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ON THE ASSOCIATED GRADED RING
OF A SEMIGROUP RING

M. D’ANNA, V. MICALE AND A. SAMMARTANO

ABSTRACT. Let (R, m) be a numerical semigroup ring. In
this paper we study the properties of its assoma.ted graded ring
G(m). In particular, we describe the H}  for G(m) (where
M is the homogeneous maximal ideal ofg ) a.nd we char-
acterize when G(m) is Buchsbaum. Furthermore we find the
length of H as a G(m)-module, when G(m) is Buchsbaum.
In the 3-generated numerical semigroup case, we describe the
H?\/t in terms of the Apery set of the numerical semigroup
associated to R. Finally, we improve two characterizations of
the Cohen-Macaulayness and Gorensteinness of G(m) given
in [2, 3], respectively.

1. Introduction. Let (R,m) be a Noetherian, one-dimensional,
local ring with |R/m| = oo, and let G(m) = &;>om’/m**! be the
associated graded ring of R with respect to m. The study of the
properties of G(m) is a classical subject in local algebra.

The concept of a Buchsbaum ring is the most important of all notions
generalizing Cohen-Macaulay rings. While the property for G(m) to
be Cohen-Macaulay has been studied extensively (see, e.g., [2, 14], or,
for the particular case of semigroup rings, [7, 11]), not much is known
about the Buchsbaumness of G(m), at least in the general case (see [8,
9]).

As for the semigroup ring case, Sapko, in [15], gives some necessary
and sufficient conditions for G(m) to be Buchsbaum, when R is associ-
ated to a 3-generated numerical semigroup; still in the 3-generated case
Shen, in [16], studies the Buchsbaumness of G(m) and gives positive
answers to the conjectures proposed in [15]. If S is a general numerical
semigroup, it is possible to find some results on the Buchsbaumness of
G(m) in [5] (where it is mainly studied the more general case of one
dimensional rings) and in [4].
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In this paper we mainly study the Buchsbaumness of G(m), when
(R, m) is the semigroup ring associated to a numerical semigroup, but,
applying our techniques, we also get some new results on its Cohen-
Macaulayness and on its Gorensteinness.

In Section 2 we give some preliminaries about numerical semigroups
and semigroup rings associated to a numerical semigroup, and we recall
some results on the Buchsbaumness of one-dimensional graded rings
proved in [5].

In Section 3 we give a description of H, := (0 :g(m) M") (where r is
the reduction number of m and where M is the homogeneous maximal
ideal of G(m) (cf. Corollary 3.5) and we use it in order to characterize
when G(m) is Buchsbaum (cf. Proposition 3.6). Successively, we
find the length of H}, as a G(m)-module when G(m) is Buchsbaum
(cf. Proposition 3.15). Finally, we relate the Buchsbaumness with a
property of the Apery set of the associated numerical semigroup (cf.
Proposition 3.19), using a partial ordering in S introduced in [3].

In Section 4, we restrict our attention to the semigroup ring asso-
ciated to a 3-generated numerical semigroup S; we use the results of
Section 3 in order to prove that, if G(m) is Buchsbaum, then we can
determine the H?\/l in terms of the Apery set of S (cf. Theorem 4.1
and Corollary 4.4). In particular, we completely solve [15, Conjec-
ture 33] and [15, Conjecture 24]. Finally, we give a new proof of a
result of Shen, which shows that G(m) is Buchsbaum if and only if it
is Cohen-Macaulay, for the 3-generated symmetric semigroup case (cf.
Corollary 4.5).

Finally, in Section 5, using the techniques introduced in Section 3,
we strengthen, for the semigroup ring case, a characterization of the
Cohen-Macaulayness of G(m) given in [2, Theorem 2.6] (cf. Proposi-
tion 5.1). Moreover, we prove that, assuming the hypotheses of M-
purity and symmetry for S, G(m) is Buchsbaum if and only if it is
Cohen-Macaulay (cf. Proposition 5.5) and we use this result to give a
characterization for G(m) to be Gorenstein, improving an analogous
result by [3] (cf. Corollary 5.6). Finally, Question 5.8, about a possi-
ble improvement of Proposition 5.5, received an affirmative answer by
Shen that we publish with his permission (cf. Proposition 5.9).

The computations made for this paper are performed by using the
GAP system [6] and, in particular, the NumericalSgps package [13].
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2. Preliminaries. We start this section recalling some well-known
facts on numerical semigroups and semigroup rings. For more details
see, e.g., [1].

A subsemigroup S of the monoid of natural numbers (N, +), such
that 0 € S, is called a numerical semigroup. Each numerical semigroup
S has a natural partial ordering <g where, for every s and ¢ in S,
s <g t if there is an v € S such that ¢ = s + u. The set {g;} of the
minimal elements in S\ {0} in this ordering is called the minimal set
of generators for S. In fact all elements of S are linear combinations
of minimal elements, with non-negative integers coefficients. Note that
the minimal set {g;} of generators is finite since, for any s € S, s # 0,
we have that g; is not congruent to g; modulo s.

A numerical semigroup generated by g1 < g2 < - -- < g, is denoted by
(91,92, - -+ ,gn)- Since the semigroup S = (g1, 92,.-- ,gn) is isomorphic
to {dg1,dgz, ... ,dg,) for any d € N\ {0}, we assume, in the sequel,
that ged (91,92,.-- ,9n) = 1. It is well known that this condition is
equivalent to [N \ S| < co. Hence there is a well defined the integer
g=9g(S)=max{x € Z |z ¢ S}, called the Frobenius number of S.

Since the Frobenius number g does not belong to S, if z € S, it is
obvious that ¢ — ¢ S. A numerical semigroup is called symmetric if
the converse holds: let = be an integer, then ¢ — z ¢ S implies that
xeSs.

A relative ideal of a semigroup S is a nonempty subset H of Z
such that H + S C H and H + s C S for some s € S. A relative
ideal of S which is contained in S is simply called an ideal of S.
The ideal M = {s € S | s # 0} is called the mazimal ideal of S.
It is straightforward to see that, if H and L are relative ideals of
S, then H+ L, kH(= H + --- + H, k summands, for £ > 1) and
H—-zL:={z2€Z:z+ L C H} are also relative ideals of S.

The rings R = k[[t%]] = K[[t9,...,t9"]] and R = k[t°],, are called the
numerical semigroup rings associated to S, where m = (#9t,...,t9).
R is a one-dimensional local domain with maximal ideal m and quotient
field Q(R) = k((t)) and Q(R) = k(t), respectively. In both cases the
associated graded ring G(m), which is the object of our investigation,
is the same. From now on, we will assume that R = k[[t°]], but the
other case is perfectly analogous.
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We will denote by v : k((t)) = Z U oo the natural valuation (with
associated (discrete) valuation ring k[[t]]), that is,

oo

v<zrhth> =i, i€Z r#0

h=i

(in the case Q(R) = k(t), we have the valuation associated to the DVR
K|[t]))- It is straightforward that v(R) = {v(r) | r € R\ {0}} = S.

The relation between R and S = v(R) is very tight, and we can
translate many properties of R to the corresponding properties of S.
In particular, if I and J are fractional ideals of R, then v(I) and v(J) are
relative ideal of S = v(R); moreover, if I and J are monomial ideals, it
is not difficult to check that v(INJ) = v(I)Nv(J), v(IJ) = v(I)+v(J)
and v(I :qr) J) = v(I) —z v(J). Furthermore, if J C I, then
Ar(I/J) = |v(I)\ v(J)|, where Ag(-) is the length as R-module.

Following the notation in [2], we denote by Ap, (S) = {wo, ..., wg, 1}
the Apery set of S with respect of g1, that is, the set of the smallest
elements in S in each congruence class modulo g;. More precisely,
wo =0 and w; = min{s € S | s =4 (mod g1)}. It is clear that the
largest element in the Apery set is always g + g1. Moreover, if S is
symmetric, then, for every index j, there exists an index i such that
wj +w; = g+ g1; hence, in the symmetric case, g + g; is the maximum
of the Apery set with respect to <g. Furthermore, it is easy to see
that, if wy, +wy = g+ g1, then wy +wy = g+ g1-

By [1, formula 1.2.4] we have that the blow up of S is the numerical
semigroup S’ = U;(iM —z iM) = (91,92 — 91,--- ,gn — g1). Note that
the set of the generators {g1,92 — g1,--- , gn — g1} is not necessarily the
minimal one for S’; moreover, g; might not be the smallest nonzero
element in S’.

In [2] are defined two families of invariants of S, that give information
on the Cohen-Macaulayness of G(m). Let Ap, (S) = {wp, ... ,wg, 1}
For each ¢ = 0,1,...,91 — 1, let a; be the only integer such that
w4+ a;g1 = w;, and let b; = max{l | w; € IM}. Clearly by = ap = 0.
Furthermore, 1 < b; < a; [2, Lemma 2.4]. The following result is
proved in a more general setting, but we give the statement we will
need in the sequel, that is for numerical semigroup rings; notice that
under these hypotheses it could be deduced by Remark 2.4.
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Theorem 2.1 [2, Theorem 2.6]. If R is a semigroup ring, then
G(m) is Cohen-Macaulay (briefly, C-M) if and only if a; = b;, for
everyi=0,...,g91 — L.

A one-dimensional graded ring T' with homogeneous maximal ideal
M is called Buchsbaum if M - H}, =0 (cf. [17, Corollary 1.1]). Since
HS, = (Up>1(0 :7 M¥)), the previous definition is equivalent to

M - (Ug>1(0 o1 Mk)) =0.

Let R be a Noetherian, one-dimensional, local ring with maximal
ideal m such that |R/m| = co and m contains a non-zerodivisor, and
let r be the reduction number of m, that is the minimal natural number
such that m"*! = zm", with z a superficial element of R (recall that
such a number r exists by [12, Theorem 1, Section 2]). Then we have
the following characterization.

Proposition 2.2 [5, Corollary 2.3]. G(m) is Buchsbaum if and only
if (0:Gm) M) = (0 :G(m) M").

It is also possible to give the graded description of (0 'G(m) M") as
follows (cf. [5, Formula (2.3)]):

5 (mh+r+1 ‘R mr) N m"

mh+1

(2.1) (0 :g(m) M") =

Furthermore, if we denote by R’ the blow-up of R, that is, in our
setting, R’ = U;(m’ :qg(g) m') = R[m/z] (see, e.g., [10]), we have that
v(R') = 5" and in [5, Proposition 2.5] it is proved that:

T2 htlpt h
. "R ' Nm
(2:2) (0:60m M) =B —

h=1

Remark 2.3. Since the valuation of any superficial element is v(z) =
g1, we can translate as follows the previous formula at the numerical
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semigroup level: let G(m) not be C-M, and let s € hM \ (h + 1)M;
then

*c(0:gm M) <= s—(h+1)g1€85"

Remark 2.4. Notice that a; > b; if and only if i € (0 :g(m) M").
Indeed, if a; > b;, by definition, we have w; = w} +a;g1 = w}+ (a; —b; —
g1+ (bi+1)g1 € b; M\ (b;+1)M. Setting a = w!+(a; —b;—1)g, € S,
we get o+ (b; +1)g1 = w;. Hence, t%i € (0 :g(m) M"), by Remark 2.3.
Conversely, if a; = b;, w; — (bi + 1)g1 =w; —a;91 —g1 = w, —g1 ¢ S';
again by Remark 2.3, we get t¢ ¢ (0 :g(m) M").

3. Buchsbaumness in the general case. As in the preliminaries,
(R,m) is the numerical semigroup ring associated to a n-generated
numerical semigroup S, G(m) is its associated graded ring, M is the
homogeneous maximal ideal of G(m), M is the maximal ideal of S and
r is the reduction number of m.

For each i such that a; > b;, let I; = max{l | twi+l91 € (0 :g(m) M")}.

Remark 3.1. We note that [; is well defined because from formula
2.2) we have that t*i+l91 ¢ (0 :g(m) M"), whenever t*i+91 ¢ m"—1,
(m)

By [5, Proposition 3.5], if a; > b;, then 7 > b; + 2.

Remark 3.2. We note that [; < r — 2 — b;. Indeed, w; € b;M; hence,
wi + ;g1 € (b; + ;)M and b; +1; < r — 2 by formula (2.2).

Lemma 3.3. Let i and l; be as above. Then t*i+191 € (0 :g(m) M")
for everyl =0,...,1;.

Proof. By hypothesis t¥itlig1 € (0 :gm) M"); therefore, by Re-
mark 2.3, if w; + ;g1 € hM\ (h + l)M then w; +l;91 — (h—‘r 1)91 e s
Let | = I; — 1, and let us suppose w; +lgy € nM \ (n + 1)M. If
twitlan ¢ (0 :gm) M) then w; +1g1 — (n + 1)g1 ¢ §'; it follows
that w} > w; +1g1 — (n + 1)g1. Since n < h and I = [; — 1, we get
wi+ligt — (h+1)g1 = w; +1lg1 —hgt Cwi+1lgr — (n+ g1 < wi.
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Hence w; + l;g1 — (h+ 1)g1 ¢ S’, a contradiction. Using a decreasing
induction we get the thesis. ]

Lemma 3.4. The only monomials in (0 :gm) M") are of the form
twitlgr ith i such that a; > b;.

Proof. Let t° € (0 :g(m) M"). Then ¢ € ((t9*)"*' R’ nm")/m"*1,
with h such that ¢ € m" \ m"*!. In particular ¢ € S; hence,
¢ = w; + lg1, for some index 1.

Let us show that the case a; = b; is not possible. Since twitlor ¢
(0 :¢(m) M"), by Remark 2.3 it follows that w; +1g1 = a+ (h+1)g1 €
hM \ (h + 1)M with a = w} + ug; € S', p > 0, that is, w; + g1 =
wi+ (w+h+1)g1 € kM \ (h+ 1)M. In particular, it is in S and
this implies g + h + 1 > a; = b;. Furthermore, w} + (x + h+ 1)g1 =
wi+bigi+ (p+h+1—0b)g1 € (biM+ (u+h+1—b)M)\ (h+1)M =
(u+h+1)M\ (h+1)M and we get p+h+1 < h+1. Absurd. o

Corollary 3.5. Let G(m) not be C-M. Then
(0 :ggemy M") = <t“i+191 la; >bi, 1=0,... ,li>k.
Proof. 1t follows by Lemmas 3.3 and 3.4. O

Furthermore, by the previous corollary and by Proposition 2.2, we
get the following characterization.

Proposition 3.6. G(m) is Buchsbaum if and only if twitien €
(0 :g(m) M), for every i such that a; > b; and for every 1 =0,... ,1;.

The following proposition gives a bound for I; when G(m) is Buchs-
baum.

Proposition 3.7. Let G(m) be Buchsbaum and i be such that
a; > b;. Thenl; < a; —b;.

Proof. By the definitions of a; and b; we have that w; = w] +
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—1)g1 € §'. By hypothesis (0 :g(m) M) = (0 :gm) M"); hence,
wi +1lig1 € kM \ (h+ 1)M with h > b; + 2l;. By definition of [;
and by Remark 2.3, we have that w; + ;g1 — (h + 1)g1 € S’; hence,
wi +1ig1 — (h+1)g1 > wi = w; —a;g1, that is, [;g1 — (h+1)g1 > —a;g:.
Finally, l;g1 +a;g1 > (h+1)g1 > (b; +2l; + 1)g1 implies I; < a; — b;. O

If a; — b; = 1, for every i such that a; > b;, then we can improve
Proposition 3.6.

Proposition 3.8. Ifa; — b; =1 for every i such that a; > b;, then

G(m) is Buchsbaum if and only if t*¢ € (0 :g(m) M)

for every such indez i.

Proof. By Proposition 3.6, we need only to prove the sufficient
condition. By hypothesis and by definition of b; and a;, we have that
w; + 91 € hM\(h+1)M with A > b; + 2 andwi—i—gl—(h—i—l)gl =
w; —hgy ¢ S'. Hence t*i+91 ¢ (0 :g(m) M") by Remark 2.3 and, by
Lemma 3.3, we get t“i+l91 ¢ (0 :g(m) M") for every I > 1. Finally, by
Proposition 3.7 we get the thesis. m]

Remark 3.9. We note that the last proposition does not hold if there
exists an ¢ such that a; — b; > 2. Indeed, let S = (12,19,29,104). The
reduction number of S is 7 = 8. The only index for which a; > b;
is ¢ = 8 with ag = 4 and bg = 1; moreover, wg = g4 = 104. Since
wg + g; € 3M for each g; = 12,19,29,104, then t*s € (0 :g(m) M).
Anyway G(m) is not Buchsbaum. Indeed t“s*9:1 ¢ (0 :g(m) M) as
ws + g1 = 116 € 4M \ 5M and 116 4+ g; = 128 € 5M. On the other
hand t“s+91 € (0 :g(m) M®) as 116 + (8M \ 9M) C 13M.

Example 3.10. Let R be the semigroup ring associated to the
numerical semigroup S = (17,18,21,28,29,32,33). We use Proposi-
tion 3.8 in order to show that G(m) is Buchsbaum. The only indices
1 such that a; > b; are ¢ = 7,10 and in both cases we have that
a; = 3 > 2 = b;. We need to check that wy + g; = 58 + g; €
(by +2)M = 4M and wig + g; = 61+ g; € (bio + 2)M = 4M, for
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each g; = 17,18, 21, 28,29, 32, 33. Since 4M = {68, —}, this is clearly
true and G(m) is Buchsbaum.

Our next goal is to relate the Buchsbaumness of G(m) to the length
A = A(HY,) of the G(m)-module HY; = (0 :g(m) M") (see the next
Proposition 3.15).

Lemma 3.11. We have A = 1 if and only if (0 :g(m) M") = G(m)z,
with x € (0 :g(m) M)-

Proof. Let A = 1. Clearly N := (0 :g(m) M") must be principal as a
G(m)-module. If 2 ¢ (0 :g(m) M), then (0) C MN. Moreover, by the
graded version of Nakayama’s Lemma, MN C N. A contradiction to
A=1.

Conversely, let N := (0 :g(m) M") = G(m)z, with z € (0 :g(m) M),
and let us suppose (0) C H C N, with H submodule of N. Then, every
h € H, h #0, is of the form h = gz with g € G('m). Since h # 0, we
have that g ¢ M. Then g =To + 7 € R/m & M with 2y # 0. Finally
h =gz = (To +7)x = Tox + Yz = Toz and, since Ty is a unit in G(m),
we get © € H. By the choice of z, we get NV C H; a contradiction. O

Corollary 3.12. If A < 1, then G(m) is Buchsbaum.

Proof. If A = 0, then (0 :gm) M") = (0), that is, G(m) is C-
M. If X = 1, then, by Lemma 3.11, (0 :gm) M") = G(m)z, with
z € (0 :g(m) M). This implies (0 :g(m) M") € (0 :gm) M). o

Remark 3.13. We note that the converse of Corollary 3.12 does
not hold in general. Indeed, let R be as in the Example 3.10. We
showed that G(m) is Buchsbaum. Moreover, by Corollary 3.5 and
Proposition 3.7, we have that (0 :g(m) M") = (t58,%!) G(m),r; hence,
(0) S Gm)E G (0 :m) M").

It is possible to relate A with the /;’s when G(m) is Buchsbaum.
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Lemma 3.14. Let G(m) be Buchsbaum. Leti,j be such that a; > b;
and a;j > b;; then t*itlor € G(m)t¥s if and only if i = j and I = 0.

Proof. If twitlor € G(m)t¥7, then twitlor = 7t@i. Since t%i € (0 :g(m)
M) and twitlor £ 0, then u ¢ M and ¥ = u + m with u € k; hence

twitloy = 73t@; = wyt“i. The last equality is equivalent to the fact
that ¢«itl9r yt“i € mb \ mb+1 and twit!9r — yt¥i € mbi+1, that is,
w; + lg1 = wj, but this is true only for { = 0 and 7 = j. o

The next proposition immediately follows by Corollary 3.5 and
Lemma 3.14.

Proposition 3.15. If G(m) is Buchsbaum, then A = ., (l; + 1)
with I = {Z | a; > bz}

Corollary 3.16. If G(m) is Buchsbaum, then X < >, (a; — b;)
with I = {i | a; > b;}. Moreover, if a; = b; + 1 for every i € I, then
A=

Proof. Tt follows by Propositions 3.7, 3.8 and 3.15. O

Our next aim is to study for which elements w; of the Apery set of S
it is possible to have a; > b;; we get a necessary condition, in the case
G(m) is Buchsbaum.

Let s € S, and define ord (s) := h if s € hM \ (h+1)M. In particular
we have ord (w;) = b;. We now introduce a partial ordering on S as in
[3]: given u,u’ € S, we say that u <p; v if u+ s =’ (hence u <g )
and ord (u) + ord (s) = ord (u') for some s € S.

Remark 3.17. The set of maximal elements of Ap, (S) with this
partial ordering is denoted with max Ap,,(S). We note that the set of
maximal elements in Ap,, (S) with the usual ordering <g is contained
in max Ap,,(S) and the inclusion can be strict. For example, let
S = (8,9,15). The only maximal element in Ap, (S) with respect
to <g is 45. Anyway max Ap,,(S) = {30,45}. Note that ord (45) =
5> 3 = ord (30) + ord (15).
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We say that w; and w; are comparable if w; <p; w; or vice versa.

Remark 3.18. Let G(m) be Buchsbaum. If a; > b; and a; > b;, then
w; and w; are not comparable. Indeed, if there exists an s € S\ {0}
such that w; = w; + s € S and b; + ord (s) = b;, then t*i ¢ (0 :g(m)
M) = (0 :g(m) M"). A contradiction to Remark 2.4.

Proposition 3.19. Let G(m) be Buchsbaum. Then a; > b; implies
w; € max Ap,,(5).

Proof. If w; ¢ max Ap,;(.S), then there exists w; such that w; < wj,
that is, there exists an element s € S\ {0} such that w; = w; + s and
bj = b; 4 ord (s). By hypothesis # € (0 :g(m) M); hence, t¥¢ - * = 0;
this implies w; = w; +s € (b; +ord (s) +1)M = (b; +1)M. Absurd. O

Remark 3.20. We note that the converse of the last proposition does
not hold in general. Indeed, let R be the semigroup ring associated to
S =(12,19,29,104). In this case the unique index i such that a; > b;
is i = 8 and wg = 104 € max Ap;,;(S); but G(m) is not Buchsbaum as
shown in Remark 3.9.

We end this section with a general remark that will be useful for the
next sections.

Remark 3.21. Let a; = b;, and let w; = asgs + -+ + ang, with
ZZ:2 ar = b;. By definition of a; and by the equality a; = b;, we have
that aa(g2 — g1) + -+ + an(gn — g1) = W € Ap,, (')

On the other hand, let a; > b; and w; = asgs + - -+ + ang, with
> k=2 @k = b;. In this case, az(g2 —g1) +- -+ an(gn — 1) ¢ Apg, (5).
Indeed, asgs + -+ + angn — (X4 k)91 = Q292+ - + Angn — big1 >
@202+ +Ongn gy = w;, hence az(g2—g1)+- - +an(gn—g1)—g1 €
S’

4. The 3-generated case. In this section we will apply and deepen
our results, when the semigroup S is 3-generated. As a by-product, we
will give a positive answer to two conjectures raised by Sapko in [15].
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These two conjectures are also proved by Shen in [16] using completely
different methods.

Let us fix our notation for this section: S = (g1,92,93), with
g1 < g2 < g3; the elements in Ap,, (S) are of the form w; = hga + kg3
(with &, k € N).

With the symbol x = y we will always mean that x is congruent y
modulo g;; moreover, <y (respectively z>y) will always mean that
z = y and that < y (respectively > y). Finally x <4y (respectively
z>y) will mean that z = y and that <y (respectively z > y).

If an element w; has more than one representation as a combination
of g2 and g3, then the representation hgs + kg3, where h is maximum,
has the property that h + k = b; (this is not true if S has more than 3
generators).

We are ready to prove the main result of this section.

Theorem 4.1. Assume that S is a 3 generated numerical semigroup,
and assume that G(m) is Buchsbaum. If w; = hga + kgs is an element
of Ap,, (S) such that a; > b;, then h = 0.

In particular, there is at most one element w; € Ap,, (S) such that
a; > b;.

Proof. Since G(m) is Buchsbaum, by Proposition 3.19 we have that,
if a; > b;, then w; = hgs + kg3 € max Ap,,;(5), for any representation
of w; as a combination of g» and g3. In particular, we consider the
representation with A maximum, that is, h + k = b;. If we prove that
h = 0, then we get the first part of the theorem.

Assume, by contradiction, that A > 0, hence (h — 1)g2 + kg3 = w; €
Apgl(S). We note that w; <ps w; as w; = w;j+g» and b; = b;+1 (clearly
b; > bj+1 and, if b; > bj+1, then h+k > bj+1 > (h—1)+k+1 = h+k).

Since w; ¢ max Ap,,(S) and G(m) is Buchsbaum, we have a; = b;
again by Proposition 3.19. By Remark 3.21 we have

wi = (h—1)(g2 — 91) + k(g3 — g1).-

By the same remark we also get w} <h(gz2 — ¢1) + k(93 — g1); recalling
that w; € Ap,, (S') and S" = (g1,92 — 91,93 — g1), We obtain w] =
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z(g2 — g1) + y(gs — g1), for some nonnegative integers = and y. We
collect this observation in the following formula

(4.1) w; = (g2 — g1) + y(gs — g1) <h(g2 — 1) + k(g3 — 91)

Moreover, by definition of a; we obtain:
xgs +ygs — (¢ +y)g1 + aig1 = w;i € Ap,, (S);

it follows immediately that  +y > a;. Hence, since a; > b; = h + k,
wegetz+y>h+k.

Now, if x < h, then y > k and it would follow that w] = z(g2 —g1) +
y(gs —g1) > h(g2 — g1) + k(g3 — g1), in contradiction to (4.1). Thus
x > h(> 0) and, in particular, z > 0.

It follows that (x —1)(g2 — g1) +y(g3 — g1) € S’. But, again by (4.1),

(x—1)(g2 —g1) +y(gs — g1) a(h —1)(g2 — g1) + k(g3 — g1) = ;. But
this is a contradiction, since wj; € Apg, (S').

Hence h = 0 and we have proved the first part of the theorem.

Let us prove the last assertion. By the first part, we have that
the only elements w; for which it is possible to have a; > b; are of
the form jgs with ord (jgs) = j and the set of this kind of elements
is {0,9s3,...,kgs}, for some k > 0. Since this set is a subchain of
(Ap(S), <m), there is at most one maximal element. The thesis follows
by Proposition 3.19. O

Remark 4.2. The integer k defined in the last part of the previous
proof can be also defined in terms of the Apery set of S in the following
way:

k = min{j | g2 divides (j + 1)g3 or (j +1)g93 — g1 € S}.

As a consequence of the previous theorem we obtain a positive answer
to two conjectures stated in [15] that we collect in the following
statement.

Proposition 4.3. Let S be a 3-generated numerical semigroup. Then
the following conditions are equivalent:
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(i) G(m) is Buschsabum not C-M;

(ii) (0 :gm) M") = G(m)tkss for some k > 1, with tk9s € (0 ‘G (m)
M);

(iii) A = 1.

Proof. The implication (ii) = (iii) is obvious by Lemma 3.11 and the
implication (iii) = (i) is straightforward by Proposition 3.12. Let us
prove the implication (i) = (ii).

By Theorem 4.1, we know that there exists a unique w; such that
a; > b; and it is w; = kgs, with £k = min{j | go divides (j+1)gs or (j+
1)gs — g1 € S}. Hence w; = kgs is the only element in the Apery set of
S such that i € (0 :gm) M) = (0 :g(m) M").

By Corollary 3.6 and Lemma 3.14, we need to prove that twitio ¢
(0 :g(m) M), for every I > 1. By Lemma 3.3, it is enough to prove it
for I = 1.

We note that, by definition of k, if (k+1)g3 € Ap(S), then g, divides
(k + 1)g3; hence kgs + g3 = qga2, with ¢ > k + 1. Moreover, since
tkos € (0 :g(m) M) and since kgs € Ap(S), then kgs + g1 = ags + Bgs,
with ord (kgs + g1) = a+ 8 > k+1 (and 8 < k). This implies that

g3—91 = (g—a)g2—Bgs, ie., (B+1)gs = (—a)g2+g1, with +1 < k.
Contradiction against the assumption (k + 1)gs € Ap(S).

Hence we can assume (k+1)gs ¢ Ap(S) and so there exists an integer
q > 0, such that kg3 + gg» is maximal in the Apery set of S. Now, if
kgs+qgs = ugs+vge with v > g, then (k—u)gs = (v—¢)g2 and thisis a
contradiction against the definition of k. Hence ord (kg; + qg2) = k+¢
and necessarily ¢ = 0 (if not kgs ¢ max Ap,,(9)).

In order to show that t“it91 ¢ (0 :g(m) M), it is enough to prove
that kgs + 291 ¢ (a+ B8 + 2)M where, as above, kgs + g1 = aga + 893
and ord (kgs + g1) =a+ 8 > k+1 (with 8 < k, a > 0).

If kgs+291 = agy+bga+cgs with ord (kgs+2g1) = a+b+c > a+5+2,
then, by definition of k and by kgs € Ap(S), we have a < 2. The case
a = 1 is not possible, as we would have kgs + g1 = bgs + cg3 with
b+c > a+ B = ord(kgs + g1). Absurd. Hence a = 0. If ¢ > k,
then 2g; > bgs and so b = 1; but this is not possible since the case
¢ = k would give us 2g; = g2, and the case ¢ > k would give us
2g1 = g2+ (¢ — k)g3. Hence ¢ < k (and b > 1).
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Since a; > b; = k, we have that kg3 — kg1 ¢ Ap(S’); hence
Kgs — 91)52(92 — 1) + y(gs — 91) € Ap(§'), for some integers = and
y. Iffy > 0, then (kK —y)(g5 —g1)>x(92 — g1) € S’ and this is not
possible since (k —y)(gs — g1) € Ap(S’), by Remark 3.21. Hence y =0
and k(g3 — g1)>x(g2 — g1) € Ap(S’) and so there exists a z > 0 such
that k(g3 — g1) = z(g92 — g1) + 291, that is, ags + Bgs = kgs + g1 =
zg2 — (v —k—z—1)g1. Hence xgs = kg3 + pg1 = aga +Bgs + (p— 1)g1
with 1 > 0 and Bgs + (1 — 1)g1 = (& — @)gz. Now (z — a)gz € Ap(S),
since (z —1)g2 € Ap(S); the last assertion follows by Remark 3.21 and
by Theorem 4.1: the map

¢ : Ap(S) \ {kgs} — Ap(S') \ {z(g2 — 91)}

defined by ¢(vg2 + dg3) = v(g2 — g1) + 6(g3 — g1) is bijective. Since
z(g2—g1) € Ap(S’'), also (x—1)(g2—g1) € Ap(S’); the bijection implies
that (z — 1)g2 € Ap(S5).

By Bgs + (0 — 1)1 = (z — a)g2 € Ap(S), we have that p = 1;
moreover, since § < k, we get x = a and 5 = 0.

Hence kgs + g1 = ags with a > k + 1, and kgs + 291 = bga + cgs
with b+ ¢ > a+2,c¢ <k and b > 1; hence g, = (b — a)ge + cgs, so,
necessarily, ¢ # 0 and b < «. But this implies ¢g; + (a — b)g2 = cg3 and
this is absurd by definition of k£ and by ¢ < k. O

By the proof of the previous proposition, it is straightforward that
the integer k of the statement (point (ii)) is the same integer defined
in Remark 4.2; hence, it is determined in terms of the Apery set of S:

Corollary 4.4. Let S be a 3-generated numerical semigroup. If
G(m) is Buchsbaum not C-M, then (0 :gm) M") = G(m)t*9:, where
the integer k is determined as follows:

k = min{j | g2 divides (j +1)gs or (j+1)gs — g1 € S}.
Using Theorem 4.1 we can also prove, in the case of 3 generators, that,

if R is Gorenstein, then G(m) is C-M if and only if it is Buchsbaum.
This fact is also proved in [16] using different methods.
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Corollary 4.5. Let S be a 3-generated symmetric numerical semi-
group. If G(m) is Buchsbaum, then it is C-M.

Proof. By the proof of Theorem 4.1 (and since G(m) is Buchsbaum),
it is possible to have a; > b; only for w; = kgs, with k& = min{j |
g2 does not divide (j + 1)g3 or (7 + 1)gs — g1 € S} (we underline that
b; = ord (kgs) = k). So, by Theorem 2.1, we only need to show that
a; = b,

Since S is symmetric, there exists a unique maximal element g +
g1 in the Apery set of S (with the partial ordering <g as in the
Preliminaries). Assume that kgs + g3 ¢ Ap(S); it follows that g+ g1 =
q92 + kgs. Moreover, this representation is unique as, if qgo + kgs =
ugs + vgs, then u > ¢ and v < k (if not v > k and ugs + vgs ¢ Ap(S5)),
and we get (k — v)gs = (u — q)g2 that implies ord (kgs) > k. The
uniqueness of the representation implies that ord (¢g2 +kgs) = ¢+ k. It
follows that kgs <psr gg2+kgs and so kg3 ¢ max Ap,,;(S), unless ¢ = 0.
But g2 € Ap(S) and g2 <g g + g1, hence, if ¢ = 0, then ord (kg3) > k.
Hence q # 0, kg3 ¢ max Ap,,(S) and, by Proposition 3.19, a; = b;.

Assume, now, that kgs+gs € Ap(S). By definition of &, it follows that
(¥)kgs + g3 = ugz. Let us suppose that ord |(w; +g1) > b; +1=k+1,
that is, kgs + g1 = ag1 + bgs + cg3, with a + b+ ¢ > k + 1. Since
w; € Ap(S), we get a < 1 and ¢ < k. The case a = 1 is not possible
as ord (kgs) = k; hence, a = 0, that is, (xx)kgs + g1 = bg2 + cgs (with
b+c>k+1). By (x) and () it follows that g5 — g1 = (u—b)g2 — cgs,
ie, (c+1)gs = (u—b)ga + g1. Since ¢ < k, this is a contradiction
against the definition of k; therefore, ord (w; + ¢g1) = b; + 1 =k + 1.
Thus ¢ ¢ (0 :g(m) M) = (0 :g(m) M") and, by Remark 2.4, a; = b;. O

5. Cohen-Macaulayness and Gorensteinness in the general
case. In [2, Theorem 2.6] the authors proved, in particular, that G(m)
is C-M if and only if a; = b; for every i =0, ... ,91—1. As a consequence
of this, there is an algorithm to check whether G(m) is C-M or not:

1) compute hM for h=1,...,r,

2) find Ap,, (S) and Ap,, (5'),

3) determine a; and b; for i =0,... ,g; — 1
)

4) compare a; and b;. If an i exists such that a; > b;, then G(m) is
not C-M. If not, it is C-M.
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In the next proposition we improve the characterization and the algo-
rithm above, showing that in 3) it is sufficient to determine a; and b;,
just for those ¢ such that w; € max Ap,,(5).

Proposition 5.1. G(m) is C-M if and only if a; = b;, for those i
such that w; € max Ap,(S).

Proof. By Theorem 2.1, we have only to prove the sufficient condition.
Assume that a; = b;, for those i such that w; € max Ap,,(S), and
let w;j = asga + -+ + angn ¢ maxAp,,(S). Then there exists
w; = Baga ++++ + Bngn € max Apy,(S), with Y7, Bx = b; = a;, such
that wj + 7292 + - -+ + Nngn = w; and bj + ord (n2g2 + - -+ + NPugn) = b;.

By Remark 3.21, if a; > b;, az(g2—g1)+- - +an(gn—g1) ¢ Ap,, (5');
on the other hand, a; = b; implies that B2(g2 —g1)+ -+ Bn(gn —g1) =
wi € Ap,, (S').

Einally, by ZZZQ (:l)ék +Mk) gk = ZZ:z gkgk and ZZ:z Ok +nZZ:2 Nk =
D heo Bry we get D0 o a(gr —91) + 2o Me(ge —91) = Dy Br(gr —
g1) = w; € Ap,, (§'). Contradiction. O

Example 5.2. Let S = (10,13,14). Then G(m) is C-M as
max Ap,,(S) = {ws = 55,wg = 39} and a5 = b5 = 4 and ag = by = 3.

Remark 5.3. Proposition 5.1 does not hold in general if we only
consider the maximal elements in the Apery set of S with respect to
<g. Let R be the semigroup ring associated to S = (7,8,9,19). The
maximal elements in the Apery set of S are {w3 = 17,ws = 27} and
a3 = by = 2 and ag = bg = 3. Anyway G(m) is not C-M as w5 = 19
and a5 =2 > 1 = bs.

In Corollary 4.5, we showed that in the 3-generated case, if R is
Gorenstein, then the properties for G(m) to be C-M and Buchsbaum
are equivalent.

Remark 5.4. We note that in the n-generated case, Corollary 4.5
is not true. Let us consider the symmetric numerical semigroup
S = (8,9,12,13,19). The only index ¢ for which a; > b; is i = 3
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(in particular G(m) is not C-M); more precisely we have az = 2, b3 =1
and w3 = 19. Since t1% € (0 :g(m) M), then G(m) is Buchsbaum by
Proposition 3.8.

Anyway, if we force the elements of max Ap,,(S) to have all the same
order, then Corollary 4.5 is true in the n-generated case. A numerical
semigroup S is called M-pure if every element in max Ap,,(5) has the
same order (cf. [3]). In this case it is clear that max Ap,,;(S) coincides
with the set of the maximal elements of Ap(S) with respect to <g.

Proposition 5.5. Let S be a M-pure symmetric numerical semi-
group. If G(m) is Buchsbaum, then it is C-M.

Proof. Let Ap(S) = {wo,... ,wg—1} = {0 < v1 < -+ < g1 =
g+ 91} (where < is the natural ordering in IN). Since S is M-pure and
symmetric, we get max Ap,;(S) = {vg, —1}. Since G(m) is Buchsbaum,
it is possible to have a; > b; only for w; = vg, _1. So, by Theorem 2.1,
we only need to show that a; = b;.

Let us consider w}. If it is a minimal generator of S’ (different from
g1, because w] € Ap(S’)), then w} = g; — g1, for some generator g; of S
(t # 1); hence w; = ¢; and this implies a; =1 = b;.

On the other hand, if w] is not a minimal generator of S’, it can be
written as a sum of two elements of S, that are necessarily elements
of Ap(S’). Hence we have an equality w; = w} + wj,, for some j, h # i.
It follows that w; = g + g1 = w; + wp and by the symmetry of S we
immediately get w; = g + g1 = w; + wy,. It follows that

Wi+ aig1 = wi = wj +wh = W +wp, + (a; +an)g
= wj + wp, + (b +b)gr = wj + (b; + ba)g1.

Hence a; = b; + by, < b; < a; and so a; = b;. m]

As an immediate corollary of the last proposition we can improve [3,
Corollary 3.20] in which the author proved that:

G(m) is Gorenstein <= S is symmetric, M-pure and G(m) is C-M.
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Corollary 5.6. G(m) is Gorenstein if and only if S is symmetric,
M-pure and G(m) is Buchsbaum.

Let J be a parameter ideal of a Noetherian local ring (R, m); the
index of nilpotency of m with respect to J is defined to be the integer
sy(m) = min{n | m"*! C J}.

If J = (t9*), then J is a reduction of m, s;(m) = max{ord (w;) | w; €
Ap(S)} and s;(m) < r, where r is the reduction number of R (see,
e.g., [3]). In [3, Theorem 3,14], it is also proven that, with this choice
of J,

if S is M-pure, then G(m) is C-M <= s;(m) = r.

Hence, combining the previous results we immediately get

S is M-pure, symmetric and s;(m) =r

<= S is M-pure, symmetric and G(m) is Buchsbaum.

It is natural to ask if, in the previous equivalence, one can skip one or
both the condition S symmetric and S M-pure.

It is easy to see that the condition G(m) Buchsbaum does not imply
sy(m) = r: if S = (4,5,11) then G(m) is Buchsbaum (since r = 3;
cf. [9, Proposition 7.7]), but sy;(m) = 2 < r. Also the implication
sy(m) = r = G(m) Buchsbaum is false: if S = (9,10, 11,23), s;(m) =
r = 4, but G(m) is not Buchsbaum, as follows by Proposition 3.19,
since 2 = a5 > by = 1 and ws = 23 ¢ max Ap,,(S).

Since S = (9,10,11,23) is a symmetric numerical semigroup, the
same example shows that

S symmetric and sy(m) = r # S symmetric and G(m) Buchsbaum.
As for the converse, we do not have counterexamples nor evidence that

it should be false.

Question 5.7. Let (R,m) be a numerical semigroup ring with
associated semigroup S. Assume that S is symmetric and G(m) is
Buchsbaum; is it true that sj(m) =r?

Finally, by [3, Theorem 3.14] we know that, if S is M-pure, s;(m) =r
is equivalent to G(m) C-M; hence, if S is M-pure and s;(m) = r,
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then G(m) is Buchsbaum; conversely, if S is M-pure and G(m) is
Buchsbaum, we get that s;(m) = r if and only if G(m) is C-M. We
do not have any example of an M-pure numerical semigroup such that
G(m) is Buchsbaum not C-M.

Question 5.8. Let (R,m) be a numerical semigroup ring with
associated semigroup S. Assume that S is M-pure and G(m) is
Buchsbaum; is it true that G(m) is C-M?

After the paper was accepted for publication, we received from Y.H.
Shen the following affirmative answer to Question 5.8, that we publish
with his permission.

Proposition 5.9 (Shen). Let (R,m) be a numerical semigroup ring
with M -pure associated semigroup S. If G(m) is Buchsbaum, then
sy(m) =r.

Proof. Since S is M-pure, for every w; € max App(S), we have
ord (w;) = sy(m) < 7. For simplicity of notation let us denote
sy(m) = s. If s < r, then m*™! # t9'm?*. Indeed, we will have
(t91) D m**! D t9'm°. Hence, there exists a monomial z € m**t?
so that © = (t9%)y, but y ¢ m*. Thus, £”'F = 0 € G(m) and, since
(t9) Dm" (by r > s), y € HYy = (0 :g(m) M").

Now, by Lemma, 3.4, y = t“:t!91 for some i, such that a; > b;, and
some [, with 0 <! < [;. Meanwhile, G(m) is Buchsbaum; hence, by
Proposition 3.19, for this index i we have w; € max Apys(S); moreover,
by M-purity we get ord (w;) = s. But then ord (w;) +1 < ord (y) < s,
a contradiction. Thus we have s = r, as expected. ]

We can collect the previous results and discussion in the following
corollary.

Corollary 5.10. Let (R,m) be a numerical semigroup ring with
M -pure associated semigroup S. Then the following conditions are
equivalent:

(i) G(m) is Buchsbaum;
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(ii) G(m) is C-M;
(iii) sy(m) =r.
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