A can be
regarded as a graph on V whose edge set is defined by E(A) = {F €
A : dimF = 1}.

1.2. Symbolic powers. Let I be a radical ideal of S. Let
Ming(S/I) = {Pi,..., P} be the set of the minimal prime ideals of
I, and put W = S\ U._, ;. Given an integer ¢ > 1, the {th symbolic
power of I is defined to be the ideal

19 =1'Syw NS =()PSpNS.
i=1

In particular, if I = Ia is the Stanley-Reisner ideal of A, putting
Pp = (z € [n] \ F) for each facet F, then we have

In = ﬂ Py

FeF(A)
and hence .
V= () Pk
FeF(A)

In general, I* C I holds, but the other inclusion does not necessar-
ily hold. For instance, if I = (x122, z2x3, z321), then

I(z) = (331, 1172)2 N (5[)2,333)2 N (5[)1,333)2 =7? + (371117251,'3) 75 JES
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Moreover, if I is a unmixed squarefree monomial ideal, then ¥ is
unmixed. Thus if §/I¢ is Cohen-Macaulay (or Buchsbaum), then so is
S/I®),

1.3. Serre’s condition. Let S = K[zi,...,z,] and m =
(z1,...,2,)S. Let I be a homogeneous ideal of S. For a posi-
tive integer k, S/I satisfies Serre’s condition (Sy) if depth (S/I)p >
min{dim (S/I)p, k} for every P € SpecS/I.

A simplicial complex A is called Cohen-Macaulay (respectively Goren-
stein, (FLC) etc.) if so is K[A] over any field K. Moreover, if A
is (FLC), then A is pure and link A (F') is Cohen-Macaulay for every
nonempty face F' € A.

A homogeneous K-algebra S/I is called quasi-Buchsbaum if mHE (S/
I) =0 for each ¢ = 0,1,...,dim S/I — 1. It is known that any quasi-
Buchsbaum ring has (FLC) and the converse is also true for Stanley-
Reisner rings.

1.4. Associated simplicial complex of monomial ideals. Let
S = Klz1,...,2,] be a polynomial ring with natural Z"-graded
structure. Let m = (z1,... ,x,)S be the unique homogeneous maximal
ideal of S. Let I be a monomial ideal of S, and let G(I) denote the
minimal monomial generators of I. For each i, we put p; = max{b; :
z® € G(I)}, where b = (by,... ,b,) € N” and zP = 28" .- - 2b». Then
S/I can be considered as a Z"-graded ring.

Let a € Z™ be a vector. For any Z"-graded S-module M, M, denotes
the graded a-component of M. We put Ga = {i € [n] : a; < 0}. As
VT is a squarefree monomial ideal, there exists a simplicial complex A
such that T = v/I. Then we define A(I) = A. Under this notation, a
subcomplex A,(I) is defined by

e FNGa=0
Aa(I) = {F € A(I) : e For every z° € G(I), there exists an
i€ [n)\(FUG,) s.t. b; > a;.

This complex plays a key role in Takayama’s formula for local co-
homology modules of monomial ideals, which is known as Hochster’s
formula in the case of squarefree monomial ideals.
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Let I = In be a squarefree monomial ideal of S. Then I is a
monomial ideal whose radical is equal to I. The following lemma
enables us to compute A, (1) easily.

Lemma 1.1 (Minh and Trung [16]). Let I be a squarefree monomial
ideal in S. Let £ > 1 be an integer and a € N". Then we have

AdIO)=(FeF(I): Y a;<l-1).

igF

1.5. Linkage. Let R be a Gorenstein ring, and let I, J be ideals of
R. I and J are said to be directly linked, denoted by I ~ J, if there

exists a regular sequence z = z1,...,2, in I NJ such that J = (z):1
and I = (2): J.

Assume that I is a Cohen-Macaulay ideal of height A and z =
21,...,2p Is a regular sequence contained in I. If we set J = (2):1,

then I = (z):J and thus I ~ J.

Moreover, I is said to be linked to J (or I lies in the linkage class of
J) if there exists a sequence of ideals of direct links

I=Ig~Ij~-~ I, =]

One can easily see that ~ is an equivalence relation of ideals and any
two complete intersections with the same height belong to the same
class. In particular, I is called licci if I lies in the linkage class of a
complete intersection ideal. See, e.g., [28] for more details.

2. Quasi-Buchsbaumness of the second powers and Goren-
steinness. In this section we consider quasi-Buchsbaum property of
the second power of the Stanley-Reisner ideal In. The main purpose
of this section is to prove the following theorem:

Theorem 2.1. Let S = K|z1,...,z,] be a polynomial ring over a
field K, and let A be a simplicial complex on' V' = [n]. Suppose that d =
dim S/In > 3. If S/I is quasi-Buchsbaum for any field K then A is
Gorenstein.
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We first prove the following lemma, which is closely related to the
conjecture by Vasconcelos (see also [20, Conjecture 3.12]): Let R
be a regular local ring and I a Cohen-Macaulay ideal of R. If I is
syzygetic and I/I? is Cohen-Macaulay, then I is a Gorenstein ideal.
The following lemma easily follows from the classification theorems for
simplicial complexes A such that S/I% are Cohen-Macaulay in one-
and two-dimensional cases. See [16, 26].

Lemma 2.2. Let A be a simplicial complex on V = [n], and let
In C S = Klz1,...,2z,] denote the Stanley-Reisner ideal of A. If
S/13 is Cohen-Macaulay for any field K, then A is Gorenstein.

Proof. We may assume that A = core A. Let K be a field and fix it.
Let F be a face of A and put I' = linka F'.

First note that S/I2 and S/Ia are Cohen-Macaulay if so is S/I%.
Indeed, since S/I3 is Cohen-Macaulay and In = \/K, we have that
S/Ia is Cohen-Macaulay; see, e.g., [10]. On the other hand, by
localizing at zr = [[;cp i, we get

IAS[IEI] = (Il",l'ha cee ’xlk)S[Igl]

for some variables x;,,... ,x;,. Hence the assumption implies that
(Ir, iy, .. ,x; )% is a Cohen-Macaulay ideal. This yields that I? is
also Cohen-Macaulay.

Suppose that dimI" = 0. Then one can take a complete graph G
such that I(G) = Ir. Since S/I(G)? is Cohen-Macaulay, we have
I(G)?® = I(G)?. Hence G does not contain any triangle (e.g., see
Corollary 4.5). Thus §(V(T')) = $(V(G)) < 2.

By the above argument, A = link A F is a locally complete intersection
complex whenever dim A = 1. Moreover, since S/I, is Cohen-Macaulay
and thus A is connected, A is an m-cycle or an n-pointed path; see
[25, Proposition 1.11]. On the other hand, since diamA < 2 by
[16, Theorem 2.3], we get n < 3 if A is an n-pointed path. Hence
A = linka F' is Gorenstein.

Now suppose that K = Z/2Z. By [20, Chapter II, Theorem 5.1],
K[A] is Gorenstein. Then we get X(A) = (—1)?7L.
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Let K be any field. Then X(A) = (—1)?! because X(A) does not
depend on K. Therefore we conclude that A is Gorenstein over K by
[20, Chapter II, Theorem 5.1] again. O

A complex A is called a locally Gorenstein complex if linka{z} is
Gorenstein for every vertex « € V. Then the following corollary
immediately follows from Lemma 2.2.

Corollary 2.3. If S/IX has (FLC) for any field K, then A is a
locally Gorenstein complex.

Proof. The assumption implies that S/IlzinkA (=} is Cohen-Macaulay
for every vertex € V. Then linka{z} is Gorenstein by Lemma 2.2. O

Lemma 2.4. Suppose d > 2. If S/I is quasi-Buchsbaum, then
S/Ia is Cohen-Macaulay.

Proof. By assumption S/I4 has (FLC). Then S/Ia has (FLC) by
[10, Theorem 2.6] and thus it is Buchsbaum.

Now suppose that S/Ia is not Cohen-Macaulay. Then there exists
an i with 0 < i < d — 2 such that H:1(S/Ia)o = H;(A; K) # 0. Then
we get the following commutative diagram (see [15])

HF (S/1R)0 —— Hy ™ (S/1R)e,

| |

H'(Do(IR)) — H'(A¢, (1)),

where the bottom map is the identity because Ag(1?) = A, (I?) =
A by [24] and the vertical maps are isomorphism. This yields
1 HFY(S/IZ) # 0. But this contradicts the assumption. o

Remark 2.5. We have an analogous result in the symbolic power case.

Namely, if S/ I(Az) is quasi-Buchsbaum, then S/I is Cohen-Macaulay.
The proof is almost the same since we have Ag(I1(?)) = A, (1) = A.
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We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. By assumption and Corollary 2.3, we have
that A is locally Gorenstein. Moreover, A is Cohen-Macaulay by
Lemma 2.4. Take any face F' of A with dimlinkaF = 1. As d > 3,
linka F' is given by some link of linka{z} for z € F. Hence such a
linka F' is also Gorenstein. By a similar argument as in the proof of
Lemma 2.2, we get the required assertion. a

The Gorensteinness of S/In does not necessarily imply the quasi-
Buchsbaumness of S/I3.

We cannot replace the Cohen-Macaulayness of S/I% with that of
S/ I(Az) in Lemma 2.2 as the next example shows.

Example 2.6. Let £ > 2 be a given integer. Let I be the
Stanley-Reisner ideal of the following simplicial complex A, Then since
diam A < 2, §/I®® is Cohen-Macaulay by [16], but S/I? is not.
Moreover, S/I is not Gorenstein.

In Theorem 2.1, we cannot remove the assumption that dim S/In > 3
as the next example shows.

Example 2.7. Put In = (x123,%124,T224), the Stanley-Reisner
ideal of the 4-pointed path A. Then S/I% is Buchsbaum by [25,
Example 2.9] and S/Ia is Cohen-Macaulay but not Gorenstein of
dimension 2.

The following question is valid in the case that char K = 2, but the
other cases remain open.
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Question 2.8. If S/I% is Cohen-Macaulay over a fixed field K, then
is A Gorenstein over K?

3. Cohen-Macaulayness versus (53) for second symbolic pow-
ers. Throughout this section, let S = K|[z1,...,x,] be a polynomial
ring over a field K. Let m = (z1,... ,,)S be the unique graded max-
imal ideal of S with natural graded structure.

In [24] it is proved that, for any integer £ > 3 and for any simplicial
complex A on the vertex set V = [n], S/ I(Ae) is Cohen-Macaulay if and
only if it satisfies Serre’s condition (S2). So it is natural to ask the
following question.

Question 3.1. Let I be the Stanley-Reisner ideal of a simplicial
complex A on V = [n]. Then is S/I(?) Cohen-Macaulay if and only if
S/1?) satisfies (S2)?

So the aim of this section is to give a criterion for S/I(AQ) to satisfy
(S2). In order to do that, we prove the following theorem, which is a
generalization of [16, Theorem 2.3]. Using this, we give a negative
answer to the above question; see Example 3.4. Note that in the
following Theorem 3.2 and Corollary 3.3 if we replace the condition that
the diameter is less than or equal to 2 by the connectedness condition,
then we have the corresponding condition for the original Stanley-
Reisner ring instead of the second symbolic power, e.g., depth S/Ix > 2
is equivalent to the connectedness of A if dim A > 1.

Theorem 3.2. Let A be a simplicial complex with dim A > 1. Then
the following conditions are equivalent:

(1) depth S/I > 2 (equivalently, depth(S/I)m > 2).
(2) diam AM < 2, where A denotes the 1-skeleton of A.
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Proof. Put Aq := (F € F(A) : Y jgpai <1).

(1) = (2). For given r,s € V = [n] (r < s), we show that
dist (r,s) < 2in A, Put a =e, +e, € N*. Then A, = (F € F(A) :
r € F or s € F). Since depthS/I(z) > 2, we have that Hy(A,) = 0 and
thus A, is connected by Takayama’s formula and Lemma 1.1. Hence
there exists an F' € F(A) such that r,s € F or there exist F,. € F(A)
and F; € F(A) such that r € F,., s € Fs and F,.N Fs # @. In any case,
we get dist (r, s) < 2, as required.

(2) = (1). Assume diam A®) < 2. By Takayama’s formula, it suffices
to show that A, is connected for any a € {0,1}" with A, # &; see
also [17].

Case 1: f(suppa) < 1. Then A, = A is connected by assumption.

Case 2: f(suppa) = 2. We may assume that a, = a; = 1 for some
r < s. Then

Ag=(FeF(A):reForsekF).

Since diam A < 2, we have that {r,s} € A or there exists at € V
such that {r,t}, {¢t,s} € A. In the first case, if we choose a facet
F € F(A) which contains {r,s}, then F € A, and r,s € F. In
the second case, if we choose facets Fy, Fy such that {r,t} € F; and
{s,t} € F5. Then A, is connected because Fy, Fy € A,.

Case 3: f(suppa) > 3. We may assume that §(F(Aa)) > 2. Let
F1, F» € F(A,). By assumption, §(F; Nsupp (a)) > #(supp (a)) — 1 for
each ¢ = 1,2. Then we get

§(F1 N Fy) > #(F1 Nsupp (a)) N (F, Nsupp (a)))
> f(supp (a)) —2 > L.

Hence A, is connected. ]

Corollary 3.3. Let A be a pure simplicial compler. Then the
following conditions are equivalent:

(1) S/I(AZ) satisfies (S2).
(2) diam ((linka F)M) < 2 for any face F € A with dimlinka F > 1.



418 G. RINALDO, N. TERAI AND K.-I. YOSHIDA

Proof. (1) = (2). Let F be a face of A with dimlinka 7 > 1. By
assumption and localization, we obtain that S’/ Il(ii)kA( F) satisfies (S2),
where S’ is a polynomial ring which corresponds to I' = linka (F).
Then depth depth S’/Il(?) > 2. Tt follows from Theorem 3.2 that
diamTM < 2, as required.

(2) = (1). The assumption (2) preserves under localization. Hence
we may assume that S/Il(ii)kA (s satisfies (S2). This implies that
S/ Link, {2} also satisfies (S2) by [10]. Hence (S/I(Az))m satisfies (S2)
for every variable z.

Let P € Spec(S/IY) with dim (S/I¢)p > 2. If P # m, then
there exists a variable  such that © ¢ P. Then depth (S/I(AZ))p > 2
by the above argument. Otherwise, P = m. Since diam A() < 2
by assumption, we have that depth (S/I(AZ))m > 2 by Theorem 3.2.
Therefore S/I(Az) satisfies (S2). O

The next example shows that the (S3)-ness of I(Az) does not necessarily
imply its Cohen-Macaulayness.

Example 3.4 (The triangulation of the real projective plane).
Let I = Ia be the Stanley-Reisner ideal of the triangulation of the real
projective plane P2 as below. Then I is generated by the following
monomials of degree 3:

L1L2L3, L1L2L5, L1L3LE, L1L4L5, T1L4L6, L2T3L4, L2L4LEy; L2L5L6,

L3Laxs5, L3L5L6-

A= 3 e 2 linka {4) — 2./\'3
Since X(A) = =1+ fo—fi+fo=—14+6—15+10 = 0 # (=1)%,

K[A] is not Gorenstein for any field K. Moreover, Reisner proved that
K|[A] is Cohen-Macaulay if and only if char K # 2.
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The link of every vertex is a pentagon, and A®) is the complete 6-
graph. Hence it follows from Corollary 3.3 that S/ I(A2) has (S3). But
it is not Cohen-Macaulay, see [17, Example 2.8].

One can easily see that xixozsrazszs € I(AQ) \ I%. Hence S/I% does
not satisfy (Sz2).

Question 3.5. Let I(G) be the edge ideal of a graph G. If S/I(G)(?)
satisfies (S2), then is it Cohen-Macaulay?

4. When does I® = J? hold. In this section, we discuss when
I = I? holds for any squarefree monomial ideal I. First we introduce
the notion of special triangles.

Definition 4.1. Let I be a squarefree monomial ideal of § =
K[zy,...,z,]. Let G(I) = {zf1,... 2} be the minimal set of
monomial generators, where ! = z; ---x; for H = {i1,...,i,}.
Then #(I) is called the associated hypergraph of I if the vertex set of
H(I)is V and the edge set is {Hy,... ,H,}.

Then {i,7,k} is called a special triangle of H(I) if there exist
H;,Hj, H, € H(I) such that

Hi N {iaja k} = {jvk}7
Hj n {iaja k} = {’L,k},
Hk n {iaja k} = {Zaj}

Then we say that “H;, Hj, H, make a special triangle {i, j, k}.”
For instance, if G(I) contains ¢1x2L1, xoxsLa, xsx1Ls (L1, Lo, L3 are

monomials any of which is not divided by z,z2 nor z3), then {1,2,3}
is a special triangle.

Remark 4.2. A special cycle is considered in [9], and they prove that
I®) = I* holds for any ¢ > 1 if there exists no special odd cycle in
H(I).

The following is the main theorem in this section.
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Theorem 4.3. Let I be a squarefree monomial ideal. Then the
following conditions are equivalent:
(1) I® = I? holds.

(2) If there exist {H1, Ha, Hs} C H(I) such that Hy, Ho, H3 make a
special triangle, then xfr0H2NHsp HiUHUHs o 12

Remark 4.4. If no special triangles exist, then we have I(?) = I2. The
converse is not true.

The following criterion is well known, see [19].

Corollary 4.5. Let I(G) denote the edge ideal of a graph G. Then
I(G)? = I(G)? holds if and only if G has no triangles (the cycles of
length 3).

In what follows, we prove the above theorem. First we prove the
following lemma.

Lemma 4.6. Suppose that condition (2) in Theorem 4.3 holds. Then
xI N (I%:z) C I? holds for every x € V.

Proof. Suppose that there exist a variable x; and a monomial M such
that M € z,IN (1% x)\ I?. As z;M € I?, we can take No, N3 € G(I)
and a monomial L such that

(4].) :ElM = N2N3L.

On the other hand, as M € z11, we can choose N; € G(I) and a
monomial L’ such that

(4.2) M =NL' and z;|L'.

Claim 1: Tl | Ng, I ‘ N3 but Tl TNI As M ¢ 12, Il does not
divide L. By equations (4.1), (4.2) and N> N3L is divided by z%. Hence
xy divides both Ny and N3 because N; is a squarefree monomial for
1 = 2,3. By a similar reason, we have that Ny is not divided by ;.
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Claim 2: N2 7& N3 and ng (N2,N3) ‘ L. If N2 = Ng, then
o N1 L' = N:,?L is divided by x1N; and thus N3L is divided by x1V;.
Then M = NyNy(N3L/x1N;) € I?. This is a contradiction. Hence
Ny # Na.

Since x1 N1 L' = NaN3 L is divided by ged (Na, N3)?, L' is divided by
ged (Na, N3) because x1 Ny is squarefree.

Claim 3: There exist variables x5, 3 such that

N3
ng (Nz, ]\73)7

N,

_ Njy.
gcd(Ng,Ng,)’ 132,333\ 1

T2 T3

Note that any variable which divides V; for i = 2,3 is a factor of Ny
or L'. Since L' ¢ I, L' /gcd (N2, N3) is not divided by N3/ gcd(Na, N3).
Thus there exists a variable zy such that z5 | N3/ged (Ng, N3) and
x2 | N1. The other statement follows from a similar argument.

Take H; € H(I) such that =i = N; for each i = 1,2,3.

Claim 4: H,, H», H3 make a special triangle {1,2,3}. The assertion
immediately follows from Claim 1 and Claim 3. By Claim 4, we get a
contradiction.

By assumption, we get
ged (N1, Na, Ny) /N1 Np Ny = 00 g U0 ¢ g2,

where VN = z;, ---x;_ for a monomial N = ac:lll ez (aq; > 0).
Since Nj divides NaN3L and z1 | N2, N3, we have

NyNsL

Z1

M.

(4.3) N,NyNs ‘

On the other hand, since 1 1 gcd (N1, N3, N3), we have

NoNs

(4.4) ged (N, Ny, N3)? ‘ 2
1

‘M.

Hence equations (4.3) and (4.4) imply

ged (N1, N2, N3)y/N1NoNs | M.

Therefore M € I?, which contradicts the choice of M. ]
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Now suppose that Ia(cz) = I? holds for every vertex x € V. Then
I® = I? if and only if m ¢ Ass(S/I?). Hence the following lemma is
useful when we use an induction.

Lemma 4.7 (see the proof of [20, Theorem 5.9]). Let I be a
squarefree monomial ideal of S with dimS/I > 1. Now suppose that
xI N (I%:z) C I? for every variable x. Then m ¢ Asss(S/I?).

Proof. Since I? and m are monomial ideals, it suffices to show
I%: M # m for every variable z and any monomial M.

Now suppose that I?: M = m for some monomial M ¢ I?. Since
mM C I? C I and depthS/T > 0, we have M € I. So we may
assume that M = x;---x,L, where N = @1+ -2 € G(I) and L is a
monomial. By assumption, zxM = z1(zs -+ wx_123L) € I?. Since I is
generated by squarefree monomials, we then have zg - - - mk,lmiL el
and hence xo---x),_12xL € I. Hence M € 11N (I%:x,) C I?. This is
a contradiction. ]

Proof of Theorem 4.3. First we show (2) = (1). Suppose (2).
Since this condition preserves under localization, we may assume that
(1)), = (I?), for any variable = by an induction on dim S/I. By the
above two lemmata, we have m ¢ Assg(S/I%). Hence I? = I2, as
required.

Next we show (1) = (2). Suppose that there exists a subset
{Hy,Hs,H3} C H(I) such that Hy, Hy, H3 make a special triangle
and g N HNHs p HiUH2UHs ¢ T2 Then it suffices to show 12 C I(2),

Put H = Hy U Hy U H3. Let Iz be the squarefree monomial ideal of
K[z : x € V\ H] such that IgS+ (zx € V\H) =1+ (z € V' \ H).
Let P be any minimal prime ideal of Iy. If height P = 1, then
there exists a vertex j € Hy N Hy N Hs such that P = (z;). Then
M = ghnHnHsgtl e (22) — P2, If height P > 2, then P contains
two variables x;,z; with 4,57 € H. Then zH € P? and hence M € P2.
Therefore M € Ig) but M ¢ I% by the assumption that M ¢ I u]

Suppose U NV = @. Let T' (respectively A) be a simplicial complex
on U (respectively V). Then the simplicial join of T and A, denoted by
L« A, isdefined by '« A={FUG : F € A, G € A}. It is a simplicial
complex on U U V.
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The following corollary is probably well known (and hence so is
Corollary 4.9), but we give a proof as an application of Theorem 4.3.

Corollary 4.8. LetT be a simplicial complex on U and A a simplicial
complex on V. Let A =T x A denote the simplicial join of T' and A.
Then A is a simplicial complex on W = U][[V. Put R = K[U],
S=K[V]and T =R®k S = K[W]|. Then:

(1) I = 1% if and only if IP) = 12 and 1Y = I3.
(2) T/IX is Cohen-Macaulay if and only if so do R/I% and S/I3.

Proof. (1) Note that In = IrT + IpT and G(Ia) is a disjoint union
of G(Ir) and G(I,). Thus it immediately follows from Theorem 4.3.

(2) It immediately follows from (1) and [17, Theorem 2.7]. O

A disjoint union of two graphs G; and Gi, denoted by G;]]Ga,
is the graph G which satisfies V(G) = V(G1) UV (G2) and E(G) =
E(G1) U E(G3). Let G = Gy1]]---]I G- be a disjoint union of
graphs G1,...,G,, and let A; (respectively A) be the complementary
simplicial complex of G; for each ¢ = 1,... ,r (respectively G). Then
A is equal to the simplicial join Aq * -+ *x A,.

Corollary 4.9. Let G = G1[]---[] G~ be a disjoint union of graphs
G; for which I(G;)? is a Cohen-Macaulay ideal. Then I(G)?* is a
Cohen-Macaulay ideal.

Example 4.10. Let G = G1][]---]] G, be a disjoint union of the
pentagons G; for i = 1,... ,r. Then I(G)? is a Cohen-Macaulay ideal.

Proof. 1t follows that the second symbolic power of the edge ideal of
the pentagon is a Cohen-Macaulay ideal. u]

5. Examples of Stanley-Reisner ideals whose square is
Cohen-Macaulay. By Corollary 4.8 we know that there exists a
simplicial complex A with arbitrary high dimension such that I% is
non-trivially Cohen-Macaulay. We now consider the following question.
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Question 5.1. For a given integer d > 2, is there a simplicial
complex A with dimA = d — 1 such that S/I% is Cohen-Macaulay
and such that A cannot be expressed as the simplicial join of two non-
empty complexes?

We give two families of examples as affirmative answers, using liaison
theory. The following key proposition is due to Buchweitz [5]; see
also Kustin and Miller [13]. Note that it gives a partial converse of
Theorem 2.1.

Proposition 5.2 (cf. [5, 6.2.11], [13, Proposition 7.1]). Let I be
a Gorenstein homogeneous ideal in a polynomial ring S. Assume
that there exist a homogeneous polynomial ring T = S[zy,..., 2]
(degz; = 1) and a homogeneous radical ideal L such that

(a) S/I=T/(z1y-..,2r,L).

(b) 21,...,2, is a reqular sequence on T/L.

(c) L is in the linkage class of a complete intersection in T.
Then S/I? is Cohen-Macaulay.

Proof. Since S/I? is isomorphic to the ring T/(21, ... , 2., L?), it is
enough to show that T//L? is Cohen-Macaulay.

Let 9N be the unique homogeneous maximal ideal of T', and set
R = Ty, the M-adic completion of Toyr. As R/LR is a radical
Gorenstein ideal, we can conclude that LR/(LR)? is Cohen-Macaulay,
and thus R/(LR)? is Cohen-Macaulay by [13, Proposition 7.1]. Tt
follows from Matijevic-Roberts theorem that 7'/L? is Cohen-Macaulay,
as required. O

It is well known that any Gorenstein ideal of codimension 3 lies in
the linkage class of a complete intersection, see [4, 31] or [28, Theorem
4.15]. Thus we can obtain the following corollary.

Corollary 5.3. Let In C S be a Gorenstein Stanley-Reisner ideal of
codimension 3. Then S/I4 is Cohen-Macaulay.
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In the rest of this section we prove the second power of the Stanley-
Reisner ideal of a stellar subdivision of any non-acyclic complete in-
tersection complex is Cohen-Macaulay. In what follows, as vertices of
simplicial complexes we use indeterminates instead of natural numbers
for convenience. Let I' be a non-acyclic complete intersection simplicial
complex whose Stanley-Reisner ideal is

Ir = ($11$12 C L4y, L21L22 7 L2y - e s LplLpy2 ” xmp)-

Let F(T') be the set of all facets of I'. Then

T(F):{{mll, ,:U]_kl,... ,xlil,il?gl,... ,:U2k2,... ,51,'21'2,...,
—_—
Tptyeee s Tpkyse e e > Tpiy )t
|1 <ki <i1,1 <hy <ipy..., 1<k, <iy}

Let A be the stellar subdivision of ' on

F={x11, ..., 215,221, , T2, s Tpl,--- »Tpj, }»
where 1 <p<pandl<j; <iy,...,1 <jp<ipandji+---+jp, >2.
Let v be the new added vertex. Then
FA)={GeFD)|GpF}U{{v} UG\{w}|GD F,weF}

={{T11, - Tlhyre-- »TLiy ) T2y - -+ »T2hns- -+ s Tiny - -+ »
Tpt,. - ,m,--- T,
1<k it 1 <hy<in... 1<k, <i,
withl1 <k <jrorl<ky<ggor---orl<k,<j,}
U{{v, @11, Tl e+ »TLiy ) T2Ly - -+ » T2kns -+ s Tiny -+
Tpty. - ,m,... s Tui, b \ {w}
[j1+1<ki<i,jo+1<kes<iag...,5p+1<k, <4,
1< kpi1 < ipits-o i1 <ky <ipwe F}
and
In = (Ir,ZF, V15, 41+ T1iyy VT2j541 7 T2iny + -+ VTpj, 1 ** Tpiy)

is an ideal of a polynomial ring

S: k[il?ll,... ,1‘11’1,3}‘21,... 73321'27-'- ,mul,... ,azm-u,v].



426 G. RINALDO, N. TERAI AND K.-I. YOSHIDA

Applying Proposition 5.2 to this ideal I = Ia, we obtain the following
theorem. The two-dimensional case is proved in [26].

Theorem 5.4. Let A = T'p be the stellar subdivision of the non-
acyclic complete intersection complez T' as above. Then S/I% is Cohen-
Macaulay.

Proof. Consider the variables z = 21, 23,...,2n, where N = j; +
---+3jp—1,and put Z = 2z --- zy. Moreover, we set

X1 = w1, i = @410 T,
Xy = a1, Yo = @410 T,
Xp = Tpi--Tpy, Yo = Tpj+1 Tpiy
Yp+1 = Tp4+1,1"" " Tptlipyrs
Yo = zu1-Tug,

and
L = (Ir,vYs,... ,vYp,vZ —zp) CT = Sz].

Then It = (XiY1,..., XpYp, Yoi1,.. ., Yy), In = (Ir,zp,vY1,...,0Y})
and S/I is isomorphic to T'/(z, L).

In what follows, we show that L lies in the linkage class of a complete
intersection (i.e., licci). Firstly, we can easily prove the following
equality:

(5.1) (Ir, Z2): (Y1, ..., Y,

M:Z) = (IF7Z7xF)'

Secondly we show the following equality:

(52) L= (Ip,UZ—%F)Z(I[‘,Z,Q?F).

To end this, it is enough to show the right-hand side is contained in
L. Let o € (Ir,vZ — zp): (Ir, Z,zp). Then there exists 8 € T such

that «Z — B(vZ — zp) € Ir. Then 8 € (I, Z):zp = (Y1,...,Y,, Z).
In particular, we can write 8 = Y% | v;Y; + 6Z for some v;, § € T. It
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follows that
P
Z[a - Z’yi(in) —0(vZ —zp)| € Ip.
i=1

As Z is a nonzero divisor on T/IrT, we conclude that « € L.
In equations (5.1), (5.2), both (Ir, Z) and (Ir,vZ — zp) are complete

intersection ideals of the same height 4+ 1 as (Yi,...,Y,,Z) or L.
Hence L is licci.

In order to prove that S/I% is Cohen-Macaulay by Proposition 5.2,
it is enough to show that z is a regular sequence on 7/L and that
T/L is reduced. By the above proof, we have that L is licci and
dimT/L =dimT/(Y1,...,Y,, Z). In particular, L is Cohen-Macaulay
and dim7T/L =iy + -+ i, —p+ N.

On the other hand,

dimT/(z,L) = dim S/Ix = dim S/(Ir,v) = i1+ -+ i, — p
= dimT/L — N.

This implies that z is a regular sequence on T/ L. Moreover, as T'/(z, L)
is reduced, so is T'/L, as required. ]

Remark 5.5. The above Gorenstein ideals are obtained from the so-
called Herzog ideals (see [8, 11, 12, 13]) and T'/L is called the Kustin-
Miller unprojection ring ([2]). Moreover, the assertion of Theorem 5.4
says that the quotient algebras of those ideals are strongly unobstructed.

Example 5.6 (Cross Polytope). Let ey,... ,e; be the fundamental
vectors of the d-dimensional Euclidean space R?. Then the convex
hull P = CONV ({zey, t+es,... ,tey}) is called the cross d-polytope.
Let T' be the boundary complex of the cross d-polytope P. Let
W = {zy,...,24,y1,--- ,ya}.- For a sequence i = [iy,... ;] with
1<4 <+ <y < d, we assign a subset of W

Fi = {:Eil,... ,wim} U {yj : _] S [d] \{’Ll, ,im}}.
Then I' can be regarded as a simplicial complex on W such that

FO)={FF:m=0,1,...,d,1 <1 < -+ < iy <d},
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and it is a (d — 1)-dimensional complete intersection complex with
Ir = (z1y1, ®2Y2, - - ; TaYa)-

Let v be a new vertex, and choose a facet Fl; 2. 4 = {Z1,... ,%a}
of I'. Let A be the stellar subdivision of I' on F. Then A is a (d — 1)-
dimensional Gorenstein complex on V = W U {v} and its geometric
realization of A is homeomorphic to S¢~!. The above theorem says
that the second power of

I = (1y1,T2y2, -+ s TaYds VY1, .-+ ,VYd, T1T2 "~ Tq)

is Cohen-Macaulay, but the third power is not if d > 2 because the
third power of the Stanley-Reisner ideal (z1y1, Z2y2, vy1, VY2, 122) of
a pentagon is not.

In the last part of the paper, we give candidates of edge ideals I(G)
for which S/I(G)? is Cohen-Macaulay (but S/I(G)? is not by [19]).
The case n = 2 is mentioned in [26, Theorem 3.7 (iv)].

Conjecture 5.7. Let G be a graph on the vertex set V =
{wl,xg,. . ,I3n+2} with

I(G)=(z122,{T3k—1T3k, T3k T3k+1, T3k+1T3k+2, T3k42T3k—2 Fh=1,2,...

{wse—3m30}e=23,.. n)-

Then S/I(G)? is Cohen-Macaulay but S/I(G)? is not.

3n+1

3n

Acknowledgments. We would like to thank the referee for his/her
advice. Especially, Section 5 is arranged based on the referee’s advice.



ON SECOND POWERS OF STANLEY-REISNER IDEALS 429

REFERENCES

1. R. Achilles and W. Vogel, Uber vollstandige Durchschnitte in lokalen Ringen,
Math. Nachr. 89 (1979), 285-298.

2. J. Béem and S.A. Papadakis, Stellar subdivisions and Stanley-Reisner rings
of Gorenstein complezes, preprint available from arXiv:0912.215v1 [math.AC].

3. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press,
Cambridge, 1993.

4. D. Buchsbaum and D. Eisenbud, Algebraic structures for finite free resolutions,
and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977),
447-485.

5. R. Buchweitz, Contributions d la théorie des singularités, Ph.D. thesis, Uni-
versity of Paris, 1981.

6. M. Crupi, G. Rinaldo and N. Terai, Cohen-Macaulay edge ideal whose height
is half of the number of vertices, Nagoya Math. J. 201 (2011), 117-131.

7. M. Crupi, G. Rinaldo, N. Terai and K. Yoshida, Effective Cowsik-Nori theorem
for edge ideals, Comm. Alg. 38 (2010), 3347-3357.

8. J. Herzog, Certain complezes associated to a sequence and a matriz, Manuscripta

Math. 12 (1974), 217-248.

9. J. Herzog, T. Hibi, N.V. Trung and X. Zheng, Standard graded vertex cover
algebras, cycles and leaves, Trans. Amer. Math. Soc. 291 (2008), 6231-6249.

10. J. Herzog, Y. Takayama and N. Terai, On the radical of a monomial ideal,
Arch. Math. 85 (2005), 397-408.

11. C. Huneke, Linkage and Koszul homology of ideals, Amer. J. Math. 104
(1982), 1043-1062.

12. A.R. Kustin and M. Miller, Multiplicative structure on resolutions of algebras
defined by Herzog ideals, J. London Math. Soc. 28 (1983), 247-260.

13. , Deformation and linkage of Gorenstein algebras, Trans. Amer. Math.
Soc. 284 (1984), 501-534.

14. H. Matsumura, Commutative ring theory, Cambridge University Press, Cam-
bridge, 1986.

15. N.C. Minh and Y. Nakamura, Buchsbaum properties of symbolic powers
of Stanley-Reisner ideals of dimension one, J. Pure Appl. Algebra 215 (2011),
161-167.

16. N.C. Minh and N.V. Trung, Cohen-Macaulayness of powers of two-dimensional
squarefree monomial ideals, J. Algebra 322 (2009), 4219-4227.

17. , Cohen-Macaulayness of monomial ideals and symbolic powers of
Stanley-Reisner ideals, Adv. Math. 226 (2011), 1285-1306.

18. S. Murai and N. Terai, H-vectors of simplicial complexes with Serre’s
conditions, Math. Res. Lett. 16 (2009), 1015-1028.

19. G. Rinaldo, N. Terai, and K. Yoshida, Cohen-Macaulayness for symbolic
power ideals of edge ideals, submitted.

20. A. Simis, W.V. Vasconcelos and R.H. Villarreal, On the ideal theory of graphs,
J. Algebra 167 (1994), 389-416.




430 G. RINALDO, N. TERAI AND K.-I. YOSHIDA

21. R.P. Stanley, Combinatorics and commutative algebra, Second edition,
Birkhéuser, Boston, 1996.

22, J. Stiickrad and W. Vogel, Buchsbaum rings and applications, Springer-
Verlag, Berlin, 1986.

23. Y. Takayama, Combinatorial characterization of generalized Cohen-Macaulay
monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48 (2005), 327-344.

24. N. Terai and N.V. Trung, Cohen-Macaulayness of large powers of Stanley-
Reisner ideals, preprint available from arXiv:1009.0833v1 [math.AC].

25. N. Terai and K. Yoshida, Locally complete intersection Stanley-Reisner ideals,
Illinois J. Math. 53 (2009), 413-429.

26. N.V. Trung and T.M. Tuan, Equality of ordinary and symbolic powers of
Stanley-Reisner ideals, J. Algebra 328 (2011), 77-93.

27. M. Varbaro, Symbolic powers and matroids, preprint, 2010.

28. W.V. Vasconcelos, Arithmetic of blowup algebras, London Math. Soc. Lect.
Note Series, Cambridge University Press, Cambridge, 1994.

29. R.H. Villarreal, Monomial algebras, Pure Appl. Math., Marcel Dekker, New
York, 2001.

30. R. Waldi, Volistandige Durchschnitte in Cohen-Macaulay-Ringen, Arch.
Math. (Basel) 31 (1978/1979), 439—442.

31. J. Watanabe, A note on Gorenstein rings of embedding codimension three,
Nagoya Math. J. 50 (1973), 227-232.

DIPARTIMENTO DI MATEMATICA, UNIVERSITA’ DI MESSINA, SALITA SPERONE, 31.
S. AGATA, MESSINA 98166, ITALY
Email address: rinaldo@dipmat.unime.it

DEPARTMENT OF MATHEMATICS, FACULTY OF CULTURE AND EDUCATION, SAGA
UNIVERSITY, SAGA 840-8502, JAPAN
Email address: terai@cc.saga-u.ac.jp

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, NAGOYA 464-8602,
JAPAN
Email address: yoshida@math.nagoya-u.ac.jp




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


