JOURNAL OF COMMUTATIVE ALGEBRA
Volume 3, Number 3, Fall 2011

INFINITARY EQUIVALENCE OF Z,-MODULES
WITH NICE DECOMPOSITION BASES

RUDIGER GOBEL, KATRIN LEISTNER,
PETER LOTH AND LUTZ STRUNGMANN

ABSTRACT. Warfield modules are direct summands of
simply presented Zp-modules or, alternatively, are Z,-modules
possessing a nice decomposition basis with simply presented
cokernel. They have been classified up to isomorphism by
their Ulm-Kaplansky and Warfield invariants. Taking a model
theoretic point of view and using infinitary languages we give
here a complete model theoretic characterization of a large
class of Zp-modules having a nice decomposition basis. As
a corollary, we obtain the classical classification of countable
Warfield modules. This generalizes results by Barwise and
Eklof.

1. Introduction. The classical theorem by Ulm [13] states
that two countable abelian p-groups are isomorphic if and only if
their numerical invariants, the Ulm-Kaplansky invariants, coincide.
For uncountable (abelian) p-groups this theorem is false, however,
it was Hill [4] and Walker [14] who proved that it still holds for
the class of totally projective groups. In fact, the class of totally
projective abelian p-groups is the largest natural class of abelian p-
groups such that every member is completely determined by its Ulm-
Kaplansky invariants. Passing to general abelian groups it was then
Warfield [15] who extended Ulm’s theorem to the class of Warfield
modules introducing new numerical invariants, the so-called Warfield
invariants. Recall that a Warfield module is a direct summand of a
simply presented Z,-module, where Z, is the ring of integers localized
at the prime p. Taking a completely different point of view, it was
Szmielew [12] who first considered abelian groups model-theoretically.
The usual axioms for abelian groups can be stated in the lower predicate
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calculus (i.e., in L,,,); however, in order to characterize torsion groups
or simple groups languages with infinite expressions are needed. For
instance, the compactness theorem shows that abelian torsion groups
are not axiomatizable in L. Barwise and Eklof [1] took up Szmielew’s
approach and characterized the equivalence classes of torsion abelian
groups with respect to the relation of satisfying the same sentences
of some infinitary language L, e.g., L, .. Their result uses a certain
sequence of cardinals closely related to the classical Ulm-Kaplansky
invariants and implies the original result by Ulm as a corollary. Later
Mekler and Oikkonen [10] showed that these results cannot be extended
to more general cases. In fact, they proved that under CH there is an
abelian p-group A of size 8; such that no sentence of a certain infinitary
language, M,,,..,, (whose formulas are syntactical, non-well-founded
trees) can serve as a complete invariant for A.

In this paper we consider the natural question of extending the
Barwise-Eklof theorem (see [1, Theorem 3.1]) to Warfield modules.
Unfortunately, there is no reasonable class of modules including the
Warfield modules that is closed under L,_, equivalence. However,
in analogy to [1] we are able to completely classify the L-equivalence
classes of certain Z,-modules admitting a nice decomposition basis for
large classes of infinitary languages L. As in the group theoretic version
we need additional numerical invariants deduced from the Warfield
invariants and obtain the classical description of countable Warfield
modules as a corollary. Naturally, our results also hold for more general
local rings than Z,,.

After completing this paper the authors learned about an unpublished
Ph.D. thesis by Carol Jacoby [6] where results similar to our main
Theorem 5.11 were obtained. Our techniques are different from those in
[6] and more algebraic. Instead of using partial decomposition bases as
in [6, Theorem 17] we here use global decomposition bases and therefore
obtain an algebraically stronger result that is closer to Warfield’s
original approach from [15]. For instance, Lemma 3.6 yields a stronger
Karp-system of I,,’s that allows the lifting of partial mappings to global
ones (see Theorem 4.1 and Corollary 4.3). Moreover, Jacoby assumes
in [6, Theorem 17] that the underlying ring is complete while we are
working over the non-complete ring Z, (see Theorem 5.11).



INFINITARY EQUIVALENCE OF Z,-MODULES 323

2. Notations and terminology. Let g be a cardinal-valued
function. Following [1], we define g as follows:

v fg(@) ifg(z) <Ry,
(=) = {00 if g(z) > .

Similarly, we define

~ v J9lx) if g(z) <R,
9l) = {oo if g(z) > No.

All modules considered in this paper are Z,-modules for a fixed prime
p where Z, = {* € Q : (n,p) = 1}. Let M be a module. The
torsion part of M is denoted by tM. If S is a subset of M, let (S)
denote the submodule of M which is generated by S. For each ordinal
a, a submodule p®M is defined as follows: pM = {pg : g € M},
p*t M = p(p®M), and p*M = ﬂﬂ<ap5M if & is a limit ordinal. The
length of M is the smallest ordinal 7 such that p™M = p™t'M. With
every ¢ € M, we associate its p-height (also called height) |z|, that is,
lz| = a if z € p*M\p*™'M and |z| = o if z € p*M = (|, p*M.
Sometimes we write |z|y instead of |z| to emphasize the module in
which the height of x is computed. If p*M = 0, then M is called
reduced. A submodule N of M is called nice (in M) if

p*(M/N) = (p"M + N)/N

for all ordinals . An element x € M is said to be proper with respect
to N if z has maximal height among all elements in the coset z+ N. In
this case, we have |z + h| = min{|z|, |h|} for all h € N. Notice that N
is nice in M if and only if every coset of IV in M has an element which
is proper with respect to N (cf. [9, Proposition 1.4]). If S and T are
submodules of modules M and M’, respectively, then an isomorphism
f:S — T is called height-preserving if |f(x)|p = |z|m for all z € S.
Let M[p] = {x € M : pr = 0}. Then we write p®M[p] instead of
(p*M)[p]. Recall that the Ulm-Kaplansky invariants of M are defined
by
up () = dim p* M [p] /p* ' M p]

for a an ordinal, and

upr(00) = dim p™ M|p).
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If N is a submodule of M and « is an ordinal, let N(a) = p®*M[p] N
(N + p®ttM). Then the a-th Ulm-Kaplansky invariant of M relative
to N is defined to be

upm, N (a) = dim p* M[p]/N(c).
Letting u’ (o) = dim N(a)/p*** M [p] we observe the equation
_ .M
up(@) = uy (@) + up (@)

which clearly induces

~ -~

up(a) = u%f(a) + up v ().

An Ulm sequence is a sequence [ = (Bi + i < w) where each B; is
an ordinal or the symbol oo such that 8; < ;41 for all ¢ and we use
the convention a < oo whenever « is an ordinal or the symbol co
(see [9, page 59]). For k < w we define p*3 = (Bizx : i < w). Let
B=(Bi:i<w)and¥ = (v; : i <w) be Ulm sequences. Then we write
B <7Fif B; <~ forall i < w. We call B and 7 equivalent and write
B ~ 7 if there exist k,! < w such that p*3 = p'5. The Ulm sequence
of € M is the sequence u(z) = (|p'z| : i < w), and sometimes we
write ups(x) instead of u(x). This sequence is said to have a gap at an
ordinal o if there is an i < w such that |p'z| = o and |p'*lz| > a + 1.

Let M(3) be the submodule of M defined by M(8) = {z € M :
[p'z| > B; for all i < w}. If B; # oo for all i < w, define M(B") = (z €
M(B) : |p*z| > B; for infinitely many values of i), and otherwise let
M(B*) be the torsion part of M(3). Then the 3-th Warfield invariant
of M is given by

war (B) = dim M (B)/M (B").

A subset X = {z;}icr of M is called a decomposition basis for M if all
elements of X are independent and have infinite order such that M/(X)
is torsion and (X) = @, (w:) is a valuated coproduct in M (that is,
if for each = ) k;jz; € (X) (k; € Zp) we have |z|p = min{|k;z;|ar}).
If X and X' are decomposition bases for M, then X' is called a
subordinate of X if every element of X’ is a nonzero multiple of an



INFINITARY EQUIVALENCE OF Z,-MODULES 325

element of X. Note that if M has a decomposition basis X, then

wpr(B) is the cardinality of the set
X® = {zeX:u(x)~ B}

If (X) is a nice submodule of M, we call X a nice decomposition basis
for M. Notice that a subordinate of a nice decomposition basis is nice
(cf. [9, Lemma 3.9]). Recall that a module is called simply presented
if it can be defined in terms of generators and relations so that the
only relations are of the forms pz = 0 and pz = y. A Warfield module
is a direct summand of a simply presented module or, equivalently,
is a module M possessing a nice decomposition basis X with simply
presented quotient M/(X).

Our notation is standard and follows [2] for abelian groups and [11]
for model theory. For terminology and background information on the
theory of Warfield groups, we may refer to [3, 5, 9, 15].

3. Extending oa-height-preserving isomorphisms between
free Z,-modules. In this section, we establish conditions for ex-
tending isomorphisms between free Z,-modules which preserve heights
below a given ordinal.

Definition 3.1. Let a be an ordinal or the symbol co, and let
B = (Bi : i < w) be an Ulm sequence. Then the a-initial sequence of
B is defined to be initial,(8) = (v; : i < w) where v; = §; if §; < «
and v; = oo if B; > a. If 77 is another Ulm sequence we call 8 and 7
a-initially equivalent and write

BNa n,

if initial, (8) and initial, (7)) are equivalent Ulm sequences.
Notice that initial,,(3) = B and that 8 ~, 7 exactly if 5 ~ 7.

Definition 3.2. Let o be an ordinal or the symbol co. For a subset
X of a module M and an Ulm sequence 3 = (8; : i < w) we define

XéE) — {m cX: UM(Z') ~a B}
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If B; < « for all i < w, then Xc(f) = X®). Now assume that 8; > «
for some 7 < w, and let z be an element of X. If co # |[p'z|y < a for
all i < w, then ups(x) %o B. On the other hand, if [piz|y > « for some
i < w, then ups(x) ~4 B. It follows that

X&E) =Xx®y {z € X\X(E) s |p*z|ar > a for some k < w},

hence X\ = {z € X : p*z € p®*1 M for some k < w}. Note that it
may happen that Xéﬂ ) = X&B ) for some Ulm sequences 3 and El even if
B and B’ are not equivalent. The idea is to identify those Ulm sequences
which are equivalent below o and may be not equivalent above .

Isomorphisms which preserve both heights below an ordinal o and
Ulm sequences up to ~, will be useful. Following Barwise and Eklof
[1] we introduce a-height-preserving isomorphisms:

Definition 3.3. Let M and N be modules, and let S and T be
submodules of M and N, respectively. An isomorphism f : S — T is
called a-height-preserving for some ordinal « if the following holds for
all z € S:

o If 7|y < o, then |f(z)|n = |z|as;
o If |z|ps > «, then |f(z)|y > a.

f is called co-height-preserving if f is height-preserving.

Lemma 3.4. Let S and T be submodules of modules M and N,
respectively, and let f : S — T be an a-height-preserving isomorphism
where « is an ordinal or the symbol co. Suppose x € M andy € N
such that x has order p" modulo S, y has order p" modulo T and
f(p"x) = p"y for some positive integer r. If either

(i) r =1, |z|p = |y|n, © is proper with respect to S and y is proper
with respect to T, or

(i) lalar > @ and Jy|x > o,

then f extends to an a-height-preserving isomorphism
(S,z) = (T,y)

by sending x onto y.
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Proof. All heights in this proof are computed in M and N, respec-
tively. It is clear that, for s € S and n € Z, s +nz — f(s) + ny defines
an isomorphism f’: (S,z) — (T,y). First, suppose condition (i) of the
lemma holds. Assume |s + z| < a. If |s| < a, then min{|f(s)|,|z|} =
min{|s|, |z|} = |s + z|. If |s| > o, then |¢| = min{|s + z|, |s|} = |s + =]
and |f(s)| > a, hence min{|f(s)|, ||} = |s + z|. In either case we have

|£(s) + y| = min{| f(s)l, [y|} = min{|f(s)], |x]} = |s + 2|

Now assume |s + ¢| > «. Since min{|s|,|z|} = |z + s|, this implies
|7 (s) + y| = min{|f(s)|, ||} > a. Therefore f’ is a-height-preserving.
Now suppose condition (ii) holds. If |s + nz| < «, then

|s + na| = min]s + nal,[nal} = |s| = [£(s)
= min{£(s)], Inyl} = |£(s) + ny],

and if |s + nz| > a we have |s| > a which yields |f(s) + ny| > «. This
completes the proof. O

Notice that in Lemma 3.4 (i) the condition “r = 1” is necessary:
forx =1€ M =2Z/p?’Z and y = (1,p) € N = Z/pZ x Z/p*Z we
have |z|p = |y|n but |pz|pr # [py|w, hence f: {0} — {0} cannot be
extended to a height-preserving isomorphism (x) — (y).

Definition 3.5. Let a be an ordinal or the symbol co. For a module

M we define B
wiy(B) = Y wm(m)
"ﬁNeaUB’
where U is a complete set of representatives of distinct equivalence
classes of Ulm sequences 7] such that wps(7) # 0.

Note that if the module M has a decomposition basis X, then w$,(3)

is the cardinality of the set X{”. In [6], Warfield proved that two
Warfield modules are isomorphic exactly if they have the same Ulm and
Warfield invariants. The proof uses the following result: If X and Y are
any decomposition bases of modules with identical Warfield invariants,
then there exist subordinates X’ and Y’ of X and Y such that there
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is a bijection X’ — Y’ inducing a height-preserving isomorphism
(X') = (Y') (see |9, Lemma 3.8]). In particular, it follows that if
A C X’ and B C Y’ are finite sets and

f:(4) = (B)

is a height-preserving isomorphism such that f(A) = B, then for every
x € X' (respectively y € Y') there is an element y € Y’ (respectively
xz € X') such that f extends to a height-preserving isomorphism
(A,z) — (B,y). This extension result can be generalized:

Lemma 3.6. Let M and N be modules with decomposition bases X
and Y, respectively, such that w$;(B) = @%(B) for all Ulm sequences B
where « is some fized ordinal or the symbol co. Then there exist sub-
ordinates X' and Y' of X and Y, respectively, satisfying the following
property: If A and B are countable subsets of X' and Y', respectively,
and

f:(A) —(B)
s an a-height-preserving isomorphism such that f maps A onto B, then

for every x € X' (respectively y € Y') there is ay € Y' (respectively
x € X') such that f extends to an a-height-preserving isomorphism

f'(Az) — (B,y)
by sending x onto y.

Proof. Since X = UEXSLE), Y = UEYOEE) and each set X, v{P) has

cardinality w,(8), respectively w%(83), we will define the subordinates
X" and Y’ as disjoint unions X’ = UEX,;(B) and Y' = UEYOC(B). We may

therefore assume X = X,gﬂ )and Y = Yogﬂ ) for some fixed Ulm sequence

B=(B:i<w).

Suppose that there exists an ¢ < w such that 8; > a. Then
X = {z € X : pfz € p*''M for some k < w}, so there exist
subordinates X’ C p*t'M of X and Y/ C p®tN of Y satisfying
the required property since | X'| = |Y”| or both X’ and Y’ are infinite
sets.

Now assume that oo # ; < a for all i < w. Then X = X® and
Y = Y®) . For some Ulm sequence 7 let X[7] = {z € X : up () = 7}.
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Case 1. If |X| = |Y]| < Ng, then we will construct by induction
subordinates X’ and Y’ and a countable (maybe finite) sequence of
Ulm sequences

61<B2<"'<Bn<"'

which are all equivalent to 8 such that X’ = U,X'[3,] and Y’ =
U,Y’[B,]. Moreover, we will ensure that |X'[3,]| = |Y'[G,]] = 1.
Assume that we have constructed X’ and Y’ as claimed. Then the

unique element z,, € X'[3,] can only be mapped onto the unique
element y, € Y'[3,] by any a-height-preserving map. Thus, given
an a-height-preserving isomorphism f : (A) — (B) such that f induces
a bijection between A and B, and given x € X' (respectively y € Y”)
there is a unique y € Y’ (respectively © € X') such that f can be
extended to an a-height-preserving isomorphism by mapping « onto y

(respectively y onto z).

Let X = {x1,22,23,...} and Y = {y1,¥2,93,...} be arbitrary
enumerations of X and Y, respectively. Inductively we choose integers
n; and m; such that

up (p™iwi) = un(p"yi)

and up(p™iz;) < upr(p™itiaiqq) for all 4. The desired subordinates
are then given by X’ = {p™iz; : i =1,2,...} and V' = {p™iy; : i =
1,2,...}.

If i = 1, then there are ny and my such that up (p™ 1) = un (P™ 1)
since the Ulm sequences of z; and y; are equivalent to 3. Put
B1 = um(p™z1).

Now assume that ni,mi,ns, ms,...,n;,m; and BI,BQ,... ,Bi are
constructed as claimed. Choose k such that pk’xiﬂ and pkyiﬂ have
Ulm sequences strictly bigger than uas (p™iz;) = un (p™iy;). Now there
are | and s such that up (p* Tz 41) = un (P*T3yip1). Put nj =k +1
and m;11 =k + s and Bi+1 = upr(p™i+iwiyq). This finishes Case 1.

Case 2. Suppose we are not in Case 1. Then, without loss of
generality, we may assume |X| > |Y| > Ry since by assumption
W (B) = Wn(B). The strategy is to proceed as in Case 1 with minor
changes. By induction we will choose subordinates X’ and Y’ and a
countably infinite sequence of Ulm sequences
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which are all equivalent to 8 such that X' = U,X’'[8,] and Y’ =
U,Y’[B,]. Moreover, this time, we will ensure that X’'[3,] and Y’[3,,]
are both uncountable.

Assume for the moment that we can do this. As in Case 1 any a-
height-preserving isomorphism can map elements from X'[3,,] only to
elements from Y'[3,] and vice versa (for any n). Thus, given an a-
height-preserving isomorphism f : (A) — (B) such that f induces a

bijection between A and B, the uncountability of X'[3,] and Y'[3,,]
ensures that X'[3,]\A and Y'[3,]\B are still uncountable. Therefore,
for any v € X'\ A (respectively y € Y'\B) there is some y € Y'\B
(respectively z € X'\ A) such that f can be extended to an a-height-

preserving isomorphism by mapping z onto y (respectively y onto z).

It remains to show that we can carry on the induction. First note
that the set {p"B : n < w} is countable. Hence (after replacing X and
Y by suitable subordinates) we have

X = Uiery X[7;] and Y = User, Y]

for some Ix,Iy C w and Ulm sequences 7;, &r; equivalent to B. Since
X and Y are uncountable there must be 7, and fz; such that X7, ] and
Y [iz;] are uncountable as well. Therefore we can write X [7,,] = U;< X
where each set X; is uncountable. Now let ¢ < w. For every ¢ € Ix
there exist n;, m; < w such that p™n, = p™in;, and we define

X; = {phewe XU e o e X}

and replace X by the set {p"*z : 2 € X;.}. If i ¢ Ix welet m; = 0and
set X} = X;. Then it follows that X* = U;, X is a subordinate of X
such that each X} is uncountable and X} = X*[p™7,]. Similarly, we
obtain a subordinate Y* of Y so that Y* = U, Y;* where each Y;* is
uncountable and Y;* = Y;*[p"i 1] for some r;. It is then straightforward
to see, using similar arguments as in Case 1 that we may pass to
subordinates X’ = U, -, X'[3,] and Y’ = U, Y'[3,] satisfying

Bl<B2<“‘<BTL<“"

This finishes the proof. ]

Remark 3.7. We would like to point out that, in the proof of

Lemma 3.6, the construction of the sets X&(E) and Y;(E) shows the
following:
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(1) In case \X&E)| = |YDEE)| for all Ulm sequences 3, the map f’ can be
globally extended to an a-height-preserving isomorphism (X') — (Y').

(2) Given countably infinitely many elements ag, ay,... € X’ (bg, b1,
... €Y' respectively), there exist elements by, by,... €Y' (ag,a1,... €
X' respectively) such that f extends to an a-height-preserving isomor-
phism (A, ag,a1,...) = (B,bp,b1,...) by sending a; onto b; for all
1 < w.

(3) The lemma is still valid if “a-height-preserving” is replaced by
“§-height-preserving” for any ordinal § < a.

Our next example shows that, in Lemma 3.6, “0$,(8) = 0% (B)”

cannot be replaced by “@%,(3) = @%(3)”.

Example 3.8. Let M be a free, uncountable module. Then M
has a decomposition basis X and we can write M = @, x(z). Now
let {y1,y2,...} be a countably infinite subset of X, and consider the
module N = @;°, (y;) with decomposition basis Y = {py1,p®ys,... }.
For B = (0,1,2,...) we have

wym (B) > No = wn (B)

and wys(§) = 0 = wy (¥) for all 7 £ 3. Suppose X’ and Y are any sub-
ordinates of X and Y, respectively. Then there exists a nonnegative in-
teger n such that X’ contains infinitely many elements z1, T2, ... whose
Ulm sequence is equal to p™ 3. However, any subordinate of Y can only
contain at most n elements of Ulm sequence p"/3. Consequently, there
exists no height-preserving isomorphism (z1,... ,Z,4+1) — (B) for any
finite subset B of Y.

4. Model-theoretic preliminaries. Throughout this paper, L will
denote an ordinary first order language with identity, finitary relation
and function symbols and constant symbols. In addition, we assume
that L has a variable v, for every ordinal a. Examples for atomic
formulas in L are terms like “a = a” or “R(z,a,z)” where z,a,z are
constant symbols or variables of L and R a relation symbol of L. In
order to define the language L., (often denoted by L) which we
will refer to mostly, we define for each ordinal a a collection L, of
formulas as follows: L, is the smallest collection F' of formulas which
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contains the atomic formulas and is closed under the following logical
operations:

(L1) If ¢ € F, then ¢ € F.
(L2) If & C F, then \®,\/ & € F.
(L3) If p € Lg for B < o and v is a variable, then Jv ¢, Vv p € F.

In (L2) A ® (\V/ @, respectively) denotes the conjunction (disjunction,
respectively) of all elements of the set ®. Notice that ® can be of
any cardinality. Following [1], we let Lo, = U, Lo. The quantifier
rank qr(p) of a formula ¢ € Lo, is defined to be the least ordinal o
such that ¢ € L,. Note that the quantifier rank of a formula can be
seen as a measure of its complexity because it ‘counts’ the number
of nested quantifiers which occur in the formula. The notion of a
sentence is defined, as usual, as a formula containing no free variables,
i.e., containing no variables not bound by a quantifier.

A model for a language is understood to be a set A, whose elements,
in combination with the language-specific identity, functions, relations,
etc., satisfy the axioms of the language and in which every possible
sentence has a distinct truth value. Models are denoted by 2 = (A4, ...).
If p € Ly, is a formula with at most n variables, ay,...,a, € A and
o(ay,...,a,) is true, we write 2 = ¢[aq, ... ,a,], and accordingly for
a sentence p which is true, 2 | ¢.

Let « be an ordinal or the symbol co. Then two models 2 = (4,...)
and B = (B,...) for L, are called L,-equivalent, and we write
A =, B, if for all sentences ¢ € L, we have

A = ¢ if and only if B = ¢.

L,-equivalent models can be characterized using partial isomorphisms
between them:

Theorem 4.1 [8]. Let A = (A,...) and B = (B,...) be models
for Loo and § an ordinal or the symbol co. Then the following are
equivalent:

(i) A =5 B;

(ii) For each ordinal o < § there is a non-empty set I, of isomor-
phisms on substructures of 2 into B such that
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(a) if a < B, then Ig C I,;

(b)ifa+1<4, f €Il,41 and a € A (b € B, respectively), then f
extends to a map f' € I, such that a € domain (f') (b € range(f’),
respectively).

The next result can be found in [1]:

Corollary 4.2. Let A and B be countable models for Lo, such that
A=, B. Then A and *B are isomorphic.

Suppose 2’ and B’ are substructures of 2 and 9B such that A’ =5 B'.
If there are corresponding sets I, (o < §) as in Theorem 4.1 (ii)
consisting entirely of d-height-preserving isomorphisms, then we write
2" =l B’. We obtain the following corollary to Lemma 3.6:

Corollary 4.3. Let M and N be modules with decomposition bases X
and Y, respectively, such that @4, (B) = @ (B) for all Ulm sequences
B where & is some fived ordinal or the symbol co. Then there exist

subordinates X' and Y' of X and Y such that (X') =} (Y').

Proof. Let X’ and Y’ be the subordinates of X and Y obtained in
Lemma 3.6. For every ordinal a, let I, be the set I of all §-height-
preserving isomorphisms

f:(4) —(B)

where A and B are finite subsets of X’ and Y’ such that f(A4) = B.
Then Lemma 3.6 shows that for Ls and the modules (X') and (Y”), the
sets I, satisfy condition (ii) from Theorem 4.1; hence, (X') =k (Y").
To see this, let f : (A) — (B) be a map in [ such that A and B are
finite subsets of X’ and Y’ and f(A) = B, and let z € (X’). Then

z = Y. n;x; for some z; € X' and n; € Z,. Thus, by Lemma 3.6,
i=1

there is an extension f' € I of f which maps (4,z1,...,2,) onto

(B,y1s. -+ yYm) for some y; € Y'. Clearly, € domain (f'). If y € (Y”),

then by symmetry f extends to a map f* € I with y € range (f*). O
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Since a wide range of modules can be described as direct sums of
special modules (cf. Example 3.8) in order to study these it is helpful
to know that L,-equivalence is invariant under this construction.

If @iel 2A; denotes the direct sum of the models 2;, then 2A; =, B;
for each ¢ € I implies @,;; A; =o D;c; Bi- Also, if 2 is a model for
Lo and I and J are infinite index sets, the equality B; = %A = €; for
each i € I and j € J implies P,; Bi = @jeJ ¢; [1, Corollary 1.7,
Lemma 1.8].

Recall that every ordinal o can be written as @ = wd + n where
is a unique ordinal and n < w. Barwise and Eklof [1] showed that for
a p-group G, “z € p*G” can be expressed by a formula of quantifier
rank & (§ + 1, respectively) if n = 0 (n > 0, respectively) and that for
m < w, the statements “rank (p®G) > m” and “ug(a) > m” can be
expressed by the sentences g, and g, of quantifier rank § +m and
& +m + 1, respectively, as the statements are equivalent to

m
Azy - -- 3z, ( /\ T; € p“5G A pxy,...,p" "z, are independent>
i=1

and

m
axl---axm(/\xiep“‘”"a Apri=0 A T1,...,%Tm
i=1

are independent modulo p“"H”HG).

Note that the expression “zy,...,x,, are independent” is of quan-
tifier rank zero since it is equivalent to an infinite chain of subjunc-
tions, which itself is equivalent to an infinite chain of disjunctions and
conjunctions of atomic formulas. Then “x,,...,x, are independent
modulo p*®t"*+1G” is of quantifier rank § + 1. It is clear that these
results carry over to Z,-modules. Similarly, we can express facts about
Warfield invariants: let 3 = (8; : i < w) be an Ulm sequence. First,
assume that §; # oo for all i < w and write 8; = wd; + n; where §; is
an ordinal and n; < w. Define

6; +1 ifn; > 0.

(2
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Then “z € M(B)” can be expressed by a formula 6z(x) of quantifier
rank £ = sup{0; : i < w}:

b5(z) = /\ (p'x € pPiM).

The statement “z € M (B*)” means that & can be expressed as a
linear combination of elements z; € M (B) which satisfy |p/z;| > 3; for
infinitely many j € w and therefore is equivalent to 3k < w Jz1 - - -z,
(x = 25;1 Aix; for some Ai,... , A\ € Z A /\le(aci € M(B) A px; €
pPi 1M for infinitely many j < w)); hence, it can be expressed by a
formula 63-(z) of quantifier rank { 4+ w (the correct quantifier rank of
this formula was pointed out by Carol Jacoby [7]).

Since the statement

wy (B) > m

is true if and only if 3z; - - - Iz, (21,... ,2m € M(B8) A z1,... , 2.y, are
independent modulo M (B*)), it can be expressed by a sentence 65, of
quantifier rank & + w + m.

Now suppose the module M has a decomposition basis X. If co #

Bi < a for all i < w, then w$,(8) = wp(B) and otherwise

w$ (B) = {z € X : p*z € p*t' M for some k < w}|

= rank < P (=) ﬂpO‘HM))

z€EX

which coincides with the rank of (X) N p*M and therefore with the
torsion-free rank of p*M. Therefore, by consulting Ggm and Qq,m

“w$;(B) > m” (where m < w) can be expressed by a sentence 9
whose quantifier rank is

a,B,m

E+w+m foo#pF; <aforali<w

d+m if B; > a for some i < w.

Our observations yield one direction of some classifications, of which
(i) was already formulated in [1] and (ii) can be found in [7]:
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Lemma 4.4. Let M and N be modules. Suppose M =) N where A
s a limit ordinal. Then:

(1)
(a) um(a) =un(a) if o < wA.
(b) Iflength (M) < wA and length (N) < w, then up(c0) = un(00).
(i) If M and N have decomposition bases and if o < w\ where

A = wy and v is a limit ordinal, then W5 (B) = WX (B) for all Ulm
sequences 3.

Proof. Bear in mind @ = wd +n < w yields § + £k < A for all
k < w. Hence, (i) (a) follows since ¢q m,, for finite m is an element
of Ly, and with (L1) =4, and also upm(a) < m +1 = g mt1,
are in Ly, too. Therefore, M =5 N yields M = Yo,m, Ya,mt1 <
N = Ya,m, Ya,m+1, which implies ups(a) = un (). Since m < w we
achieve this equation only for the generalized Ulm-Kaplansky invariant
aM (a)

For (b), observe that if length (M) := 7 < wA we have z € p*M &
x € p"™M which is a formula of quantifier rank < A\ and therefore an
element of Ly. Then, “ups(co) > m” is a formula similar to ¢q,m and
thus in Ly, too. The assertion then follows as in (a). In (ii), we write
d = wd’ + n' and have

Etw+m<d+tw+m<wd twtw=w(d+2) <wy=2A

and § + m < A; hence, for any m < w the formula waﬁm is in Ly and
the assertion follows similar to (i). o

5. L,-equivalence of Z,-modules with nice decomposition
bases.

Definition 5.1. Let a be an ordinal or the symbol co. For modules
M and N with decomposition bases X and Y, let Prsf’y denote the
set of all a-height-preserving isomorphisms

f:E— F

where E and F are finitely generated submodules of M and N, respec-
tively, such that the following is true: there exist generators x1, ... ,Z,
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of E, generators yi,...,y, of F, and a positive integer k£ < n such that
x1,...,2 € XU{0} and y1,... ,yx € Y U{0} and

o f(z;)=y; foralli=1,... n;

e in case k < n the submodules E; = (z1,...,z;) and F; =
(y1,...,y:) satisfy the following properties for i = k,... ,n — 1:

(a) |Eit1/Ei| = |Fiy1/ Fi| = p,
)

(b) if |zi41|m < @ or |yi+1|n < a, then x;y; is proper with respect
to (X, E;) and y;4+1 is proper with respect to (Y, F;).

Notice that if |z;4+1|m < @ or |yi+1|ny < « (see property (b)), then
|Zir1|p = |yit1|n because f is a-height-preserving and maps z;41 onto
Yi+1. For modules M and N with decomposition bases X and Y, we
have Prsg’y C Prsf’y whenever « and 8 are ordinals with o < 8. It

is clear that each set Prsf’y is non-empty since it contains the map
0 — 0. Now Lemma 3.6 can be extended as follows:

Lemma 5.2. Let M and N be modules with decomposition bases X
and Y, respectively, such that w$;(B) = WS (B) for all Ulm sequences
B where a is some fived ordinal or the symbol co. Let X' and Y' be
subordinates of X andY as in Lemma 3.6 and assume that f: E — F
is a map in Prsf”yl. Then for every x € X' (y € Y', respectively)

there is ay € Y' (x € X', respectively) such that f extends to a map
(B z) — (Fy)
with f' € Prsfl’yl by sending x onto y.
Proof. We prove the assertion by induction on m = n — k (cf.

Definition 5.1). The case m = 0 was shown in Lemma 3.6, so we
assume that the claim is true for m > 0, and suppose

i Erymir = (T, Thpmy1) — Fegma1 = (U1, Yotmt1)

is a map in Prsfl’yl as in Definition 5.1. Let z € X' (y € Y/,
respectively). By induction hypothesis, f|g,,,. : Ertm — Frim
extends to a map

I (Brim, ®) — (Frm, )
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in Prsfl’yl with f*(z) =y € Y/ (f*"!(y) = = € X', respectively).
In case |Tgim+1| = |Yk+m+1| < « the element x4 is proper with
respect t0 (Ek4m, ) and has order p modulo (Ek,, ), and the same
is true for ygtm+1 and (Fiym,y). By Lemma 3.4, the map f* extends
to an a-height-preserving isomorphism

F (Brtmy @ Thamt1) = (Brtmt1,2) = (Fltms Yy Yhtm+1)
= (Frym+1,Y)
by sending Zim+1 0nto Yrt+m1; hence, ' extends f. It is clear that
x;+1 has order p modulo (E;,z) and y;4+1 has order p modulo (F}, z)

for i = k,... ,k + m. Therefore, f' € Prsfl’yl, and the induction is
complete. ]

The following result will be useful:

Lemma 5.3. Let M and N be modules with nice decomposition bases
X and Y, respectively, such that w$,(8) = @S (B) for all Ulm sequences
B where « is some fized ordinal or the symbol co. Let X' and Y' be
subordinates of X andY as in Lemma 3.6, and assume that f : E — F
is a map in Prsfl’yl. If © € M\E and px € E, then f extends to a
map f*: E* — F* in Prsfr’yl for which there is an element z* € M
that is proper with respect to (X', E*) and has order p modulo E* such

that (E*,z) = (E*,2*) and (X', E*) = (X', E).

Proof. Since X' is a nice decomposition basis for M and finite
extensions of nice submodules are nice, (X', E) is a nice submodule of
M and contains therefore an element a such that z* = x + a is proper
with respect to (X', E'). There are elements z7, ... ,z% € X’ such that
E* = (E,z7,...,z%) contains both a and pz. By Lemma 5.2, f has
an extension f* : E* — F* in Prsf’yl. Then (E*,z) = (E* z*),
(X', E*) = (X', E), and z* is proper with respect to E* and has order
p modulo E*. ]

Lemma 5.4. Let A be a submodule of a module M, and suppose
x € M is proper with respect to A and has height 8 # co. Then:

(i) If |pz| > B + 1, there is an element y € pPT'M such that
r—y€cp’Mlp| andx —y ¢ A+ pPTiM.
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(ii) If  has order p modulo A, then uns a(B) = uns,(a,2)(8) +1 and
un,a(@) = un, (a0 (@) if a # 8.

Proof. (i) If |pz| > 8 + 1, then pz = py for some y € pPT1M; hence,
r —y € p?M([p|. For any a € A we have

|z —y + a| = min{|z + a, |y|} = [z + a| < 5;

therefore, z —y ¢ A+ pPH1 M.

(ii) Let A; = (A, ). If the coset x + A contains an element z’ with
|2’'| = B8 and |pz’| > B+ 1, we replace z by z'.
Case I: |pz| > B+ 1. By (i), there exists an element y € pt1M
such that z —y € p° M[p] and z — y ¢ A+ p®+t1 M. Then

z—y ¢ A(B) =p’Mlp| N (A+p M),
and therefore A;(8)/A(B) = (A,z — y)(B)/A(B) = Z/pZ. But then

P’ MIp]/A(B)
A1(B)/A(B)

shows that unr a(8) = um.a, (B) +1. If a < 3 we have z € pP M C
p**1 M which implies A; () = A(). Now assume that for some a > 3
there exists an element in A;(a)\A(a). Then we can find elements
a € Aand g € p*™'M such that a + kx + g € p*M]|p] for some
positive integer £ < p. But then there are integers m and n such that
mk + np = 1; hence, ma + ¢ — npx € p*M. Since x is proper with
respect to A, this yields

dim p? M[p]/A(B) = dim +dim A, (8)/A(B)

a <|ma+z —npz| < |z| =B,

a contradiction. It follows that A;(a) = A(a). Therefore upsa(a) =
um, 4, (@) if o # B.

Case II: |pz| = 8+ 1. Assume A;(8)\A(B) is non-empty. As before,
we can find a positive integer £ < p and elements a € A and g € pt1 M
such that a+kx+g € pBM[p], so there are integers m and n satisfying
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ma + x — npr + mg € pPM[p]. But then 8 < |ma + z| < |z|; thus,
ma + = has height 8. Moreover,

Ip(ma + z)| = [np*c — mpg| > B+ 1,

so we can replace z by ma + = and are in Case I. If &« < § or o > 3, we
conclude that A;(a) = A(a) as in the previous case; hence, we obtain

up,a(@) = um,a, (@) if a # B. =

Lemma 5.5. Let M and N be modules with nice decomposition bases
X andY, respectively, such that w$,(B) = @S (B) for all Ulm sequences
B where o is some fized ordinal or the symbol oo, and let X' and Y’ be
subordinates of X and'Y as in Lemma 3.6. Assume that f : E — F is
a map in PrsX Y. Let A= (X') and B = (Y'), and suppose 7 is an
ordinal < . Then there is an m < w such that

ur,A(Y) = usr,a+e(y) +m and un,p(y) = un,p+r(y) +m.

In particular, if Gn,a(Y) = Un,B(7), then Un,a+p(Y) = Un,B+F(7)-

Proof. If E C A, then F C B and there is nothing to show.
Now assume that ¥ ¢ A. Then FF ¢ B, and we write £ =
<l‘17"' y Ly Lht1y -+ - axn> and F' = <y17"' y Yky Yk+1s - - - 7yn> as in Def-
inition 5.1. Let A; = (A, x1,...,2;) and B; = (B,y1,...,¥;). Then
every coset ;11 + A; has an element z 41 of maximal height since A;

is nice in M, so there are ay,...,as € X' such that

Ei == <Q}‘1,... s Liy A1y - - - ,as>
contains x;3 —xj,, forall i = k,... ,n —1. By Lemma 5.2, there are
elements b1,... ,b, € Y’ such that f extends to a map

f i (E,a1,...,a5) — (F,b1,...,bs)

in Prsff”yl by sending each a; onto b;. Letting F; = (y1,- - ., ¥i, b1, .- -, bs),
we have

(Biyaiy1) = (B xig1) = Eipa
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and

(Fy, f1(2h41)) = (Fi,yim1) = Fina
and :vg+1 is proper with respect to F; for all i = k,... ,n — 1.

Suppose |zj,i|pr < 7. Since v < o and f'(E;11) = Fij1, we have
|f'(zip1)|v = |z, |m and f'(z],,) is proper with respect to Fj. If
|z} 1lse > 7, then |f'(z} )|y > v in which case E; + p"™'M =
(B, x)y1)+p7H M and Fi+p N = (F;, f'(z},1)) +p" " N; therefore,

un,B; (1) = unt (g, e, ) (7) and un,r (7) = un (e, g, ) (0)-
Now we apply Lemma 5.4 (ii) repeatedly and obtain was a(7)
up,a+e(y) + m and un () = un,py+r(y) + m for some 0 < m
n—=Fk O

IA I

The next result generalizes [1, Lemma A.3.2].

Lemma 5.6. Let M and N be modules with decomposition bases X
and Y, respectively, and let v be an ordinal such that length (tN) >
w(v+1). Let f : E — F be a map in Prsf(’f_i_l). If x € M\E with
p"Tlx € E for some r < w and |x| > wv, then f extends to a map

fl(B,z) — (Fy)

n Prsf;,y by sending x onto y.

Proof. Let r be the smallest integer > 0 such that p"*'2z € E. Then
lp""'z| > wv 4+ r 4+ 1; hence, |f(p"T'x)| > wr 4+ r + 1, so we can write
f(prtlz) = p"tlyg for some yo € p“*N. If p"yo ¢ F we let y = yo.
Now suppose p"yo € F, and let B be a basic subgroup of p***"(tN)
(see [2, Vol. I, page 139]). It is clear that B[p| C (p“**"N)[p]. Assume
the latter group is finite. Then B|p] is finite; thus, B is finite and we can
write p*Y*"(tN) = B@ D for some divisible group D (see [2, Theorem
27.5]); hence, length (tN) < w(v + 1), a contradiction. Consequently,
(p*Y*"N)[p] is an infinite group, and therefore p***"N|[p] Z F[p]. Then
there is a y; € p“”N such that p"y; ¢ F and p""ly; = 0. Letting
Yy = Yo + y1, we obtain

ly| > wv, p'y ¢ F and p"ty = f(p""a).
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By Lemma 3.4, f € Prsf,’,y extends to an wv-height-preserving isomor-
phism
fo(B,x) — (Fy)

by sending z onto y. Since f’ € Prs>Y

oo, the proof is complete. a

The following result will be needed (see [15, Lemma 5.1] in which
the terminology lower decomposition basis is used for a subordinate X'
satisfying the stated properties; note that u%[m(a) corresponds to the
dimension of I, ([X']) in Warfield’s notation).

Lemma 5.7 [15]. Let M be a module possessing a decomposition
basis X. Then X has a subordinate X' such that for every ordinal c,

ué\gg,>(a) is finite or ups(ar) = upxy ().

Lemma 5.8. Let M and N be modules with nice decomposition bases
X and Y, respectively, and let o be a limit ordinal or the symbol co.

Suppose up(6) = un(8) for all ordinals § < o and WS (B) = W% (B)

for all Ulm sequences 3. Then there exist subordinates X' and Y' of
XY’

X and Y, respectively, such that every map f : E — F in Prs
satisfies the following conditions:

(i) If x € M\FE withpx € E and 0o # sup{|z+al|:a € (X', E)} < a,
then f extends to f' € Prsfl’yl such that © € domain (f').

(ii) Ify € N\F with py € F and oo # sup{|ly+b|: b€ (Y, F)} < a,
then f extends to f' € Prsfl’yl such that y € range (f').

Proof. First, we show that there exist subordinates X’ and Y’ of
X and Y, respectively, such that (X') =l (Y’) and tp,(x)(6) =
Uy, (y+y(9) for all ordinals § < .. Consider the equation

unr(8) = k) (6) + s, (x) (6),

and note that u%{,)(é) is the number of elements in X whose Ulm
sequences have a gap at § (cf. [15, page 341]). By Lemma 5.7, we can
find subordinates X* of X and Y* of Y such that for every ordinal
d < a the following is true: If both u%[ﬁ)(é) and u?}’,*>(5) are infinite,
then

aM,(X*)((S) = aN,(Y*)(é)'
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Notice that this statement remains true after replacing X* and Y* by
subordinates X’ and Y as in Lemma 3.6. Then, for every ordinal § < «,
X' and Y’ have the same number of elements whose Ulm sequences have
a gap at § whenever u%[m(é) or ug,,>(6) is finite. Setting A = (X')
and B = (Y'), we obtain A =" B and

Una(0) = .5 (6)

for all ordinals 6 < a. The modules A + E and B + F are nice in M
and N, respectively, hence in (i) and (ii) of the lemma, “sup” can be
replaced by “max.”

Let f: E = (z1,...,2n) = F = (y1,... ,yn) be a map in Prs, =
Prs2 Y, and suppose  is an element of M\FE with pz € E and

oo#pB=max{|lzr+al:a€ A+ E} <a.

If z € A+ E, then Lemma 5.2 yields an extension f' € Prs, of f
with z € domain (f'). Now suppose z ¢ A+ E. Then z has order p
modulo A + E. By Lemma 5.3, f extends to a map f* : E* — F*
in Prs, for which there is an element x* € M such that z* is proper
with respect to A+ E* and has order p modulo E*, (E*,z) = (E*,z*)
and A+ E* = A+ E. If possible, we choose f* € Prs, and x* so that
lpz*| > |z*| + 1.

To simplify notation we now write = for this element z* and f :
E — F for the function f*: E* — F*. Then oo # |z| = 8 < a and
px € pPT1M which implies f(pz) € p*+1N.

Case I: |pz| > 8+ 1. By Lemma 5.4 (i), there exists an element
z' € pPTIM such that x — 2’ € pP°M([p| and z — 2’ ¢ A+ E + pPtiM;
thus, Ua,a+u(8) # 0. Since 8 < «, we can apply Lemma 5.5 and
obtain Uy p4r(B8) # 0. Then there exists an element 2 € p’ N|[p] with
2¢ B+ F+pP*IN; hence, |z| = B and |2+ h| < B forall h € B+ F.
Since « is a limit ordinal or @ = 0o, we have 8 + 2 < a, so there is an
element w € p?T1N such that f(pxr) = pw. Then

|w+ z + h| = min{|w|, |z + h|} < B =|w+ 2|

for all h € B+ F’; hence, w + z is proper with respect to B+ F. Notice
that w+ z ¢ B + F; otherwise, |w| = |z — (w+ 2z)| < 8 by the previous
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observation, contradicting the fact that jw| > 8+ 1. By Lemma 3.4 we
can extend f to an a-height-preserving isomorphism

f i (B,z) — (F,w+z2)
with f/(z) = w + 2. Clearly, f’ € Prs,.

Case II: |pz| = 8+ 1. Then 8+ 1 # oo; therefore, f(pz) = pw
for some w € N with |w| = 3. Suppose there exists an element
z € B+ F such that |w+ 2| > 8+ 1. Then |z| = 8 and there are
elements y,41,... ,Ym € Y’ such that z € F' = (F,yn41,--- ,Ym). By
Lemma 5.2, there are z,41,-.., T, € X’ so that f extends to a map

7:E’:<Eal‘n+17"'axm>_>F/

in Prs,. Letting ¢ = 771(2), we have |z 4+ ¢| > 8 = max{|z + a| :
a € A+ E}. Notice that c € A+ E' = A+ E; therefore, z + ¢ is
proper with respect to A+ E’. Since = + ¢ has order p modulo E’ and
|p(w + z)| > B+ 1 yields |p(z + ¢)| > 8+ 1, we can replace z by z + ¢
and are in Case I. Therefore, we may assume that |w+z| < 8 = |w| for
all z € B+ F,i.e., w is proper with respect to B+ F. By Lemma 3.4,
f extends to an a-height-preserving isomorphism

fl(B,z) — (F,w)

by mapping = to w. Again, f' € Prs,. The second assertion follows
immediately; hence, the proof is complete. a

Theorem 5.9. Let M and N be reduced modules with nice decompo-

sition bases. If upr(0) = un(9) for all ordinals § and wyr(B) = wn(B)
for all Ulm sequences 3, then M =, N.

Proof. Let Prsfo”yl be as in Lemma 5.8, and put Is = Prsfo”yl for
every ordinal §. Since M and NN are reduced, we can apply Lemma 5.8.
Then Theorem 4.1 shows that M =., V. O

The following fact will be useful:
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Lemma 5.10. Let M be a module. If length (tM) = «, then
length (M) < a 4+ w.

We are now able to prove our main result:

Theorem 5.11. Let M and N be modules with nice decomposition
bases and let § be an ordinal. Suppose
(i) up () = un (@) for all ordinals o < wd;
(ii) if length (tM) < wé, then Upr(o0) = U (00);

(iii) w4y (B) = w¥¥(B) for all ordinals v < & and all Ulm sequences

8.
Then M =5 N. The converse holds if 6 = w7y where v is a limit ordinal

and if wyp (B) = W’ (B) and (wiy (B) < No & wi¥(B) < Vo) for all

ordinals v < § and all Ulm sequences (3.

Proof. Let M and N be modules with nice decomposition bases X
and Y, respectively, satisfying (i)—(iii).

Case I: length (¢tM) < wd (this implies length (¢N) < wé by (i)). We
show that in this case M =, N. By Lemma 5.10, there is a v < § such
that length (M) < w(v + 1); hence, wy(8) = w? ™ (B) for all Ulm
sequences 3, and a corresponding statement is true for N. Now write
= (00,00,...),

X =X UX, and Y =Y, UY,
with Xoo = {z € X 1 u(z) ~0} and Yoo = {y € Y : u(y) ~ 55}. Then
wy(X) = | X and wy(X) = |[Yeol,
so by our remarks on direct sums in Section 4 we obtain

M= @ Qo P Z0r™) =< P Qo P Z(r™)

w i (33) upr (00) wn (30) un (00)

=~ p™®N.

By [20, Theorem 21.2], there are reduced modules M, and N,
such that M = p*M @& M,,, N = p®N @& N,, (X,) C M,, and
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(Y;) € N,. Then X, and Y, are nice decomposition bases for M,

and N, respectively. We have wy, () = 0 = wy, (8) for any Ulm
sequence 3 ~ o0, and

W, (B) = Wm (B) = On(B) = B, (B)
whenever 3 # 5. Since @y, () = Up(a) = Gn(a) = Uy, (o) for all
ordinals «, Theorem 5.9 yields M,. =, N,.. Therefore, M =,, N.

Case II: length (¢tM) > wd (which implies length (¢N) > wd). Let
X' and Y’ be subordinates of X and Y, respectively, as in Lemma 5.8.
For any ordinal v < § we define I,, to be the set of all maps f: E — F
in Prs,,, = Prsfl:’yl. Forv+1<§let

f:E— F
be a map in I, 41, and suppose that z is an element of M\E. We will

extend f to a map f’ € I, with € domain (f').

Let A = (X'), and let r be the smallest integer > 0 such that
p"tlz € A+ E. Then ﬁf/l(yﬂ)(ﬁ) = @'N("H)(B) for all Ulm sequences
B because v + 1 < 6. Therefore, we can apply Lemma, 5.2 to extend f
toamap f*: E* — F* in Prs,(,41) such that p™tlz € E*. To simplify
notation, we write f : £ — F for f*: E* — F*.

Suppose |z| > wv. Then by Lemma 5.6, f extends to some map
f:(E,z) — (F,y) in I,. Now assume |z| < wv.

Case ITa: Suppose that for all m =0, ... ,r we have
max{|p™z + z| : z € (A + E,p" )} < wr.

Then we use Lemma 5.8 repeatedly to obtain an extension f’ of f in
I,y C I, with € domain (f').

Case ITb: Now assume that there exists 0 < m < r and an element
2z € (A+ E,p™*lz) such that [p™x + z| > wv. Let m be the smallest
such integer. Using Lemma 5.2 again we extend f to a map

f:E—F
in I,., with z € (E,p™*'z). By Lemma 5.6, f extends to a map
?’ € I, whose domain is (F, p™z+z). Now write z = e+ Ap™ 1z where
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e € Eand )\ € Zy,. Then (1+A\p)p™z = p™z+z—e € (E,p™z+z2). Since
1+ Ap is a unit in the ring Z,, it follows that (E,p™z) = (E,p™x + 2).
Finally, we use Lemma 5.8 repeatedly to extend f’ to some map f' € I,
whose domain contains the elements p™ 'z, ... ,pz, .

In view of Lemma 5.8 (ii) the conditions of Theorem 4.1 (ii) are
satisfied, and we conclude that M =5 N. The last part of the theorem
follows from Lemma 4.4. ]

Corollary 5.12 [1]. Let G and H be p-groups, and let § be an ordinal.
Suppose

(i) ug(a) = ug(a) for all ordinals o < w;
(ii) if length (G) < wd, then Ug(co) = up (o).
Then G =5 H. If 6 is a limit ordinal, the converse also holds.

Since two countable groups G and H are isomorphic if G =,,, H (see
Corollary 4.2), Theorem 5.11 yields the following:

Corollary 5.13 [15]. Two countable Warfield modules M and N
are isomorphic if and only if up (o) = un(a) for all ordinals a,

upr(00) = un(00), and war(B) = wn (B) for all Ulm sequences (.
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