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VANISHING OF TOR OVER
COMPLETE INTERSECTIONS

OLGUR CELIKBAS

ABSTRACT. In this paper we are concerned with the
vanishing of Tor over complete intersection rings. Building
on results of Huneke, Jorgensen and Wiegand and, more
recently, Dao, we obtain new results showing that good depth
properties on the R-modules M, N and M ®gr N force the
vanishing of Tor®(M, N) for all i > 1.

1. Introduction. Let (R,m) be a local ring, i.e., a commutative
Noetherian ring with unique maximal ideal m, and let M be a finitely
generated R-module.

The codimension of R is defined to be the nonnegative integer
embdim (R) — dim (R) where embdim (R), the embedding dimension
of R, is the minimal number of generators of m. Let R denote the
m-adic completion of R. Recall that R is said to be a complete inter-
section when R is of the form S/(f) where (S, n) is a complete regular
local ring and f is a regular sequence of S contained in n. Since S/(g)
is again a regular local ring if g € n — n%, we can always assume, by
shortening the sequence if necessary, that (f) C n?, and in this case
the codimension of R is equal to the length of the regular sequence I

The depth of M, denoted by depthg (M), is the length of a maximal
M-regular sequence contained in m. (The depth of the zero module is
defined to be co.) We say that M is Cohen-Macaulay if M = 0, or
M # 0 and depthr(M) = dimgr(M). M is said to be mazimal Cohen-
Macaulay if M is a nonzero Cohen-Macaulay module and depthg (M) =
dim (R) (cf. [11]).

We set X"(R) = {q € Spec(R) : dim (R,) < n} and say M is free on
X"(R) if My is a free R;-module for all ¢ € X™(R). Following [22], we
say M is free of constant rank on X™(R) if there exists an s such that
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M, = R,(ls) for all ¢ € X™(R). If M is free of constant rank on X°(R),
then we say M has constant rank. We define a vector bundle over R to
be an R-module which is free on X9~!(R), where d = dim (R).

Let S be the set of nonzerodivisors of R, and let K = S™'R be the
total quotient ring of R. Then the torsion submodule of M, t(M), is
the kernel of the natural map M — M ®gr K. M is called torsion
provided ¢(M) = M, and torsion-free provided t(M) = 0.

For an integer n > 0, we say M satisfies (S,) if depthg, (M,) >
min{n,dim (R,)} for all ¢ € Spec(R) (cf. [15]). (Note that this
definition is different from the one given in [17, 5.7.2.1].) If R is Cohen-
Macaulay, then M satisfies (S,,) if and only if every R-regular sequence
x1,T2,... , Tk, with k& < n, is also an M-regular sequence [35]. In
particular, if R is Cohen-Macaulay, then M satisfies (S1) if and only if
it is torsion-free. Moreover, if R is Gorenstein, then M satisfies (S2) if
and only if it is reflexive, i.e., the natural map M — M™** is bijective,
where M* = Hompg(M, R) (see [15, 3.6]).

IfF:--- = Fy —» F; — Fy — 0is a minimal free resolution of M over
R, then the rank of F,,, denoted by SE(M), is the nth Betti number
of M. The nth syzygy of M, denoted by syz*(M), is the image of the
map F,, — F,,_; and is unique up to isomorphism (set syz (M) = M.)

The module M has complezity s [5, 3.1], written as cxg(M) = s,
provided s is the least nonnegative integer for which there exists a real
number 7 such that BZ(M) < v-n*~! for all n >> 0. It may be that no
such s and v exist (e.g., [6, 4.2.2]), in which case we set cxgr(M) = co.
If R is a complete intersection, then the complexity of M is less than
or equal to the codimension of R (cf. [18]). Moreover, over a complete
intersection of codimension ¢, there exist modules of complexity r for
any nonnegative integer r < ¢ (cf. [5, 6.6] or [8, 3.1-3.3]). It follows
from the definition that M has finite projective dimension if and only if
cxg(M) = 0 and has bounded Betti numbers if and only if cxg(M) < 1.

In this paper, our main goal is to examine certain conditions on
the finitely generated R-modules M, N and M ®g N that imply
the vanishing of homology modules Tor*(M, N) when R is a local
complete intersection. Our motivation comes from theorems of Huneke,
Jorgensen and Wiegand [21] and Dao [13] (Dao’s theorem is stated as
Theorem 3.3 below.) In Section 3, we prove the following theorem as
Corollary 3.12.
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Theorem 1.1. Let (R, m) be a local complete intersection, and let
M and N be finitely generated R-modules. Assume M, N and M @r N
are mazimal Cohen-Macaulay. Set r = min{cxg(M),cxr(N)}.

(1) If M is free on X"(R), then TorR(M,N) =0 for all i > 1.

(2) Assume M is free on X" Y(R). Then Tor®(M,N) = 0 for all
even i > 2. Moreover, if Torf(M, N) = 0 for some odd j > 1, then
Torf(M,N) =0 for all i > 1.

Examples 3.13 and 3.14 show that the assumption that M is free on
X"~Y(R), respectively, X"(R) is essential for Theorem 1.1.

Section 4 contains some further applications about tensor products
of modules. An example of the results in Section 4 is the following
theorem which is proved as Theorem 4.15.

Theorem 1.2. Let (R, m) be a local complete intersection, and let M
and N be finitely generated R-modules, at least one of which has con-
stant rank. Assume M, N and M @ g N are maximal Cohen-Macaulay.
Set 1 = max{cxg(M),cxg(N)}. If TorB(M,N) = Torf(M,N) =
-oo=TorE ;(M,N) =0, then Tor®(M,N) =0 for all i > 1.

2. Preliminary results. In this section, for the reader’s conve-
nience, we record some of the major theorems about the vanishing of
Tor that will be used throughout the paper.

The rigidity of Tor starts with the following famous theorem of
Auslander and Lichtenbaum:

Theorem 2.1 (]2, Corollary 2.2] and [28, Corollary 1]). Let (R, m) be
a regqular local ring, and let M and N be finitely generated R-modules.
If Tor®(M, N) = 0 for somen > 1, then Torf*(M,N) =0 for alli > n.

The above result was first proved by Auslander [2] for unramified
regular local rings, and then extended to all regular local rings by
Lichtenbaum in [28], where the ramified case was proved. Murthy [31]
proved that a similar rigidity theorem holds over an arbitrary complete
intersection of codimension ¢, provided one assumes the vanishing of
¢+ 1 consecutive Tor modules:
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Theorem 2.2 ([31, 1.6]). Let (R, m) be a local complete intersection
of codimension c, and let M and N be finitely generated R-modules. If

Torf(M,N) = Tor® ;(M,N) = --- = Tor®, (M,N) =0

for some n > 1, then Tor®(M,N) =0 for all i > n.

Later Huneke and Wiegand [22, 2.4] proved that, over a hypersurface
(a complete intersection of codimension one), the vanishing interval in
Murthy’s theorem may be reduced by one under certain length and
dimension restrictions. This result was then extended to arbitrary
complete intersections by using an induction argument in the following
form:

Theorem 2.3 ([21, 1.9]). Let (R,m) be a d-dimensional local ring
such that R = S/(f) where (S,n) is a complete regular local ring and
f=fi,f2,- -, fe, forc > 1, is a reqular sequence of S contained in n?.
Let M and N be finitely generated R-modules. Assume the following
conditions hold:

(1) M ®g N has finite length.
(2) dim (M) + dim (N) < d +c.

(3) Torf(M,N) = Torf | (M,N) = --- = Torf ,_(M,N) = 0 for
some positive integer n.

(4) Either n > d or else S is unramified.
Then Tor®(M,N) =0 for all i > n.

We will use several results of Jorgensen. The next one we record is a
generalization of Murthy’s theorem [31, 1.6].

Theorem 2.4 ([25, 2.3]). Let (R, m) be a local complete intersection
of dimension d, and let M and N be finitely generated R-modules. Set
r = min{cxg(M),cxgr(N)} and b = max{depthg(M),depthr(N)}. If

Torf(M,N) = Tor® | (M,N) = --- = Tor®,_ (M,N) =0

for somen >d —b+ 1, then Tor®(M,N) =0 for alli >d — b+ 1.
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Theorem 2.5 ([25, 1.3]). Let (R, m) be a local complete intersection
of codimension ¢ > 1, and let F' be a finite set of R-modules. Assume R
1s complete and has infinite residue field. Then there exists a complete
intersection Ry of codimension c—1 and a nonzerodivisor x of Ry such
that R = Ry /() and, for all M € F,

B CXR(M) -1 f CXR(M) >0
Xy (M) = {0 if cxp(M) = 0.

As stated in [25], Theorem 2.5 also follows from a theorem of
Avramov (cf. [5, 3.2.3 and 3.6]).

Theorem 2.6 ([25, 2.7]). Let (R,m) be a d-dimensional lo-
cal complete intersection, and let M and N be finitely generated
R-modules, at least one of which has complexity one. Set b =
max{depthgr (M), depthg(N)}. Then Tor®(M, N) = Torf‘f’l_Z(M, N) for
alli >d—-b+1.

Another important result that we will frequently use throughout the
paper is the depth formula. Auslander [2, 1.2] proved that if (R, m) is
a local ring, M and N are finitely generated R-modules such that M
has finite projective dimension and q = sup{i : Tor*(M, N) # 0}, then
the equality

depth (M) + depth () = depth (R) + depth (Tor (M, N)) — ¢

holds, provided either ¢ = 0 or depth (Torf(M ,N)) < 1. We refer
the above equality as Auslander’s depth formula. This remarkable
equality, for the case where ¢ = 0, was later obtained by Huneke
and Wiegand for complete intersections without the finite projective
dimension restriction on M (cf. also [1, 24]).

Theorem 2.7 [22, 2.5]. Let (R, m) be a local complete intersection,
and let M and N be finitely generated R-modules. If Tor®(M,N) =0
for all i > 1, then the depth formula for M and N holds:

depth (M) 4 depth (N) = depth (R) + depth (M ®g N).
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Most of the applications in this paper will rely on the following result
of Dao.

Theorem 2.8 ([13, 7.7]). Let (R, m) be an admissible local complete
intersection (i.e., R is the quotient, by a regular sequence, of a power
series ring over a field or a discrete valuation ring) of codimension
c>1, and let M and N be finitely generated R-modules. Assume the

following conditions hold:
(1) Torf(M,N) = Torf(M,N) = --- = Tor®(M, N) = 0.
(2) depth (N) > 0 and depth (M @r N) > 0.
(3) Torf*(M, N) has finite length for all i > 0.

Then Tor®(M,N) =0 for all i > 1.

3. Proof of Theorem 1.1. In this section, we will prove a more
general version of Theorem 1.1 described in the introduction. Our main
instruments will be pushforwards and quasi-liftings (cf. [15, 21]). First
we recall their definitions:

Let R be a Gorenstein ring, M a finitely generated torsion-free R-

module, and {fi, f2,..., fm} @ minimal generating set for M*. Let
§ : RU™ — M* be defined by d(e;) = f; for i = 1,2,...,m where
{e1,€e2,...,emn} is the standard basis for R(U™) . Then, composing the

natural map M < M** with §*, we obtain a short exact sequence
(PF) 0— M - R™ — M, — 0,

where u(z) = (fi(x), f2(z),..., fm(z)) for all z € M. Any module
M obtained in this way is referred to as a pushforward of M. We
should note that such a construction is unique, up to a noncanonical
isomorphism (cf. [15, page 62]). Indeed, suppose {g1,92,--- ,9m} is
another minimal generating set for M*. Then, by the uniqueness of
minimal resolutions, there exists an isomorphism ¢ so that the following
diagram commutes,

RM 9 ppe 0
-]
R(™) M 0
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where X(e;) = g; for i = 1,2,... ,m. It follows that p'v = u where *
is the transpose of ¢ and v(z) = (g1(z), g2(x),...,gm(z)). Hence we
have the following commutative diagram:

0 M —Y— R(™ M! 0
| ek
0 M —%— Rm™ M, 0
Assume now R = S/(f), where S is a Gorenstein ring and f is

a nonzerodivisor of S. Let S(™ — M, be the composition of the
canonical map S — R(™ and the map R(™) — M; in (PF). Then
a quasi-lifting of M with respect to the presentation R = S/(f) is the
S-module E in the following short exact sequence:

(QL) 0— E — S™ — M, — 0.

Therefore the quasi-lifting of M is unique, up to an isomorphism of
S-modules.

We collect several properties of the pushforward and quasi-lifting from
[21].

Proposition 3.1 ([21, 1.6-1.8]). Let R = S/(f) where S is a
Gorenstein ring and f is a nonzerodivisor of S. Assume M and N are
finitely-generated torsion-free R-modules. Let My and Ny denote the
pushforwards and E and F' the quasi-liftings of M and N, respectively.
Then one has the following properties:

(1) Suppose g € Spec (R) and M, is mazimal Cohen-Macaulay over
R,. If (My)q # 0, then (My)q is mazimal Cohen-Macaulay over R,.

(2) Suppose n is a positive integer. If M satisfies (S,) as an R-
module, then M, satisfies (S,,—1) as an R-module.

(3) There is a short exact sequence of R-modules: 0 — M, —
E/fE —- M — 0.

(4) If p € Spec (S) and f ¢ p, then E, is free over S,.

(5) Suppose p € Spec(S), f € p and g = p/(f). If My is free over
Ry, then E, is free over Sp.
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(6) Suppose p € Spec(S), f € p and q = p/(f). If (My1)q # 0, then
depths, (E,) = depthg, ((M1)g) + 1.

(7) Suppose S is a complete intersection ring and v is a positive
integer. Assume that both M and N satisfy (S,) as R-modules and
that M @ N satisfies (Sy+1) as an R-module. If Torf(M,N), =0 for
alli>1 and all ¢ € XV(R), then E @g F satisfies (Sy).

The following proposition is embedded in the proofs of [21, 1.8 and
2.4]. Here we include its proof for completeness.

Proposition 3.2 ([21]). Let R = S/(f) where (S,n) is a complete
intersection and f is a nonzerodivisor of S contained in n. Assume M
and N are finitely-generated torsion-free R-modules. Let My and Ny
denote the pushforwards and E and F the quasi-liftings of M and N,
respectively.

(1) TorB(E/fE,N) = Tor; (E, F) for alli > 1.

(2) For each i € Z there egists an ezact sequence Torf ,(E/fE,N) —
TorzR+2(M, N) — Torfil(Ml,N) — Torﬁl(E/fE,N) — Torﬁl(M, N).

(3) Assume Tor(M,N), =0 for all i > 1 and all ¢ € X'(R).

(a) If M ®g N is torsion-free, then Torft(M;, N) = 0.

(b) Assume M ®@gr N is reflezive. Then My ®@g N is torsion-free.
Moreover, if Tor; (E,F) = 0 for all i > 1, then Tor®(M,N) = 0 for
allt1>1.

(4) Let w be a positive integer. Assume M ®gr N is torsion-free,

and that TOI"F(M7 N)q =0 fOT all © Z 1 and all q € XW(R) Then
Tor? (E,F), =0 for alli > 1 and all p € X**+1(S).

Proof. Consider the pushforward and quasi-lifting of IV:

(3.2.1) 0— N—RM™ N, —0

(3.2.2) 0—F—8™ N, —0

Tensoring (3.2.1) with E/fE, we have that Torf,(E/fE,N;) =
Tor®(E/fE,N) for all i > 1. Therefore [29, 18, Lemma 2] and (3.2.2)
yield the isomorphism in (1).
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Statement (2) follows at once from the exact sequence in Proposi-
tion 3.1(3).

For (3), consider the pushforward of M:
(3.2.3) 0— M — R™ — M, — 0.
Tensoring (3.2.3) with N, we get
(3.2.4) Torj*(M, N) = Tor}® |(M;,N) foralli> 1.

Let ¢ € X'(R). Then N, is maximal Cohen-Macaulay over R,.
Moreover, (3.2.4) implies that Torf(Mj,N), = 0 for all i > 2.
Therefore, by [25, 2.2], we have

(3.2.5) Torf(M;,N), =0 foralli> 1.

Note that (3.2.3) implies that there is an injection Torf(M;, N) —
M ®gr N. Thus part (a) follows from (3.2.5). Assume now M ®gr N
is reflexive. We will prove that M; ®g N is torsion-free. Note that, if
dim (R) = 1, then Tor®(M;, N) = 0 for all i > 1. Therefore the claim
follows from Proposition 3.1 (1) and Theorem 2.7. Thus we may assume
dim (R) > 2. Let ¢ be a prime ideal of R such that (M; ®g N), # 0.
Assume dim (R;) < 1. Then, by (3.2.5) and Theorem 2.7, (M1 ®g N),
is maximal Cohen-Macaulay. Assume now dim (R,;) > 2. Note that
(3.2.3) yields the following exact sequence:

(3.2.6) 0—>M®gN — N™ 5 M; g N — 0.

Since M @g N is reflexive, localizing (3.2.6) at ¢, we see that the depth
lemma implies depthg, ((M; ® N)q) > 1. This proves that M; @ N
is torsion-free. Suppose now Tor? (E, F) = 0 for all i > 1. Then, by
(1) and (2), we have

(3.2.7) Torf\ ,(M,N) = Torf | (M;,N) for alli > 0.

In particular, Torf(M,N) = 0. Note that, by (3.2.4) and (3.2.7),
we have that Torf(M,N) = Torf,(M,N) for all i > 1. Since
Torf(E/fE,N) = 0 by (1), letting i = —1 in (2), we see that
Torf(M,N) = 0. Therefore Tor?(M,N) = 0 for all i > 1. This
proves (3).
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For (4), let p € X**1(S). By Proposition 3.1 (4), we may assume
f € p. Let ¢ = p/(f). Then ¢ € X“(R). Recall that, by (3a),
Torf (M, N) = 0. Moreover, (3.2.4) implies that Torf(M;, N), = 0
for all ¢ > 2. Therefore Tor*(M;, N), =0 for all i > 1. Now the short
exact sequence in Proposition 3.1 (3) yields that Tor?(E/fE,N), =0
for all i > 1. Thus (4) follows from the isomorphism in (1). O

Our results are motivated by the following theorem due to Dao.

Theorem 3.3 ([13, 7.6]). Let (R, m) be an admissible local complete
intersection of codimension c, and let M and N be finitely generated
R-modules. Assume M is free on X°(R), M and N satisfy (S.) and
M ®g N satisfies (Set1). Then TorE(M,N) =0 for all i > 1.

Although Theorem 3.3 is a powerful tool, it has no content when
¢ > dim (R). (The assumption that M is free on X°(R) forces M to be
free). We will prove variations of this result that give useful information
even when ¢ > dim (R).

Note that, if one assumes M is free on X°~!(R) instead of X¢(R) in
Theorem 3.3, then it is not necessarily true that Tor!*(M, N) = 0 for
all i > 1: Let k be a field, R = k[[X,Y]]/(XY) and M = R/(x). Then
M is a maximal Cohen-Macaulay vector bundle and Torf(M, M) # 0
if and only if 7 is a positive odd integer, or zero. Assuming M is
free on X°~1(R), we show in Theorem 3.4 that nonvanishing homology
can occur only if the modules considered have maximal complexities.
This improves Theorem 3.3 for modules of small complexities (see also
Corollary 3.16).

Theorem 3.4. Let (R,m) be a local ring such that R = S/(f) where
(S,n) is a complete unramified regular local ring and f = f1, foreois fe
is a reqular sequence of S contained in n?. Let M and N be finitely
generated R-modules. Assume the following conditions hold:

(1) M and N satisfy (Sc—1).
(2) M Qg N satisfies (S.).

(3) If ¢ > 2, then assume further that Tor®(M,N), =0 for all i > 1
and all g € X*"Y(R) (e.g., M is free on X°~(R)).

Then either cxg(M) = cxg(N) = ¢, or Tor®(M,N) =0 for all i > 1.
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Proof. Note that if R — A is a flat local homomorphism of Gorenstein
rings, b is a positive integer, and X is a finitely generated R-module
satisfying (Sp) as an R-module, then X ®p A satisfies (Sp) as an A-
module. (This follows from Proposition 3.1 (2); see [27, 1.3] or the proof
of [15, 3.8] for a stronger result.) Moreover, an unramified regular local
ring (9, n) remains unramified when we extend its residue field by using
the faithfully flat extension S < S[z],s[.) where z is an indeterminate
over S. Therefore, without loss of generality, we may assume R is
complete and has infinite residue field. We will use the same notations
for the pushforwards and quasi-liftings of M and N as in the proof of
Proposition 3.2.

If ¢ = 0, then cxg(M) = cxgr(N) = 0, and so we may assume ¢ > 1.
Without loss of generality, we will assume cxg(M) < ¢ and prove that
Torf*(M, N) = 0 for all i > 1. We proceed by induction on c. Suppose
¢ = 1. Then, by assumption, M has finite projective dimension. Since
M®gN is torsion-free, 23, 2.3] implies that Tor? (M, N) = 0 for all i >
1. Assume now ¢ > 2. By the proof of [25, 1.3], there exists a regular
sequence = I,2,... ,T. generating (f) such that R = R;/(x) and
cxg, (M) < codim (R;) = ¢ — 1, where Ry = S/(z3,z3,... ,z.) and
x = z1. It follows that cxg, (F) < codim (R;). Note that (2) and (6) of
Proposition 3.1 imply that E and F satisfy (S.—1). Moreover, letting
w = ¢ — 1 in Proposition 3.2(4), we have Tor;* (E, F), = 0 for all > 1
and all p € X¢(R;). Finally, setting v = ¢ — 1 in Proposition 3.1 (7),
we conclude that F ®pg, F satisfies (S._1). Hence, if we replace M
and N by E and F and c by ¢ — 1, the induction hypothesis implies
that Tor* (E, F) = 0 for all i > 1. Therefore, by Proposition 3.2 (3b),
Tor® (M, N) =0 for all i > 1. O

Corollary 3.5. Let (R, m) be a local ring such that R = S/(f) where
(S,n) is a complete unramified regular local ring and f = f1, fa,... , fe

is a reqular sequence of S contained in n%. Let M be a finitely generated
R-module. Assume the following conditions hold:

(1) M satisfies (Sc—1).
(2) M is free on X°~1(R).
(3) M @r M satisfies (S.).

Then either cxg(M) = ¢, or M has finite projective dimension.
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Proof. The case where ¢ < 1 is trivial. Suppose ¢ > 2 and
cxp(M) < c. Then, by Theorem 3.4, Torf*(M, M) = 0 for all i > 1.
Therefore, by [26, 1.2], M has finite projective dimension. This proves
the corollary. O

Remark 3.6. Note that, in Corollary 3.5, if ¢ > 1 and cxg(M) < ¢,
then Tor®(M, M) = 0 for all i > 1 and hence the localization of the
depth formula of Theorem 2.7 shows that M satisfies (S.). It is not
known (at least to the author) whether one can conclude the same
thing for the module M in Theorem 3.4. More specifically, if (R, m)
is a local complete intersection, and M and NN are nonzero finitely
generated R-modules such that M ®g N satisfies (S,,) for some n and
Torf (M, N) = 0 for all i > 1, then does M satisfy (S,)? Araya and
Yoshino [1, 2.8] assert a positive answer to this question, but the proof
is flawed. The localization of the depth formula at a prime ideal which
is not in the support of N does not reveal anything about the depth
of M.

Next we examine Theorem 3.4 when one of the modules considered
is maximal Cohen-Macaulay. We will use the following variation of
Theorem 2.4.

Proposition 3.7.! Let (R,m) be a d-dimensional local complete
intersection ring, and let M and N be finitely generated R-modules.
Set r = min{cxg(M),cxgr(N)} and b = max{depthgr (M), depthr(N)}.
Assumer >1 and

Torff’(M,N) = TorﬁH(M,N) == Tor§+T71(M,N) =0

for somen >d—b+ 1.
(1) If r is odd, then Torf ,;(M,N) =0 for all i > 0.
(2) If r is even, then Torf o, (M, N) =0 for all i > 0.

Proof. Without loss of generality we may assume r = cxg(M).
Moreover, by passing to R[z]ng[;] and then completing, we may assume
that R is complete and has infinite residue field. We proceed by
induction on r. Assume r = 1. Then, by Theorem 2.6, Tor*(M, N) =
Torf ,(M,N) for all ¢ > d — b+ 1. Since Torf(M,N) = 0 by
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assumption, we conclude that Torf, ,;(M, N) = 0 for all i > 0. Assume
now that » > 2. Since R is complete, the proof of [9, 2.1.i] (cf. also the
proofs of [8, 7.8 and 8.6(2)]) provides a short exact sequence

3.7.1 0 — M — K — syzl{(M) =0
1

where K is a finitely generated R-module such that cxg(K) = r—1 and
depthgr(K) = depthgr(M). We now have the following exact sequence
induced by (3.7.1):

(3.7.2) Torj,,(K,N) — Torf,y(M,N) — Torf(M,N)
— Torf (K, N) — Tor}' (M, N) for all j > 1.

This shows that Tor?(K,N) = Torf ,(K,N) = --- = Tor®,  _,
(K,N) = 0. If r is even, then the induction hypothesis implies
Torf, ,;(K,N) = 0 for all i > 0. Therefore, using (3.7.2), we have
an injection TorZ ;. (M, N) < Torf ,, (M,N) for all i > 1, and
(2) follows. Similarly, if r is odd, then the induction hypothesis
implies that Torf ;. (K,N) = 0 for all i > 0. Hence, by (3.7.2),
TorZ 5, »(M,N) < TorZ, ,,(M,N) is an injection for all i > 0, and
we have (1). O

In the proof of Theorem 3.9, we will use the following result: If (R, m)
is a local complete intersection, M a maximal Cohen-Macaulay R-
module and N is a finitely generated R-module that has finite projective
dimension, then Tor®(M,N) = 0 for all i > 1. Note that this follows
from Theorem 2.4, or the fact that, over a Gorenstein ring R, a maximal
Cohen-Macaulay R-module is a dth syzygy where d = dim (R). It is
worth noting that this result also holds over any local ring [37, 2.2].
Here we include an elementary proof for the general case and refer the
interested reader to [7, 4.9] for a more general result.

Theorem 3.8 ([37, 2.2]). Let (R, m) be a local ring, and let M and
N be nonzero finitely generated R-modules. If M is mazximal Cohen-
Macaulay and N has finite projective dimension, then Tor®(M, N) =0
fori>1.

Proof. We will first show that Torf(M,N) = 0 by induction on
dim (R). Note that, by the Auslander-Buchsbaum equality, the result
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holds if depth (R) = 0. In particular the case where dim(R) = 0
holds. Suppose now depth (R) > 0. Then, by the induction hypothesis,
Torf®(M, N) has finite length. Let N’ = syz®(IN) and choose a
nonzerodivisor on R and N’. Since M/xzM is maximal Cohen-Macaulay
and N'/zN' has finite projective dimension over R/xzR, the induction
hypothesis implies that Tor?/zR(M/:pM, N'/xzN') = 0. Consider the
short exact sequence

(3.8.1) 0—M - M -— M/zM — 0
Tensor (3.8.1) with N’ to get the exact sequence

(3.8.2) Torf(M/zM,N') — M ®@r N' = M @r N'.
Note that Tort/*®(M/xM,N'/xN') = TorR(M/zM,N') by [29, 18,
Lemma 2]. Thus Torf(M/zM,N') = 0. Hence (3.8.2) shows that
depth (M ®r N') > 0. Now consider the short exact sequence

(3.8.3) 0— N —R®» N —0.

Since depth (M ®g N’) > 0 and Torf(M, N) has finite length over
R, tensoring (3.8.3) with M, we conclude that Tor®(M, N) = 0. Now
induction on the projective dimension of N shows that Tor®(M, N) =0
for i > 1. u]

Theorem 3.9. Let (R, m) be a local complete intersection, and let M
and N be finitely generated R-modules. Assume M is mazimal Cohen-
Macaulay. Set r = min{czr(M), czr(N)}.

(1) Assume M is free on X" (R), N satisfies (S,) and M@grN satisfies
(Sy41). Then TorF(M,N) =0 for all i > 1.

(2) Assume M is free on X" (R), N satisfies (Sy—1) and M ®p N
satisfies (S,). Then Tor®(M,N) =0 for all even i > 2. Furthermore,
if Torf(M,N) = 0 for some odd j > 1, then Tor{(M,N) = 0 for all
1> 1.

Proof. As in the proof of Theorem 3.4, we may assume R is complete
and has infinite residue field. If M has finite projective dimension, then
M is free by the Auslander-Buchsbaum equality so there is nothing to
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prove. If N has finite projective dimension, then Torf(M, N) = 0 for
all i > 1 by Theorem 3.8. Thus we may assume cxg(M) > 0 and
cxg(N) > 0. We will use the same notations for the pushforwards and
quasi-liftings of M and N as in the proof of Proposition 3.2.

We set My = M and consider the pushforwards for i =1,2,... ,7+1:
(3.9.1) 0— M,y — G; — M; — 0.

Note that, since we assume M is maximal Cohen-Macaulay, Propo-
sition 3.1 (1) implies that M; is maximal Cohen-Macaulay for all
i=1,2,...,r+1.

(1) The assumptions and [21, 2.1] imply that Torl*(M, .1, N) = 0
for all ¢ = 1,2,...,r + 1. Since min{cxg(M,4+1),cxg(N)} = r,
Tor®(M,;1,N) = 0 for all i > 1 by Theorem 2.4. This implies that
Tor (M, N) =0 for all i > 1.

(2) The assumptions and [21, 2.1] imply that Torf*(M,, N) = 0 for
all i =1,2,...,r. Therefore, by Proposition 3.7, Torf*(M,, N) = 0 for
all even i > 2 if r is even, and Torf*(M,,N) = 0 for all odd i > 1 if 7 is
odd. Hence, by shifting along the sequences (3.9.1), we conclude that
Tor® (M, N) = 0 for all even i > 2.

Suppose now Torf(M, N) = 0 for some odd j > 1. To prove the
second claim in (2), we proceed by induction on r. Assume r = 1.
Then, by Theorem 2.6, Tor?(M, N) = Torﬁrz(M, N) for all i > 1,
and hence the result follows. Assume now r > 2. Recall that M;
and N; denote the pushforwards of M and N, respectively. (Note
that, since r > 2, we can construct the pushforward of N.) As in
the proof of Theorem 3.4, we choose, using Theorem 2.5, a complete
intersection S, and a nonzerodivisor f of S such that R = S/(f) and
min{cxg(My),cxs(N1)} = r—1. Now, with respect to the presentation
R = S/(f), we construct the quasi-liftings F and F of M and N,
respectively:

(3.9.2) 0—E—S™ — M —0
(3.9.3) 0—F—SM™_ N, —0.
Thus min{cxs(E),cxs(F)} = r — 1. Note that Tor®(M;, N) = 0 for

all odd i > 1. Therefore, by (1) and (2) of Proposition 3.2, we see that
Torf(E,F) = 0. Now, replacing M and N by E and F, and using
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the induction hypothesis with Proposition 3.2 (3b), we conclude that
Tor®(M,N) =0 for all i > 1. o

Remark 3.10. It is shown in [22, 4.1] that the assumptions, in (1) and
(2) of Theorem 3.9, that M ®@g N satisfies (S;), respectively (S4+1),
cannot be removed.

It should be pointed out that if M and N are two finitely generated
modules over a complete intersection R such that M is maximal
Cohen-Macaulay and Tor®(M,N) = 0 for all even i > 2, then the
vanishing of Torf(M , V) for some odd j > 1 does not in general imply
Tor®(M,N) = 0 for all i > 1. The following example, verified by
Macaulay 2 [16], is a special case of [25, 4.1]. (See also Corollary 4.7.)

Example 3.11 ([25, 4.1]). Let k& be a field and put R =
k[[X,Y, Z,U]]/(XY, ZU). Then R is a complete intersection of dimen-
sion two and codimension two. Let M = R/(y,u), and let N be the
cokernel of the following map:

-z =z

y 0

R® R®

Then M and N are maximal Cohen-Macaulay, Tor®(M,N) = Tork
(M,N) =0and cxg(M) = cxg(N) = 2. Moreover, by Proposition 3.7,
TorE(M, N) = 0 for all even i > 2. Therefore, if there is an odd j > 3
such that Torf(M, N) = 0, then Theorem 2.2 implies Tor (M, N) = 0
for all 4 > 0. This shows, by [30, 2.1], that cxg(M) + cxr(N) < 2,
which is false. Thus Tor®(M, N) # 0 for all odd i > 3.

As an immediate corollary of Theorem 3.9, we have:

Corollary 3.12 (Theorem 1.1). Let (R, m) be a local complete in-
tersection, and let M and N be finitely generated R-modules. As-
sume M, N and M ®r N are mazimal Cohen-Macaulay. Set r =
min{cxr(M),cxgr(N)}.

(1) If M is free on X"(R), then Tor®(M,N) =0 for all i > 1.
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(2) Assume M is free on X" Y(R). Then Tor®(M,N) = 0 for all
even i > 2. Moreover, if Torf(M, N) = 0 for some odd j > 1, then
TorR(M,N) =0 for all i > 1.

The assumptions in (1) and (2) of Corollary 3.12 that M is free on
X"~Y(R), respectively on X"(R), cannot be removed.

Example 3.13. Let R and M be as in Example 3.11, and let
g = (y,u,z). Then dim(R;) = 1 and My, = Ry/(y) is not a free
Rg;-module. Thus M is not a vector bundle. It can be checked that a
minimal resolution of M is:

v —y 0 O
0 z x 0 0 —u =z
) 0 0 u oy z Yy 0

Using the resolution above, we see that TorZ (M, M) # 0.

R®) r® I p 0.

Example 3.14. Let R be as in Example 3.11, and let M = R/(x)
and N = R/(zz). Then M, N and M ®p N are maximal Cohen-
Macaulay. A minimal resolution of M is:

o LR SRS RS R—0.

It is easy to see that Torf(M,N) # 0, Torf(M,N) = 0 and
Torf(M,N) = Torf ,(M,N) for all i > 1. One can also see that
Torf (M, N) = R/(z,y,u) = k[[Z]]. In particular, depth (Tor®(M, N))
= 1 if ¢ is a positive odd integer. Hence M and N are not vector
bundles.

Our next theorem can be established by modifying the proof of [13,
7.6] (stated as Theorem 3.3). Here we give a different proof using the
quasi-liftings as in Theorem 3.4 and Theorem 3.9. We will use it to
make a further observation in Corollary 3.16.

Theorem 3.15 (H. Dao). Let (R,m) be a local ring such that
R = S/(f) where (S,n) is a complete unramified regular local ring
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and f = f1, f2,... , fc i a regular sequence of S contained in n?. Let
M and N be finitely generated R-modules, and let n be an integer such
that n # c if n is positive. Assume the following conditions hold:

(1) M and N satisfy (Sc—n).

(2) M is free on X ™(R).

(3) M ®r N satisfies (Sc—n+1)-

(4) Torf(M, N) = Tor}(M,N) = --- = Tor®(M, N) = 0.
Then Tor®(M,N) =0 for all i > 1.

Proof. Without loss of generality we may assume R is complete. We
will use the same notations for the pushforwards and quasi-liftings of
M and N as in the proof of Proposition 3.2. Note that, if n < 0,
then the result follows from [13, 7.6]. Moreover, if ¢ < n, then (4) and
Theorem 2.2 imply that Tor® (M, N) = 0 for all i > 1. Therefore we
may assume ¢ >n > 1.

Assume ¢ = n+ 1. Then M and N are torsion-free, M is free on
XY(R), M ®g N is reflexive and Tor®(M,N) = Torf(M,N) = ... =
Tor® (M, N) = 0. Consider the pushforward of M:

(3.15.1) 0— M — R™ — M, — 0.

Note that, by Proposition 3.2(3), Tor®(M;, N) = 0 and M; ®g N is

torsion-free. Moreover, since ¢ > 2, we have
(3.15.2)  Torf(M;, N) = Tor¥(M;,N) = --- = Tor(M;, N) = 0.

We proceed by induction on d = dim (R). The case where d < 1
follows from the fact that M is free on X'(R). Assume d > 2. Then
the induction hypothesis and (3.15.1) imply that Tor®(M;, N) has
finite length for all ¢ > 1. (If R, has codimension less than ¢, we
use Theorem 2.2 and (3.15.2)) Now applying Theorem 2.8 to M; and
N, we conclude that Tor®(M;, N) = 0 for all ¢ > 1. This proves the
case where c =n + 1.

Assume now ¢ > n+ 2. Let R = S/(f) where S is an unramified
complete intersection of codimension ¢ — 1, and f is a nonzerodivisor
of S. Then E and F satisfy (S, ,) and E is free on X< "T1(S)
(cf. Proposition 3.1). Moreover, by Proposition 3.1 (7), E ®s F
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satisfies (S.—,). Note also that (1) and (2) of Proposition 3.2 show
that Tor; (E,F) = Tor5(E,F) = ... = Tor3(E,F) = 0. Therefore,
replacing M and N by E and F and c by c—1, the induction hypothesis
on c implies that Tor?(E, F) = 0 for all 4 > 1. Thus, by Proposition
3.2 (3b), Tor(M,N) =0 for all i > 1. O

As a corollary of Theorem 3.4 and Theorem 3.15 we have:

Corollary 3.16. Let (R,m) be a local ring such that R = S/(f)
where (S,n) is a complete unramified regular local ring and f =
fi, fas .-y fo, for ¢ # 1, is a regular sequence of S contained in n?.
Let M and N be finitely generated R-modules. Assume the following
conditions hold:

(1) M and N satisfy (Sc—1).
(2) M is free on X°~1(R).
(3) M ®g N satisfies (S¢).

Then either (a) cxr(M) = cxg(N) = ¢ and Tor®(M,N) # 0, or (b)
Tor®(M,N) =0 for all i > 1.

We do not know whether Theorem 3.15 holds if ¢ = n > 1. In
particular, it seems reasonable to ask the following question (see also
[12]):

Question 3.17. Let (R,m) be a local ring such that R = S/(f)
where (S, n) is a complete unramified regular local ring and 0 # f € n.
Let M and N be finitely generated R-modules such that M is free
on X°(R) and M ®g N is torsion-free. If Torf!(M, N) = 0, then is
Tor®(M,N) =0 for all i > 17

4. Some further applications. In this section we present some
of the consequences of Theorem 2.8 and the main theorems in [21].
These results give useful information for the vanishing of Tor over
local complete intersections when the modules considered have maximal
complexities (cf. [13, 6.8]).

We will first prove in Proposition 4.9 that, over a local complete
intersection (quotient of an unramified regular local ring) of codimen-
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sion ¢ > 2, vanishing of the first ¢ consecutive Tor®(M, N) implies the
depth formula, provided the modules M, N and M ®r N are Cohen-
Macaulay. The motivation for such a result comes from Theorem 4.1.
Next we make an observation about a question of Huneke and Wiegand
(see Question 4.16 and Proposition 4.17.) Finally we finish this section
with two more applications of the pushforward (see Propositions 4.20
and 4.22.)

We start by recording the following theorem from an unpublished
note of Huneke and Wiegand, used with their permission.

Theorem 4.1 (C. Huneke and R. Wiegand). Let (R,m) be a d-
dimensional local ring such that R = S/(f) where (S,n) is a complete
unramified regular local ring and 0 # f € w?. Let M and N be finitely
generated R-modules. Assume the following conditions hold:

(1) M, N and M ®g N are Cohen-Macaulay.
(2) dim (M) + dim (N) < d.
(3) Torf(M,N) = 0.

Then TorR(M,N) =0 for all i > 1.

Proof. Without loss of generality, we may assume R is complete.
We use induction on n := depth (M ®g N). If n = 0, then the result
follows from Theorem 2.3. So we assume n > 0. Therefore M and N
have positive depth. If S is equicharacteristic, put J = n%. Otherwise,
let p be the characteristic of S/n, and let J = n? + Sp. Since d > 1,
n # J. Let I = J/(f), and choose z € m — I such that z is a
nonzerodivisor on M, N and M ®z N. Let X = X/zX for an R-
module X. Then M, N and M @ N are Cohen-Macaulay over R.
Moreover, dim,(M) + dim(N) < d — 2. Lifting = to y € S, we have
y € n —n? so that S/(y) is a regular local ring. To see that it is
unramified, suppose S is not equicharacteristic, so that y ¢ n? + Sp. If
S/(y) were ramified, we would have p € n? + Sy, say p = b + sy, with
ben?and s € S. Then s ¢ n, since p ¢ n?. It follows that y € n? + Sp,
a contradiction. Now R/(z) = S/(f,y), so the induction hypothesis
applies. Note that, since z is a nonzerodivisor on M ® g N, the short
exact sequence

(4.1.1) 0—M-5M-—M-—0
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shows that Torf(M,N) = 0. Since Tor®(M,N) = TorZ(M,N)
for all i [29, 18, Lemma 2], the induction hypothesis implies that
Torf(M, N) =0 for all ¢ > 1. Therefore the result follows from (4.1.1)
and Nakayama’s lemma. a

Remark 4.2. It should be noted that Theorem 4.1 follows from Dao’s
results in some important cases. (See [12, 3.5-4.1].) For example,
if (R,m) is a three-dimensional admissible hypersurface which is an
isolated singularity (i.e., R, is a regular local ring for all p € X?(R)),
then the conclusion of Theorem 4.1 follows even without assumption
(1). This is because one of the modules considered will have dimension
at most one. Another important result of Dao states that if (R, m)
is an equicharacteristic admissible hypersurface which is an isolated
singularity, and if M and N are finitely generated R-modules such
that dim (M) + dim(N) < dim(R), then (M,N) is rigid, i.e., if
Tor®(M, N) = 0 for some n > 1, then Tor?(M,N) = 0 for all i > n.

Dao also used Hochster’s # function [12] to prove that there are
admissible local hypersurfaces, which are isolated singularities, over
which every module is rigid, e.g., two-dimensional hypersurfaces, four-
dimensional equicharacteristic hypersurfaces, or one-dimensional hy-
persurface domains. This suggests that, if the ring R in Theorem 4.1
is such a hypersurface, then the Cohen-Macaulayness assumption on
the modules M and N might rarely occur. We record the following
observation for the special case where M = N.

Proposition 4.3. Let (R,m) be a local complete intersection, and
let M be a finitely generated R-module. Assume Tor(M, M) = 0 for
allt > 1. If M or M ®g M is Cohen-Macaulay, then M is free.

Proof. Let d = dim (R). If M = 0, then there is nothing to prove. So
we may assume M is nonzero. Suppose M ®g M is Cohen-Macaulay.
Then, since Tor®(M,M) = 0 for all i > 1, the depth formula of
Theorem 2.7 holds. This implies that depthg(M ® g M) < depthg (M)
and hence M is Cohen-Macaulay. Thus, to prove the claim, it suffices
to assume M is Cohen-Macaulay. We know, by [26, 1.2], that M
has finite projective dimension. Therefore, if d = 0, then M is free
by the Auslander-Buchsbaum equality. Hence we may assume d > 1.
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Furthermore, localizing the depth formula of Theorem 2.7, we see that
M satisfies (S1), i.e., M is torsion-free. Thus Anng(M) is contained in
the set of zero-divisors of R. This shows that dimg(M) = d, and hence
M is free. o

Note that the module M in Proposition 4.3 may not be free if
Tor®(M, M) does not vanish for all i > 1.

Example 4.4. Let k be a field, R = k[[X,Y, Z]]/(XY) and M =
R/(z). Then R is a two-dimensional hypersurface and M is a Cohen-
Macaulay R-module that has projective dimension one. Moreover, since
M is a nonzero cyclic R-module, Torf(M, M) # 0.

There also exist nonfree modules M such that Tor®(M, M) = 0 for
all # > 1. We record the following example for further use.

Example 4.5. Let k be a field and put R = k[[X,Y, W, Z]]/(XW —
Y Z). Then R is a three-dimensional hypersurface domain. Let M be
the cokernel of the following map [20, 2.3]:

z

R—"=-RW,
Then M has projective dimension one, and hence depthg(M) = 2.
Moreover, it can be checked that Tor®(M,M) = 0. Therefore
Tor (M, M) = 0 for all i > 1. It follows by Auslander’s depth for-
mula that depthr(M ®r M) = 1. As dimg(M) = 3, both M and
M ®pr M are not Cohen-Macaulay.

The next theorem follows by adapting the proof of [12, 6.5].

Theorem 4.6. (H. Dao). Let R = S/(f) where (S,n) is a local ring
and f = fi, fa,... , fr, for v > 1, is a regular sequence of S. Let M
and N be nonzero finitely generated R-modules. Assume the following
conditions hold:

(1) M has finite projective dimension as an S-module.
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(2) M ®g N has finite length.

(3) depth (M) 4 depth (N) > depth (S).

Then depth (M) + depth (N) = depth (S); and Tor*(M, N) # 0 if and
only if i is an even positive integer.

Proof. Let R; = Rj_1/(f;) where 1 < j <r, Ry =S and R, = R.
Assume j is an integer such that 1 < j < r, and Torf’j’l(M, N) =0 for
all odd i > 1. The change of rings long exact sequence of Tor [22, 2.1],
applied to R; and R;_1, gives the following exact sequence for 7 > 1:

R;_ R; R;
(4.3.1) Tor;”~*(M,N) — Tor;”’ (M,N) — Tor,”,(M,N)
— Tor?j;l(M,N).

Then we have that Torfj(M, N) —» Torf_jQ(M, N) if 7 is an even
positive integer, and Torfj(M, N) < Tor?jé(M, N) if ¢ is odd. Since
Tor™ (M, N) = 0, this shows that Tor:? (M, N) # 0 if and only if i is
an even positive integer. Therefore, to prove the assertion concerning
Tor®(M, N), it is enough to prove that Tor?(M,N) = 0 for all odd
i> 1.

Let ¢ = sup{i : Tor? (M, N) # 0}. Then, by (1), ¢ < co. Moreover,
by (2), depth (Tor;?(M, N)) = 0. Then Auslander’s depth formula
implies that depth (M)+depth (N) = depth (S)+depth (Tory (M, N))—
q = depth (S) — q. Therefore, by (3), we get ¢ < 0, i.e., ¢ = 0. This
shows that depth (M) + depth (N) = depth (S) and Tor?(M,N) = 0
for all ¢ > 1. This completes the proof. o

We begin recording some corollaries of the previous theorem. The
first one corroborates an example of Bergh and Jorgensen [10].

Corollary 4.7. Let (R,m) be a local complete intersection, which
is not a field, of codimension d and dimension d, and let M and N
be maximal Cohen-Macaulay R-modules. Assume M ®gr N has finite
length. Then Tor®(M,N) # 0 if and only if i is a nonnegative even
integer.

Note that the New Intersection Theorem of Peskine and Szpiro [32],
Hochster [19] and Roberts [33, 34] gives the inequality
dim (N) < dim (M ®g N) + depth (S) — depth (M) = depth (5)
— depth (M)
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for the modules M and N of Theorem 4.6. Thus the conclusion of
Theorem 4.6, concerning the depths of the modules considered, also
follows from the above inequality. (Note also that the module N is
Cohen-Macaulay.)

A generalization of the Intersection Theorem, proved by Sharif and
Yassemi [36, 3.4], and [8, 5.11] show that two finitely generated
modules X and Y over a d-dimensional local complete intersection ring
R must satisfy the inequality

The above inequality and Theorem 4.6 now implies the following
rigidity result.

Proposition 4.8. Let (R,m) be a local ring such that R = S/(f)
where (S,n) is a complete unramified regular local ring and f =
fi,foy- s fe, for ¢ > 1, is a regular sequence of S contained in n>.
Let M and N be nonzero finitely generated R-modules. Assume the
following conditions hold:

(1) M and N are Cohen-Macaulay.

(2) M ®g N has finite length.

(3) Tor®(M,N) = Tor® (M,N) = --- = Tor®,_._(M,N) = 0 for
some positive integer n.

(4) If c = 1, assume further that n is a positive even integer.

Then Tor®(M,N) =0 for all i > n.

Proof. Without loss of generality, we may assume R is complete. Let
d = dim (R). If d = 0, then Theorem 2.3 implies that Tor®(M, N) =0
for all ¢ > n. Therefore we may assume d > 1. We have the following
equality which follows from [36, 3.4]:

(4.8.1)  dimg(N) + depthg(M) < dimg(M ®g N) + d + cxp(M).

Since M is Cohen-Macaulay and M ®pg N has finite length, it follows
from (4.8.1) that dimg(N)+dimg(M) < d+cxg(M). As cxg(M) < ¢,
we have that dimg(N) 4+ dimg(M) < d + ¢. Now, if dimg(N) +
dimg (M) = d+c, then (1) and Theorem 4.6 imply that Tor*(M, N) #
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0 if and only if 7 is a positive even integer. This contradicts (3) if ¢ > 2,
and (4) if ¢ = 1. Thus dimg(N) + dimg (M) < d + ¢ so that Theorem
2.3 gives the desired conclusion. o

We should note that, in Proposition 4.8, one can replace ¢ with
the maximum of the complexities of M and N by using [25, 2.6],
provided n > dim(R). Finally we prove the following corollary which,
in particular, explains why the module M ® g IV is not Cohen-Macaulay
in Example 3.11.

Proposition 4.9. Let (R,m) be a local ring such that R = S/(f)
where (S,n) is a complete unramified reqular local ring and f =
fi, fas .oy fe, for ¢ > 1, is a reqular sequence of S contained in n?.
Let M and N be nonzero finitely generated R-modules. Assume the
following conditions hold:

(1) Torf(M, N) = Torf(M,N) = --- = Tor®(M, N) = 0.
(2) M, N and M ®g N are Cohen-Macaulay.
(3) If c =1, assume further that dim (M) + dim (N) < d.

Then Torf(M,N) = 0 for all i > 1. In particular the depth formula
holds for M and N.

Proof. Without loss of generality, we may assume R is complete. If
¢ =1, then the result follows from Theorem 4.1.

Assume now that M, N and M ®g N are Cohen-Macaulay, Torf(M,
N) = Tor}(M,N) = --- = Tor®(M,N) = 0, and ¢ > 2. We proceed
by induction on d = dim (R) to prove that Tor®(M, N) = 0 for all
i > 1. If d = 0, then the result follows from Theorem 2.3. Therefore
we may assume d > 1. Now let p be a nonmaximal prime ideal of R.
If R, has codimension c, then the induction hypothesis, applied to M
and N, implies that Tor?p (Mp,Np) =0 for all ¢ > 1. If, on the other
hand, R, has codimension less than ¢, Theorem 2.2 and (1) imply that
Tor?”(Mp,Np) = 0 for all 4 > 1. This shows that Torf*(M, N) has
finite length for all ¢ > 1. If depth(M ®g N) = 0, then M ®g N
has finite length so that the result follows from Proposition 4.8. Thus
we may assume depth (M ®g N) > 0. In particular depth (M) > 0
and depth (N) > 0. In this case the result concerning the vanishing
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of Tor®(M, N) follows from Theorem 2.8. Therefore, by Theorem 2.7,
the depth formula holds for M and N. i

Remark 4.10. Jorgensen [25] asks whether there exist a local com-
plete intersection R of codimension ¢ > 2, and finitely generated R-
modules M and N such that M ® g N has finite length, Tor*(M, N) =
Torf (M,N) = --+ = Torf,_;(M,N) = 0 and Tor ,(M,N) # 0
for some 7 > 1 and n > 2. Therefore it would be interesting to know
whether one could remove the Cohen-Macaulayness assumption on the
modules M and N in Propositions 4.8 or 4.9.

Next our aim is to prove Theorem 1.2, advertised in the introduction.
We will give a proof after several preliminary results.

Let (R,m) be a d-dimensional local complete intersection, and let
M and N be finitely generated R-modules. Set b = max{depthgr(M),
depthg(N)} and assume that Torf(M,N) = Torf ,(M,N) = ... =
Torngch(M)fl(Mv N) = 0 for some n > d — b+ 1. Then, if N has
finite length, it is proved in [9, 3.3.ii] that TorZ(M, N) = 0 for all
i > d — depthg(M) + 1 (cf. also the proof of [25, 2.6].) The next
proposition is similar to [9, 3.3.i] and Proposition 3.7, except we
assume Torf'(M, N) has finite length for certain values of 4, rather
than assuming that N has finite length.

Proposition 4.11. Let (R,m) be a d-dimensional local complete
intersection, and let M and N be finitely generated R-modules. Set
b = max{depth (M), depth (N)} and r = min{cxg(M), cxr(N)}. Let
n and w be integers such that w > 0 andn > d — b+ 1. Assume the
following conditions hold:

(1) Tor®(M, N) = Tor®, (M, N) = --- = Tor®,_,(M,N) = 0.
(2) Tor% 5, :(M,N) has finite length for all i =1,2,... 7.

Then either Tor®(M, N)=0 for alli > d—b+1, or depth (Tor® (M, N))
=0.

Proof. Without loss of generality we may assume r = cxg(M) and R
is complete with an infinite residue field. If r = 0, then Theorem 2.4
implies that Torf*(M, N) =0 for all i > d — b+ 1. Suppose now r > 1
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and depth (TorZ_; (M, N)) # 0. We will show that Tor®(M,N) = 0
for all ¢ > d — b+ 1. We may choose, using Theorem 2.5, a complete
intersection S and a nonzerodivisor f of S such that R = S/(f) and
cxg(M) = r — 1. The change of rings long exact sequence of Tor [22,
2.1], applied to S and R, gives the following exact sequence

(4.11.1) Torf ,(M,N) — Torf (M, N) — Tor;,,(M,N)
— Torf,, (M, N) — Tor , (M, N) for all j > 0.

Assume r = 1. Then M has finite projective dimension over S. Thus
Theorem 2.4 implies that Tory (M, N) = 0 for all i > d—b+2, and hence
(4.11.1) gives the injection TorZ®, ,(M,N) < Torf_,(M,N). Note
that, as Tor/ (M, N) = Torf, ,(M, N) for alli > d—b+1, Torf (M, N)
has finite length by (2). Therefore Tor/ (M, N) = 0, and so the result
follows from (1) and Theorem 2.4.

Assume now 7 > 2. Then (4.11.1) shows that Tor 4, ;(M,N)
has finite length for all ¢ = 1,2,... ,r — 1, Torg+1(M,N) = ... =
Tory ,,_1(M,N) = 0 and Torf_,(M,N) = Tor?(M,N). Thus the
induction hypothesis implies that Tor? (M, N) =0 for alli > d — b+ 2,
and hence Torf(M, N) = Torf ,(M,N) for all i > d — b+ 1. Now the

claim follows as in the case where r = 1. O

The following corollary of Proposition 4.11 shows that, in Theo-
rem 2.8, one can replace the codimension of the ring with the mini-
mum of the complexities of the modules, provided one of the modules
considered is maximal Cohen-Macaulay.

Corollary 4.12. Let (R,m) be a local complete intersection, and
let M and N be finitely generated R-modules. Set r = min{cxg(M),
cxg(N)}. Assume the following conditions hold:

(1) M is mazimal Cohen-Macaulay.
(2) depthgp(M ® N) > 0.
(3) Torf (M, N) = Tor}(M,N) = ... = Tor®(M,N) = 0.
(4) TorE(M, N) has finite length for all i > 1.
Then TorE(M,N) =0 for all i > 1.
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Note that Example 3.11 and the example given preceding Theo-
rem 3.4 show, respectively, that assumptions (2) and (3) of Corol-
lary 4.12 cannot be removed. Furthermore, if R, M and N are as
in Example 3.14, and M’ = syz¥(M), then Torf(M’',N) = 0, and
M' @ N and TorZ(M', N) have positive depth. This shows that one
cannot remove assumption (4) in Corollary 4.12.

Proposition 4.13. Let (R,m) be a local complete intersection, and
let M and N be finitely generated R-modules. Set r = min{cxg(M),
cxg(N)}. Assume the following conditions hold:

(1) Tor® (M, N) = Tor¥(M,N) = - -- = Tor®_, (M, N) = 0.
(2) M is mazimal Cohen-Macaulay.
(3) M ®g N is reflexive.
(4) N is torsion-free.
(5) TorB(M,N); =0 for all g € X'(R) and i > 1.
Then Tor®(M,N) =0 for all i > 1.

Proof. Since M is maximal Cohen-Macaulay, we may assume r > 1
(see Theorem 3.8.) Let d = dim (R). We proceed by induction on d.
If d < 1, then Tor®(M,N) = 0 for all i > 1 by (5). Assume now
d > 2. Then the induction hypothesis implies that Torf(M, N) has
finite length for all ¢ > 1. Consider the pushforward of M:

(4.13.1) 0— M — R™ — M; — 0

By Proposition 3.2 (3), Torf{(M;, N) = 0 and M; ®g N is torsion-free.
Moreover (1) and (4.13.1) show that Torf(M;, N) = Torf(M;, N) =
-+» = Torf(M;,N) = 0. Now, since Torf(M;, N) has finite length for
all ¢ > 1 and M, is maximal Cohen-Macaulay (see Proposition 3.1 (1)),
Corollary 4.12 implies that Tor(M;, N) = 0 for all 4 > 1. Thus the
result follows from (4.13.1). O

Proposition 4.14. Let (R,m) be a one-dimensional local complete
intersection, and let M and N be finitely generated R-modules, at
least one of which has constant rank. Set r = max{cxg(M),cxr(N)}.
Assume the following conditions hold:

(1) TorR(M,N) = Torf(M,N) = --- = Tor®_ (M, N) = 0.
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(2) M and M Qg N is torsion-free.
Then TorE(M,N) =0 for all i > 1.

Proof. Note that, as M is torsion-free, we may assume r > 1.
Suppose now N has torsion, i.e., depth (N) = 0. Then we can choose
a maximal Cohen-Macaulay approximation for N [3], i.e., we have an
exact sequence

(4.14.1) 0—P—X—N—0

where X is maximal Cohen-Macaulay and P has finite injective dimen-
sion. As R is Gorenstein, P also has finite projective dimension. Since
R has dimension one and depthg(N) = 0, depth lemma implies that
P is free. In particular, if N has constant rank so does X. Moreover,
tensoring (4.14.1) with M, we have the following exact sequence

(4.14.2) Torf(M,N) > P@r M — X g M — M ®r N — 0.

Since Torf(M, N) is torsion and M is torsion-free, « = 0 and hence
(4.14.2) yields the following exact sequence

(4.14.3) 0—PRrM—X®rM— M®g N — 0.

Now the depth lemma implies that X ® g M is torsion-free. Further-
more, by (4.14.1) and (1), we have

(4.14.4)  Torf(M,X) = Tor¥(M,X) =--- = Tor® | (M, X) = 0.

Hence, replacing N by X, we may assume that N is torsion-free. Now,
without loss of generality, we may assume that N has constant rank.
Then [22, 1.3] gives the following short exact sequence

(4.14.5) 0—N-—RY —-C—0

where C has finite length. Since M ®g N is torsion-free, tensoring
(4.14.5) with M, we see that Torf(C, M) = 0. Now, if r = 1, [9, 3.3.ii]
implies that Tor®(C, M) = 0 for all i > 1. If, on the other hand, r > 1,
we use (1) to deduce that

(4.14.6) Torf(C, M) = Torl(C, M) = --- = TorE(C, M) = 0.
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Then, using [9, 3.3.ii] again with (4.14.6), we have that Tor*(C, M) = 0
for all 4 > 1. Now the conclusion follows from (4.14.5). o

Theorem 1.2 is now a special case of the next result:

Theorem 4.15. Let (R, m) be a local complete intersection, and let
M and N be finitely generated R-modules, at least one of which has
constant rank. Set r = max{czr(M), czr(N)}. Assume the following
conditions hold:

(1) Torf (M, N) = Tor¥(M,N) = - -- = Tor®_, (M, N) = 0.
(2) M is mazimal Cohen-Macaulay.
(3) M ®g N is reflexive.
(4) N is torsion-free.
Then TorE(M,N) =0 for all i > 1.

Proof. Let d = dim(R). Since either M or N has constant rank,
we may assume d > 1. We now proceed by induction on d. If d = 1,
then the result follows from Proposition 4.14. So assume d > 2. In
this case, the induction hypothesis and Proposition 4.13 implies that
Tor*(M, N) = 0 for all i > 1. O

Our motivation for Theorem 4.15 comes from the following question
of Huneke and Wiegand [22, page 473]:

Question 4.16. If (R, m) is a one-dimensional Gorenstein domain,
and M is a torsion-free R-module such that M ® g M* is torsion-free,
then is M free?

In their remarkable paper, Huneke and Wiegand [22, 3.1] proved
that over a local hypersurface, if the tensor product of two modules,
at least one of which has constant rank, is maximal Cohen-Macaulay,
then one of them must be free. Using this result, they showed that [22,
5.2] Question 4.16 has a positive answer over any domain R satisfying
(S2) (not necessarily Gorenstein and one-dimensional) provided R, is a
hypersurface for all p € X!(R). However, if the ring is not assumed to
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be a hypersurface (in codimension one), it is not known (at least to the
author) whether Question 4.16 has an affirmative answer, even over a
complete intersection domain of codimension two. Following the same
induction argument as in [22, 5.2], we will now establish a consequence
of a theorem of Avramov-Buchweitz [7, 4.2] and Huneke-Jorgensen [20,
5.9].

Proposition 4.17. Let (R,m) be a local complete intersection, and
let M be a finitely generated torsion-free R-module such that M @ g M*
is reflexive. For all ¢ € X'(R), assume one of the following holds:

(1) Tor®(M,M*), = 0 for some even i > 2 and Torf(M, M*)g =0
for some odd j > 1.

(2) My has constant rank and cxp, (My) < 1, i.e., M, has bounded
Betti numbers.

Then M is free.

Proof. We proceed by induction on d = dim (R). First assume (1). If
d = 0, then Ext% (M, M) is the Matlis dual of Tor(M, M*). So, by [T,
4.2], M has finite projective dimension, i.e., M is free. Suppose now
d = 1. Consider the exact sequence

(4.17.1) 0 — syzj (M) — F — syz;' (M) — 0

where F is a free R-module. Tensoring (4.17.1) by M* we get the exact
sequence
(4.17.2)

0 — Torj*(syzj* (M), M*) — syz;'(M) ®g M* — F @ M*.

Since Tor{z(syzf_l(M),M*) = Tor?(M, M*) = 0 and M* is torsion-
free, the depth lemma implies that depthR(sny(M) ®gr M*) > 0.
As R has dimension one, it follows that syz(M) ®r M* is torsion-
free. Since Ext}z(syzf'(M), M) has finite length, [20, 5.9] implies that
Ext}%(syzf(M), M) =0,ie., Extgl(M, M) =0. As j is odd, using |7,
4.2] one more time, we conclude that M is free.

Next assume (2). If d = 0, then the result follows by assumption.
So suppose d = 1. If cxg(M) = 1, then by [26, 1.3], cxg(M*) =
1 and Tor®(M,M*) # 0 for infinitely many i. This contradicts
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Proposition 4.14. Therefore cxg(M) = 0, and hence M is free. This
proves the proposition for the case where d < 1.

Suppose now d > 2. Then the induction hypothesis implies that M
is free on X!(R). In this case it is proved in [22, 5.2] that M is free (cf.
also the proof of [2, 3.3].) Here we include the proof for completeness.
It is known that [4, A.1] the map ap : M g M* — Hompg (M, M)
given by ap(a® f)(z) = f(z)a for all @ and z in M and f in M* is
surjective if and only if M is free. Consider the exact sequence

(4.17.3) 0 — B — M @x M* 2* Hompg (M, M) — C — 0.

Note that, since M is free on X' (R), (aar), is an isomorphism for all
q € X'(R). Therefore, since M ®p M* is torsion-free, B = 0. So, if
C # 0, localizing (4.17.3) at an associated prime ideal of C, we see that
the depth lemma gives a contradiction. Thus C' = 0 and hence M is
free. O

Considering Proposition 4.17, it seems reasonable to ask the following
weaker form of Question 4.16 for complete intersections:

Question 4.18. Let (R,m) be a one-dimensional local complete
intersection domain, and let M be a finitely generated R-module such
that M and M ®p M* are torsion-free. If Tor® (M, M*) = 0 for some
1 > 1, then is M free?

Next we include an example which shows that Proposition 4.17 does
not hold in general if the tensor product of the modules considered is
not reflexive.

Example 4.19. Let R and M be as in Example 4.5. Then
M ®gr M* is not reflexive. We show this as an application of the
Auslander’s depth formula (cf. also [2, 3.3]). Recall that R is a
three-dimensional hypersurface domain and M is a torsion-free R-
module that has projective dimension one. Consider the following exact
sequence:

(4.19.1) 0— R— RY — M —0.
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Note that M* is nonzero as M is torsion-free. Now, tensoring (4.19.1)
with M*, we see that Torf(M,M*) = 0. Thus the depth formula
holds for M and M*. Suppose now M ®pr M™* is reflexive. Since
depthr (M) = 2, the depth formula implies that M* is maximal Cohen-
Macaulay. Now let p be a prime ideal R such that dim(R,) = 2 and
M, # 0. As M, is nonzero, localizing the depth formula at p, we
conclude that M), is maximal Cohen-Macaulay. Thus M satisfies (S2),
i.e., M is reflexive. Since M* is maximal Cohen-Macaulay, so is M**,
and this gives the required contradiction.

We finish this section with two more applications of the pushforward.
Our results will slightly improve upon two of the main theorems of [21].

Suppose (R, m) is a local complete intersection of codimension ¢, and
M and N are finitely generated R-modules. If R is a regular local
ring, i.e., if ¢ = 0 and M ®g N is torsion-free, then it follows from
[28, Corollary 2] that Tor®(M, N) = 0 for all i > 1. Moreover, if R is
a hypersurface, i.e., if c = 1, and M ®g N is reflexive, then [22, 2.7]
shows that Tor®(M, N) = 0 for all i > 1, provided either M or N has
constant rank. Now, assuming ¢ > 2, we will see that vanishing of c—1
consecutive Tor® (M, N) will give a similar rigidity result (cf. also [31,

2.1(1)]).

Proposition 4.20. Let (R,m) be a local complete intersection of
codimension c, and let M and N be finitely generated R-modules, at
least one of which has constant rank. Assume the following conditions
hold:

(1) Torf(M,N) = Tor¥(M,N) = .- = Tor ; (M,N) = 0.

(2) M ®@g N is reflexive.

(3) If ¢ > 2, assume further that M and N are torsion-free.

Then TorE(M,N) =0 for all i > 1.

Proof. By [28, Corollary 2] and [22, 2.7], we may assume ¢ > 2.
Moreover, without loss of generality, we may assume N has constant
rank. Let d = dim(R). Now, if d = 0, then N is free so there is
nothing to prove. Assume d = 1. In that case the result follows from
Proposition 4.14 since both M and M ®g N are torsion-free (Recall
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that cxg(M) < c.) Hence suppose d > 2, and consider the pushforward
of M:

(4.20.1) 0— M — R™ — M, — 0.
Tensoring (4.20.1) with N and using (1), we have
(4.20.2)  Torf'(My, N) = Tor¥(M;,N) = --- = Torf(M;, N) = 0.

Moreover the induction hypothesis and Proposition 3.2 (3b) show that
M; ®@g N is torsion-free (If R, has codimension less than ¢ for a prime
ideal p of R, then we use (4.20.2) and Theorem 2.2.) As N has constant
rank, [22, 1.3] gives the following exact sequence

(4.20.3) 0—N-—RY —C-—0

where C'is torsion. It now follows from (4.20.3) that Tor®(C, M;) = 0.
Since Tor(My, N) = 0, we have that

(4.20.4)  Tor{(C, M;) = Tors'(C,M;) = --- = Tor’ | (C, M) = 0.

Now Theorem 2.2 implies that Tor*(C, M;) = 0 for all i > 1, and hence
Tor® (M, N) = 0 for all i > 1. mi

For our last result, Proposition 4.22, we need the following theorem.

Theorem 4.21 ([21]). Let (R, m) be a two-dimensional local com-
plete intersection of codimension ¢ > 1, and let M and N be finitely
generated R-modules. Assume the following conditions hold:

(1) Tor®(M,N) = Tor® (M,N) = -+ = Tor® ._,(M,N) = 0 for
some positive integer n.

(2) M and N are torsion-free.

(3) N has constant rank.

(4) M is free of constant rank on X'(R).
Then Tor®(M,N) =0 for all i > n.

Proof. On reading through the proof of [21, 2.2], we see that the
conclusion of the theorem does not change if ¢ is any positive integer
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(which is assumed to be two in the proof), provided one assumes (1)
and uses Theorem 2.3. Therefore the desired result follows from the
proof of [21, 2.2]. o

Huneke, Jorgensen and Wiegand [21, 2.4] proved that, over a local
complete intersection R of codimension two, if M and N are finitely
generated reflexive R-modules such that IV has constant rank, M is
free of constant rank on X'(R) and M ®p N satisfies (S3), then
TorR(M,N) = 0 for all i > 1. We observed in Theorem 4.21 that
if R has dimension two and codimension ¢ > 1, then such modules
M and N are crigid, even if ¢ # 2. This additional information now
enables us to prove the next proposition.

Proposition 4.22. Let (R,m) be a local complete intersection of
codimension ¢, and let M and N be finitely generated R-modules.
Assume the following conditions hold:

(1) Torf(M,N) = Tor¥(M,N) = ... = Tor ,(M,N) = 0.

(2) M ®g N satisfies (S3).

(3) M and N are reflexive.

(4) N has constant rank.

(5) M is free of constant rank on X'(R).

Then TorR(M,N) =0 for all i > 1.

Proof. The case where ¢ = 0 and ¢ = 1 follows from [28, Corollary
2] and [22, 2.7], respectively. Moreover, if ¢ = 2, then [21, 2.4] implies
that Tor®(M,N) = 0 for all i > 1. Therefore we may assume c > 3.
We have, by (1) and [21, 2.1], that

(4.22.1)  Torf(My, N) = Torl (M, N) = --- = Tor®(M,, N) = 0

where 0 — M;_, —+ G; — M; — 0 is the pushforward of Mj for
j=1,2 (My = M). We now proceed by induction on d = dim (R).
We may assume d > 2 by (5). Assume now d = 2. Note that, by
Proposition 3.1 (1) and (5), M is maximal Cohen-Macaulay and is free
of constant rank on X' (R). Therefore Theorem 4.21 and (4.22.1) imply
that Torf*(Mz, N) = 0 for all i > 1, and hence Tor*(M, N) = 0 for all
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i > 1. Suppose d > 3. Since depthgr(M ® g N) > 3, using the induction
hypothesis, we see that M; ® g N satisfies (S3), i.e., M1 ®g N is reflexive
(cf. the proof of [21, 2.1].) In this case we use Proposition 4.20 with
M;j and N to conclude that Tor*(M, N) = 0 for all i > 1. o
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ENDNOTES

1. After the submission of this paper, a more general version of
Proposition 3.7 appeared in [10].
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