JOURNAL OF COMMUTATIVE ALGEBRA
Volume 2, Number 4, Winter 2010

THREE-DIMENSIONAL MANIFOLDS, SKEW-
GORENSTEIN RINGS AND THEIR COHOMOLOGY

JAN-ERIK ROOS
Dedicated to Ralf Froberg and Clas Lofwall at their 65th birthdays.

ABSTRACT. Graded skew-commutative rings occur often
in practice. Here are two examples: 1) The cohomology ring
of a compact three-dimensional manifold. 2) The cohomology
ring of the complement of a hyperplane arrangement (the
Orlik-Solomon algebra). We present some applications of the
homological theory of these graded skew-commutative rings.
In particular, we find compact oriented 3-manifolds without
boundary for which the Hilbert series of the Yoneda Ext-
algebra of the cohomology ring of the fundamental group is an
explicit transcendental function. This is only possible for large
first Betti numbers of the 3-manifold (bigger than, or maybe
equal to, 11). We give also examples of 3-manifolds where the
Ext-algebra of the cohomology ring of the fundamental group
is not finitely generated.

0. Introduction. Let X be an oriented compact 3-dimensional
manifold without boundary. The cohomology ring H = H*(X, Q) is

a graded skew-commutative ring whose augmentation ideal H satisfies
H' = 0. The triple (cup) product z Uy U z = u(z,y,z).e, where e
is the orientation generator of H®, defines a skew-symmetric trilinear
form on H' with values in Q, i.e. a trivector, and conversely, accord-
ing to a theorem of Sullivan [36] any such form comes in this way
from a 3-manifold X (not unique) whose cohomology algebra can be
reconstructed from p since by Poincaré duality H? ~ (H')*. In the
more precise case when H* is also a Poincaré duality algebra, i.e., the
cup product H' x H? — H? is nondegenerate, it follows that H* is
a Gorenstein ring (cf. Section 1 below). Such Gorenstein rings will be
studied here. Any 3-manifold M can be decomposed in a unique way
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as a connected sum of prime 3-manifolds:
M = PPy ---§Py

of prime manifolds P; (cf., e.g., Milnor [28, Theorem 1], and with the
exception of S® and S% x S! any prime manifold is also irreducible ([28]
and for them m2(M) = 0 ([28, Theorem 2]). If furthermore m (M) is
infinite then also the higher homotopy groups are 0 (M is said to be
aspherical) so that M is the Eilenberg-Maclane space K (1 (M), 1) and
the cohomology ring of M is isomorphic to the cohomology ring of the
group 71 (M) (this is of course also true for any 3-manifold X which
is aspherical). (For most of the applications below we suppose that
H = H*(X) is a Poincaré duality algebra and we suppose that the
base field k is of characteristic 0, the preference being Q.) The ring
H has interesting homological properties which have not yet been fully
studied, and we wish to continue such a study here. For small values of
the first Betti number by (X) = dimgH (X, Q) the ring H is a Koszul
algebra (cf. Section 2 below) so that in particular the generating series

(0.1) Py(z) = Z |Torf! (k,k)|2" = H(—2)"!

where H(z) = 1+ |[H'(X,Q)|z + |[H*(X,Q)|2? + 23, and where |V]|
denotes the dimension of the vector space V. But for bigger Betti
numbers many new phenomena occur. In particular we will see that
for b1(X) = 12 (and maybe even for b;(X) = 11) there are a few
examples where Pp(z) is an explicit transcendental function (thus we
are far away from the Koszul case of formula (0.1)!). However, maybe
11 is the best possible number here. On the other hand for bigger b1 (X)
the possible series Py(z) are rationally related to the family of series
which occurred in connection with the Kaplansky-Serre questions a
long time ago [1]. But even for smaller b; (X) other strange homological
properties of H occur: we will give examples (probably best possible)
where b1 (X) = 11 and the Yoneda Ext-algebra Ext};(k, k) is not finitely
generated. The implications of all this for 3-manifold groups have not
been fully explored. Compare also [35]. Conversely, the connection
with 3-manifolds makes it possible to go backwards and to deduce
results in the homology theory of skew-commutative algebras (and
there are also related results in the commutative case). Note that we
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are studying everything in characteristic 0. There seem to be some
relations with Benson [5] but he works over finite fields. Finally, let
us remark that even for the special 3-dimensional case when X is the
boundary manifold of a line arrangement in P?(C) we can have, e.g.,
the same strange transcendental phenomenon as above but the price to
pay for this is to accept even bigger by (X). The three-manifolds that
occur here are called graphic manifolds [7] and they are aspherical if
the line arrangement is not a pencil of lines.

1. Graded skew-Gorenstein rings and classification of trivec-
tors. Let us first recall that a local commutative Gorenstein ring was
defined in [4] as a ring R which has a finite injective resolution as a mod-
ule over itself. In particular if R is artinian this means that R is injective
as a module over itself. It is also equivalent to saying that the socle of
R, i.e., Hompg(R/m, R) (m is the maximal ideal of R) is 1-dimensional
over k¥ = R/m. Things are more complicated in the noncommutative
case [10], but if R is skew-commutative artinian the Gorenstein prop-
erty is equivalent to R being injective as a module over itself (left or
right—these two conditions are equivalent—and they are also equivalent
to saying that the left, or right, socle of R is one-dimensional). In the
special case when X is an oriented compact three-dimensional manifold
without boundary, and when H = H*(X, Q) is the cohomology ring of
X, welet R=H = H*(X, Q). From the preceding definition it follows
that R is Gorenstein if and only if R is generated by H' and H is a
Poincaré duality algebra (we assume that |H'| > 1).

We now turn to the classification of such R’s: when |H!(X, Q)| < 8.
We will use the classification of trivectors in H! described in section 35
of the book [15]. For a background we refer the reader to our
introduction, to [36] and to Section 4 [Intermezzo: Classification
of skew-symmetric forms] of [35]. Since we are only studying non-
degenerate trivectors, their ranks are equal to the dimension of H*.

For rank 5 there is only one trivector (denoted by IIT in [15, page
391]) and which can be denoted by (here e, e, €3, €4, €5 is a basis for
H' and the e'’s are the dual basis elements in (H')*):

el net At e Ned AP

and the corresponding Gorenstein ring is a Koszul algebra (the pre-
ceding trivector is the correct one as in [15]-in [35] there is a minor
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misprint in its form). It is only when the ranks are > 6 that non-Koszul
Gorenstein rings occur. Let us give the details in the first nontrivial
case of [15], namely case IV of rank 6, page 391:

f=etAe? A+ net he® +e® Ne® Neb.
Note that H* is a quotient of the exterior algebra
E(ela €2, €3, €4, €5, 66)7

by an ideal that we want to determine. To begin with we want to
determine all quadratic elements g = Zj<k9j,k€j A er that go to 0 in
the quotient H?. Since the pairing H'®@ H? — H? is nondegenerate this
boils down to determine when es; A g goes to zero for s = 1,... ,6. Using
f we get the conditions Y, gjxf(es,€j,ex) =0fors=1,...,6. This
gives, using the explicit form of f and the condition that f is skew-
symmetric (note that if f were only the monomial fuen = €' Ae? A €3,
then fmon (€1, €i2, €i3) is non zero (= =£1) if and only if iy,142,73 is a
permutation of 1, 2, 3) the six conditions s =1,... ,6:

92,3=0, —g13+956 =0, g12+925=0, g35=0, g34—g26 =0, go,5=0.

The 9 solutions of this system of 6 linear equations lead to the relations
ei1Neg+es/Aeg, e1 ANea—eqg ANes and eg Aeg+ e Aeg and to 6 monomial
relations, leading to the following ring with quadratic relations (we do
not write wedge for multiplication):

Ryy = E(e1,e2,e3,e4,€5,¢6)
(ere2—eses,e1e3+ese6,e2€6+€3€4,€1€4,€1€5,€1€6,€2€4,€3€6,€4€6)

But this quotient ring Ry has Hilbert series Ry (2) = 1+62+622+223.
This means that we have to find a last cubic relation. One finds
that the cube of the maximal ideal of Rjy is generated by eseseq
and ezeges. But f(eo,es,e5) = 0 and f(es,e5,e6) = 1 so that the
corresponding Gorenstein ring is Gry = Ryy/ezeses and we will see
that this Gorenstein ring is not a Koszul algebra. For case V of loc.
cit. the f is given by

f=elAe?ned+etne’ neb
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leading in the same way to the ring with quadratic relations:

E(ela €2, €3, €4, €5, 66)

RV - ’
(e1e4, e1€5, €166, €264, €265, €2€6, €3€4, €3€5, €3€6)

which also has Hilbert series Ry (z) = 1 + 62 + 622 + 223, but in this
case we have to divide by ejeses — egeses to get the Gorenstein ring
Gv = Ry /(e1ez2e3 —eseseg) which is, as we will see below, not a Koszul
algebra either.

In [15, pages 393-395] the classification of 3-forms of rank 7 is given
as the 5 cases VI, VII, VIII, IX, X and those forms of rank 8 are
described as the 13 cases XI, XII,..., XXIII. The classification of 3-
forms of rank 9 are given in [38]. We will describe the homological
behavior of the corresponding Gorenstein rings in Section 4.

2. Calculating the Koszul dual of the Gorenstein ring
associated to a 3-form. Let R be any finitely presented ring
(connected k-algebra) generated in degree 1 and having quadratic
relations. It can be described as the quotient T'(V')/(W), where T'(V)
is the tensor algebra on a (finite-dimensional) k-vector space V, placed
in degree 1 and (W) is the ideal in T'(V'), defined by a sub-vector space
W C V ®; V. The Yoneda Ext-algebra of R is defined by

Ext (k, k) = @) Ext (k, k)
>0

where k is an R-module in the natural way and where the multiplication
is the Yoneda product. The sub-algebra of Ext}(k, k) generated by
Exth(k, k) is called the Koszul dual of R, and it is denoted by R'. Tt
can be calculated as follows: consider the inclusion map W — V ®; V.
Taking k-vector space duals (denoted by W* and (V ® V)* we get the
exact sequence (W< = those linear f : V ®; V — k that are 0 on W):

0 W* <+ (Ver V) « W 0.

Now R' = T(V*)/(W+) (we have used that (V ®@; V)* =V @ V*).

For all this, cf. [24]. Note that (R')! is isomorphic to R. Note also that
if R also has cubic relations and/or higher relations then Ext}; (k, k) is
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still defined, and the subalgebra generated by Ext}, (k, k) is still given by
the formula 7'(V*)/(W+=) where W is now only the “quadratic part”
of the relations of R. In particular (R')' is now only isomorphic to
T(V) divided by the quadratic part of the relations. Note also that in
general, if R is skewcommutative then Ext};(k, k) is a cocommutative
Hopf algebra which is the enveloping algebra of a graded Lie algebra,
and R' is a sub Hopf algebra which is the enveloping algebra of a smaller
graded Lie algebra. (All this is also true if R is commutative, but now
the Lie algebras are super Lie algebras.) In [24, Corollary 1.3, pages
301-302] there is a recipe about how to calculate the Koszul dual of an
algebra with quadratic relations. Applying this to the case of Ryy of
the previous section we find that R}, is the algebra

k(X1,X2,X3,X4,X5,X6)
([X1,X2]+[X4,X5],[X3,Xa]—[X2,X6],[X1,X3]—[X5,X6],[ X2,X3],[X2,X5],[ X3,X5])

where [X;, X;] = X;X,; — X;X; is for 4 < j the Lie commutator of X;
and X;. In general if one starts with a (skew)-commutative algebra A
it is often easy to calculate the Hilbert series of A. But calculating the
Hilbert series of A' is often very difficult and this series can even be a
transcendental function. But in this case it is rather easy: we get that
R (2) = 1/(1—624+622-22%) so that Ry (—2)R}y (2) = 1 and we even
have (the in general strictly stronger assertion ([29, 33])) that Ry is
a Koszul algebra. (For the definitions and equivalent characterizations
of Koszul algebras we refer to [24, page 305, Theorem 1.2].) A similar
result for Ry holds true, and in this case we can directly apply a
result of Froberg [11], since Ry has quadratic monomial relations. But
neither the Gorenstein quotients Gy nor Gy are Koszul algebras and
in the next section we will see how to relate their Hilbert series and the
corresponding Hilbert series of their Koszul duals to their two-variable
Poincaré-Betti series

Pg(z,y) =Y |Tord;(k, k)|z'y’.
,J
But we will first deduce a few results about explicitly calculating the
Gorenstein ring and its Koszul dual associated to a given 3-form.

An old result of Macaulay gives a nice correspondence between com-
mutative artinian graded Gorenstein algebras having socle of degree j
of the form k[zy, s, ... ,z,]/I and homogeneous forms of degree j in
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the dual of k[z1, z2,... ,z,] (cf, e.g., [9, Lemma 2.4]). Here is a skew-
commutative version (here described only for socle degree 3), the proof
of which follows from [8, Exercise 21.1, page 547], where we have to re-
place polynomial rings by exterior algebras (I thank Antony Iarrobino
who suggested that such a result should be true):

Proposition 2.1 (“Skew”-Macaulay). Let T = E[y1,... ,yn] be the
exterior algebra in n variables of degree 1 over a field of characteristic 0.
Consider a polynomial skew-differential operator D on T with constant
coefficients of the form

D= > @i, ,in(0/0y1)" -+ (8/Oyn)™
T1yeenyin

(the ij are 0 or1). The symbol of D isthe Y, . i, -- i@l gin
which is obtained by replacing each 8/0y; by x; in a new exterior algebra
S = E[z1,...,2,]. Let now 0 # f € T be a homogeneous polynomial of
degree 3. Let I be the set of symbols in S of differential operators D as
above, such that Df = 0. Then S/I is a zero-dimensional Gorenstein
ring and there is a converse assertion.

We will not use the preceding result, which is only included here for
historical reasons.

We now go back to the reasoning that we used when we treated
case IV in Section 1. Recall first that in ([24, Corollary 1.3, page
301]) it is proved in particular that if we have a quadratic algebra
R=E[zy,...,z,]/(f1,--., fr) where the

fi= bijkxi Ak, bijr€k, i=1,...r
i<k
then
R =k(X1,..., Xn)/ (91, b5),
where
¢i = cijklX; Xel, cijr€k, i=1,...,s,
i<k
where [X;, X} = X; X}, — X3, X; and (c; j,)jk, ¢ = 1,...5, is a basis of
the solutions of system of linear equations:

Zbi7j7kaka i=1,...,r (hence), s = <n—2i—1> -
i<k
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Now, given a skew-symmetric 3-form (e!, e?,... ,e") of rank n, written

as a linear combination of et A e A '3, where i; < iz < i3 (with
coefficients that are a;,;,i;), we have that

fi= E bijrej Neg, i=1,...,r
i<k

are relations corresponding to ¥ (cf. the discussion of case IV in
Section 1) if and only if

Zbi,j,kq](ei; €5, ek) = 0, for i = 1, ceey N
i<k

But, for fixed i, ¥(e;,ej,ex) is aix if and only if ¢ < j < k and
j < k <1, and —aj; if and only if j < ¢ < k. This corresponds to
taking the graded skew-derivative of ¥ with respect to e!. Combining
this with the Lofwall description of the calculation of R' given above,
we finally arrive at the following useful Theorem-Recipe to calculate
the Koszul dual G' of the Gorenstein ring associated to a skew 3-form:

Theorem-Recipe 2.1. Let ¥(el,e?,... ,e") be a skew-symmetric
3-form of rank n,X one of the 3-manifolds giving rise to ¥ and
G = H*(X,Q). The Koszul dual G' of G is obtained as follows:
Calculate the n skew-derivatives of ¥ with respect to the variables
et,e?,... e". Then

E(X1, Xa2,...,Xp)

G ~
(Q1,Q2a s 7‘]n)

where k(X1, Xa,... ,X,) is the free associative algebra generated by the
variables X; that are dual to the e'’s in ¥ and where the g;’s are ob-
tained by replacing each quadratic element e Net (s < t) in the 0¥ /0e
by the commutator [ X, X;] = X X — X4 Xs in k(X1, Xo,... , X,), for
1=1,...,n.

Note that if G' is given it is easy to calculate “backwards” the ring
with quadratic relations (G')'. After that it is easy to find the extra
cubic relations we should divide with to get G. Using this theorem-
recipe we finally find:
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Theorem 2.2. a) The double Koszul duals (G*)' of the Gorenstein
rings corresponding trivectors of rank = 7 are Koszul algebras in the
cases VI, VII, VIII, IX and X and therefore G* is a Koszul algebra
in cases VI, VII, VIII, IX, X. (But they are not isomorphic). The
corresponding Gorenstein algebras Gvr,Gvrr,Gvirr, Grx,Gx are also
Koszul algebras.

b) When it comes to trivectors of rank 8, i.e., the cases XI, XII,...,
XXIII the situation is more complicated already from the homological
point of view: Indeed in case X1 the double Koszul dual (G*)" is already a
Gorenstein ring with quadratic relations, thus equal to G and G is not
a Koszul algebra. But the case XII treated explicitly below is slightly
different and not a Koszul algebra either. The cases XIII, XIV and
XV are Koszul algebras. But case XVI is as above: (G')' is a Koszul
algebra, but we have to divide out a cubic form to get Gxv which is
therefore not Koszul. Finally the algebras corresponding to the cases
XVII, XVIII, XIX, XX, XXI, XXII and XXIII are Koszul algebras (but
not isomorphic).

Example 2.1. Here is a use of the Theorem-Recipe 2.1: Let us
consider case XII of rank 8. Here the 3-form fx;; = VU is

Tlel,e?,...,e¥) =’ neSne” +et ne’ net
+62/\e6/\e4+63/\e7/\e4+e3/\66/\68.

We calculate the eight partial derivatives of this skew form (we do not
write out the A sign):

oV /0e! = e%e*, 9/0e* = ebet, 0/0e® = eTet + ebeb,
OV /0e* = ele® + e?e® +-e%e”, 0¥ /0e® = b’ —e'e?,
OV /0e® = —ePe” — e?et —e3e®, 0/0e” = %S — e, 0/0e® = e3eb
leading to G! = k}<X1,X2, X3,X4, X5,X6,X7,Xg> divided by the ideal
([X57X4]7 [X67X4]7 [X77X4] + [X67X8]7 [X17X5] + [X27 XG] + [X37X7]7
(X6, X7] — [X1, Xal, [X5, X7] + [ X2, X4] + [X3, X3], [X5, X6]
_[X3aX4]a [X3’X6])

and the Hilbert series 1/G'(z) = 1 — 8z + 822 — 23 — 2z*. Furthermore
one sees that (G')' has Hilbert series 1 + 8z + 822 + 23 so that we do
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not have to divide by cubic elements to get G x5 which is non-Koszul.
As a matter of fact we have a generalization of a formula of Léfwall (cf.
next section), giving that

1 ]
L (141/2)/Gyi(zy) — Gxrr(—ay)x
Pgyr(z,y) ( [2)/Gx1i(xy) — Gxrr(—zy)/
so that
1
ey 8% — P — Pyt —
Pgy,, (z,y)

leading to, e.g., Torgff” (k, k) being 1-dimensional. The other cases
[-XXIII are treated in a similar manner: sometimes G'(z) can be
directly calculated since we have a finite Groebner basis for the non-

commutative ideal and in all cases using the Backelin et al. programme
BERGMAN [3].

3. A generalization of a formula of Lofwall to Gorenstein
rings with m* = 0. In his thesis [24] Clas Lofwall proved in particular
that if A is any graded connected algebra with A% = 0 then the double
Poincaré-Betti series is given by the formula

1

(3'1) PA(xay)

= (1+1/2)/4'(zy) — A(-zy)/=.

In [30] we have an easy proof of this in the case when A is commutative
(works also in the skew-commutative case [31]) using the fact that in
these cases A' is a sub-Hopf algebra of the big Hopf algebra Ext* (k, k)
and according to a theorem of Milnor-Moore this big Hopf algebra is
free as a module over A'. We now show

Theorem 3.1. The formula (3.1) is true when (R, m) is a graded
(skew-) commutative Gorenstein ring with m* = 0.

Proof. First we note that Avramov-Levin have proved [2] in the
commutative case that the natural map

R — R/soc(R)
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is a Golod map (cf. Section 5 for the skew-commutative case that we
use here). Now the socle of R is m3 which is s~ 3k. Therefore we have
(3.2)

PR(xay) _ PR(way)

PR socR(:Uuy): - .
/soc (R) 1_ x(Pg/soc(R) (¢,y)—1) 1- 223 Pr(z,y)

But R/m? is a local ring where the cube of the maximal ideal is 0.
Thus the formula of Léfwall can be applied, and we obtain using that
(R/m?)" = R' the formula

1

Pajmi(zy) (1+1/z)/ R (zy) — (R/m”)(-zy)/z

which combined with (3.2) gives (3.1) since R(z) = R/m3(z) + 23.

Remark 3.1. Thus it is clear that we cannot obtain cases where the
ring H*(X,Q) has “bad” homological properties if b1(X) < 8. We
therefore study the case when b;(X) = 9. In this case there is a
classification of the tri-vectors by Vinberg and Elashvili [38]. But even
in this case it seems impossible to get “exotic” H*(X, Q). In fact we
have, e.g., by the procedure above analyzed all cases in Table 6 of
[38, pages 69-72] (those cases that have a * in loc. cit. correspond to
b1(X) < 9 and they have already been treated).

Theorem 3.2. For the 3-forms of rank 9 of Table 6 [38, pages 69-72]
we have that the corresponding 1/R'(z) = 1 — 9z + 922 — 23, and the
corresponding Gorenstein ring is a Koszul algebra in all cases except

a) the cases 79, 81, 85 where 1/R'(2) =1 — 9z + 922 — 32°
b) the case 83 where 1/R'(z) = 1 — 92+ 922 — 23 — 52% + 425 — 26,

Proof. The proof is by using Theorem-Recipe 2.1 above. For the
Koszul cases we refer the reader to the Appendix. Here we only indicate
what happens in the exceptional cases a) and b). In case 79 in a) the
3-form is (we do not write out the wedge for multiplication):

fro = ele?e? + eleded + e2ede” + etedel.
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We take the 9 partial derivatives dfrg/0¢® for i = 1,...,9, and we

obtain:
e?e® + 6368, —ele? + 6367, —ete® — 6267, 6566,

—etel, eted, e2e3, eted, ele?

leading to

R' = k(Xy, X, X3, X4, X5, X6, X7, Xs, Xo) /([ X2, Xo] + [ X3, Xs],
- [XlaX9] + [X37X7]) [XlaXS] + [X2a X7]a [X5a X6]7 [X4a X6]7 [X47X5]7
[X27 X3]7 [Xh X3]7 [Xh XQ])
Now it turns out that the Grobner basis of the ideal above is finite
and in degree < 2. This proves that R' is Koszul and has R'(z) =
1 —92+92% — 322, since the commutative ring (R')' has Hilbert series

1+ 92z + 922 + 323, The ideal m? is generated by the three elements
(ereze9, es€5€6, €1€2€3) and

fro(ei,e2,e9) =1,  fro(es,es,e6) =1 and fro(eq, ez, e3) = 0.

It follows that if we divide out by the two extra elements ejezeqg —
eqes€g, e1ezeg we do have the non-Koszul Gorenstein ring G79 we are
looking for. The rings Gg; and Ggs in a) are treated in the same way.
They correspond to:

fgl:616269+€1€3€8+€1€466+€2€3€7+€264€5+6365€6

and

fas = ele?e? + elede® + eletef + e2ede’ + e2etel.

In case 83 of b) the form
oz = ele2e® + elePe® + eleted 4 e2ee 4 e2eled 4 edete?
and its 9 skew-derivatives lead to the quotient:
k(X1, X2, X3, X4, X5, X6, X7, X5, X9)
divided by the ideal

([Xa, Xo] + [X3, X5] + [X4, Xe], —[X1, Xo] + [X3, X7] + [X4, Xs],
—[X1, X5] — [Xa, X7] + [X4, Xo], [X1, X6] + [X2, Xs]
+[X37X9]7 [X17X3]7 [X17X4]7 [X27X3]7 [X27X4]7 [X17X2] + [X?n X4])
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In this case the Hilbert series of R' is 1/(1—92+922 23 —52%+42°—20),
and the ring (R')" has Hilbert series: 1+92z+92%+23 so that Gg3 = (R")"
which is a Gorenstein non-Koszul algebra and Theorem 3.2 is proved. O

Thus to obtain examples of X where the homological properties of
the cohomology algebra H*(X, Q) are complicated we need to study
the cases where the dimension of H1(X, Q) is > 10. But the trivectors
of rank 10 have not been classified, and even the cases of Sikora
[35, Theorem 1] which uses for any simple Lie algebra g the trilinear
skewsymmetric form ¥ (z,y,2) = k(z,[y, 2]) where  is the Killing
form of g, do not seem to give anything exotic from our point of view,
at least when the dimension of the Lie algebra is 10. We therefore need
a new way of constructing Gorenstein rings corresponding to trivectors
of rank > 10, but defined in another way. This will be done in the next
section.

4. New skew-Gorenstein rings. Let (R,m) be any ring with
m3 = 0 which is the quotient of the exterior algebra E(zy,...,z,)
by homogeneous forms of degrees > 2 and let I(k) be the injective
envelope of the residue field & = R/m of R. Then G = R x I(k)
([10] is a skew-Gorenstein ring with maximal ideal n = m & I(k)
satisfying n* = 0, which therefore corresponds to a trivector of rank
|m/m?| + |I(k)/mI(k)| = |m/m?| + |m?| and according to the Sullivan
theory it comes from a 3-manifold X with the dimension of H!(X, Q)
being equal to |m/m?| + |m?2|. It turns out that the homological
properties of GG are closely related to those of the smaller ring R. Indeed
we have the following general result:

Theorem 4.1 (Gulliksen [14]). Let R be (skew-)commutative and
R «x M be the trivial extension of R with the R-module M. Then we
have an exact sequence of Hopf algebras:

k— T(s'Exth(M,k)) — Extho s (k, k) — Exth(k, k) — k

where T'(s *Ext} (M, k)) is the free algebra on the graded vector space
s Exty(M, k) and where the arrow Ext} . ,(k, k) — Extk(k, k) is a
split epi-morphism (there is a splitting ring map R <« M — R). In
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particular we have the formula for Poincaré-Betti series

PR(may)

Ppy ) = 1 DM/ N
ieocnt (@,9) 1 —2P¥(z,y)

Remark 4.0. Gulliksen’s proof [14] is in the commutative setting and
uses Massey operations. In [23], Clas Lofwall studies the more general
case of a trivial extension R o M, where R is any ring (not necessarily
commutative) and M is an R-bimodule. In [23, Section 6, pages 305-
306] he derives the Gulliksen formula when R is commutative using an
idea of mine (cf. [23, page 288]). In the same way one deduces the
Gulliksen formula in the skew-commutative case.

Now turn to the artinian case and assume that M is finitely generated,
and let M = Hompg(M, I(k)) be the Matlis dual of M [27] (if M as
an R-module is a vector space over k, then this is the ordinary vector
space dual). In this case we have a well-known formula (cf., e.g., Lescot
[19, Lemme 1.1])

Ext’, (M, k) ~ Ext’,(k, M).

In particular if M = I(k) then M = Hompg(I(k),I(k)) = R [27] so
that
Ext},(I(k), k) ~ Ext}(k, R).

Thus, if we use the Theorem on R o I(k) we are led to the study
of the Bass series of R, i.e., the generating series in one or two
variables of Ext},(k, R). It turns out that in many (most) of the cases
we study here, the Bass series of R divided by the Poincaré-Betti
series Pg is a very nice explicit polynomial (for more details about
this—the Bggvad formula—we refer to Section 5 of this paper). Thus
if we want strange homological properties of the Ext-algebra of the
Gorenstein ring R o I(k), i.e. the Ext-algebra of the cohomology ring
of the corresponding fundamental group m;(X) of the 3-manifold X
corresponding to the Gorenstein ring R « I(k) we only have to find
(R, m) with m3 = 0 with strange properties.

Corollary 4.1. In the case when R is the cohomology ring (over
Q) of the complement of a line arrangement L in P?(C), i.e. the
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Orlik-Solomon algebra of L, the 3-manifold X corresponding to the
Gorenstein ring R o< I(R/m) can be chosen as the boundary manifold of
a tubular neighborhood of L in P?(C) [7]. In this case we found in [31]
an arrangement where the Ext-algebra of R was not finitely generated.
Then the Ext-algebra of the cohomology ring of X that corresponds to
R « I(k) cannot be finitely generated either since by Theorem 4.1 it is
mapped onto Ext’(k, k). In this case the dimension of H'(X, Q) is 12.

In [31] we found two cases of arrangements: the MacLane arrange-
ment and the mleas arrangement where the corresponding R'(2) is a
transcendental function, and this leads to two cases where H!(X, Q)
is of dimension 20, respectively 21. In order to press down this dimen-
sion to 12 and maybe to 11, I have to use some of my earlier results.
In our paper [32] describing the homological properties of quotients of
exterior algebras in 5 variables by quadratic forms (there are 49 cases
found), we have found 3 cases (cases 12, 15 and 20) where R'(2) is
proved to be transcendental and is explicitly given, and 3 other cases
(cases 21, 22 and 33) where we conjecture that R'(z) is transcenden-
tal, but no explicit formula can be given, even in case 33 where we
have now calculated the series R'(z) up to degree 33 using Backelin’s
et al. programme BERGMAN (some details are given in [31], where
the “educated guess” now has to be abandoned): Here is Case 20:

E($1,$2,$3,CE4,$5)
(Z124 + 223, T1T5 + To2Ty, Tos + T3Zs)

Here the Hilbert series is Rao(z) = 1 + 52 + 722, and the Koszul dual
R}, is given (according to the recipe we have described above) by

(4.1)
k(X1,X2,X5,X4,X5)
([X1,X5],[X1,X3],[ X5, X5],[ X4, X5],[ X1, Xa H X2, X35],[X1, X5 H X2, X4],[ X2, X5 HX35,X4])
where k(X;, X3, X3, X4, X5) is the free associative algebra in the five
variables X; and [X;, X;] = X;X; — X;X; is the commutator. The
corresponding Hilbert series is:
1 o0
— (1 _ Z2n_1)5(1 _ Z2n)3.

R!zo(z) };[1
The proof of this last statement is by an adaption of the proof given
in [26] when the ring R is commutative (the proof is even easier in the
skew-commutative case).

Ry =
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Here is Case 12:

_ E($1,$2,$3,$4,$5)
Ry2 =

)
(122, L1273 + T2Ta + T3T5, Tals)

and the Hilbert series is still Ri2(z) =1 +52+ 722, but the correspond-
ing Hilbert series for the Koszul dual R}, is given by

1 o0
1 — 2 1 —
R, %) I:I -

This is proved in the same way as it was proved for the corresponding
R in the commutative case [25]. Finally here is Case 15:

E($1,$2,$3, $4,$5)

Ris =
(124 + @23, T125, T3T4 + T2T5)

which has Ri5(z) = 1+ 5z + 722, but

1
Ris(z)

1_2Z H 2TL 1 1_Z2n)2,
n=1

which is proved in a similar way.

Now if R is any of the 3 rings above, then the Gorenstein ring G =
R o< I(k) has Hilbert series G(z) = 1+122+122%+ 2 and by the Gullik-
sen formula Pg(z,y) = Pr(z,y)/(1 — zyExt}(k, R)(z,y)), the Bpgvad
formula Ext}(k, R)(z,y)/Pr(z,y) = 2?y?R(—1/zy) (cf. Section 5 be-
low) and the Lofwall formula 1/(Pgr(z,y)) = (1 + 1/z)/R'(zy) —
R(—zy)/x we finally find that the transcendental properties of Pg(z,y)
are rationally related to those of R'(z). For the validity of the Bggvad
formula, cf. Section 5.

We now present the 3 other cases of R with 4 quadratic relations
(cases 21, 22 and 33) where the Hilbert series is R(z) = 1 + 5z + 622
and which lead to possibly strange Gorenstein rings and 3-manifolds X
with the dimension of H(X, Q) equal to 11. They are extremely easy
to describe:

Ry1 = Ryo/(x4x5), Roz = Roo/(x3xs5) and Rs3 = Rys/(zaxs),
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but the corresponding series R'(z) are unknown. But, using the
Backelin et al. programme BERGMAN [3] we have calculated these
series up to degrees 25, 14, and 33 respectively. In the last case we
found in characteristic 47 using a work-station with 48 GB of internal
memory that

1
(1 - 2)2Ry,(2)
=1-832—22 4234224 +325+25+77
_ 8,9 9,0 11 g.d2 13 14
Q1B 1T 4 18 L9 19 L 20 4 21

13,224,284 25 4 26 .20 30 31 32 33

But to go from degree 31 to degree 32 we needed more than one week
of calculations, and from degree 32 to degree 33 we needed three weeks
of calculations, even with an optimal order of the variables. But we
still think that the series might be transcendental here.

Remark 4.1. All these results are in case the characteristic of the base
field is 0 (in cases 21, 22 and 33 characteristic 47 or higher). In Case 20
we have different Rb,(z) for all characteristics and the same remarks
might be applicable to the cases 21, 22 and 33. What this gives for the
corresponding fundamental groups of the corresponding 3-manifolds X
has not been studied.

Remark 4.2. If the Yoneda Ext-algebra Ext},(k, k) is not finitely
generated as an algebra then Ext}, ,,(k, k) is not so either, since the
algebra Ext}(k,k) is a quotient of Ext}_ ,,(k, k). One can use this
for the Gorenstein ring Gs3 = R33 o I(k) which has Hilbert series
Gss(z) = 1+ 11z + 112% + 2% Now Ext}, (k, k) needs an infinite

number of generators if and only if the Tor?lfi-3 (k, k) is non-zero for an
infinite number of j : s (cf., e.g., [31, Theorem 3.1, (a)]). Indeed, by
computer calculations using the ANICK command in the programme

BERGMAN one obtains that the dimensions of Tor?%‘-“’(k, k) are 1 for

j=4and then 0, 3,0, 2, 1, 2 for j = 5,6,7,8,9,10 and again 0, 3, 0,
2,1, 2 for j =11,12,13,14, 15,16, etc.
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5. A formula of Bggvad and m?-selfinjective rings. Recall that
Bggvad proved the following in [6]: Let (R, m) be a local commutative
ring with m® = 0. Assume that R has some special properties
(soc (R) = m? and R being a “beast” [6]). Then we have the formula for
the Bass series Bassg(Z), i.e., the generating series of Ext};(k, R), the
Poincaré-Betti series Pgr(Z) (i.e., the generating series of Ext},(k, k))
and R(Z) = 1+ |m/m? Z + |m?|Z? (the Hilbert series of R):

Bassr(Z)/Pr(Z) = Z2R< - %)

In [6] this formula is broken up into two assertions, of which the first
one is often valid (the proposition “E(R/m?)”) and the other is more
special. Lescot has observed in [19, 21] that the proof of this in [6]
boils down to prove that Condition 5.ii and Condition 5.iii below are
valid under some conditions:

Condition 5.i. The natural map Ext},(k,m) — Exty(k, R) is an
epimorphism.

Condition 5.ii. The natural map Ext}(k, m/m?) — Ext}(k, R/m?)
is an epimorphism.

Condition 5.iii. The natural map Ext%(k,m?) — Ext}(k, R) is an
epimorphism (for x = 0 this means that the socle of R is m?).

Condition 5.i is true if (R,m) is nonregular. Condition 5.ii is also
often true (cf. condition “E(R/m?)” in [6] and Proposition 1.10 in
[19] for I = m?, as well as the assertion that G — G/soc(G) is a
Golod map for a Gorenstein ring G [2]). We have not yet proved
all skew-commutative versions of the preceding results, but computer
computations indicate that they are true up to “high degrees” and
probably in all degrees.

We now present some results that should give the skew-versions of
some of the preceding results. We hope to return to these problems
rather soon.

Let R be any ring (with unit). Recall that in order to test that a left
R-module M is injective it is sufficient to test that for any left R-ideal
J, any R-module map ¢ : J — M can be extended to a map R — M.
Since the last map is given as r — r-mg where my is a suitable element
of M, this means that ¢(j) —jmg = 0 for any j € J. In particular, R is
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self-injective to the left if and only if for any R-module map ¢ : J — R
there is an element ry € R such that ¢(j) —j-ry = 0 for all j € J.
This explains condition b) in the Lemma that follows:

Lemma 5.1. Let (R,m) be a local (skew)commutative local ring
where m® = 0 and J an ideal in R. The following two conditions are
equivalent:

a) The natural map
Extp(R/J,m*) — Extp(R/J, R)

1 surjective.

b) For any R-module map ¢ : J — R there is an element vy € R such
that ¢(j) — j-ry € m? for all j € J.

Proof. The short exact sequence 0 - J — R — R/J — 0 and the
natural map m? — R give rise to a commutative diagram with exact
rows:

0 — Homp(R/J,m?) —— Hompg (R, m?) —

| |

0 ——— Homp(R/J,R) — > Homp (R, R) ——————

6,
Homp (J, m?) ————— ExtR(R/J,m?) —————0

i i

5
Hompg(J, R) ——— Ext}(R/J,R) ———> 0

Let us first prove that a) = b). Thus assume that ¢ is onto. We
start with a ¢ € Hompg(J, R) and put a = 6(¢). We can assume that
o = 1(€). But £ = §'(€). Thus §(k(€)—¢) = 0, so that x(€)—¢ comes by
¢ from a map R — R of the form » — r-ry. Thustoanymap ¢: J = R
there is an r4 in R such that for all j € J, ¢(j) — j -1y € m?, ie., we

have proved b). The converse follows from the “reverse” reasoning.
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Remark 5.1. If L is any R-module and P(L) — L is the projective
envelope of L we have an exact sequence

0— S(L) — P(L) — L —0,

where the first syzygy S(L) of L is included in m.P(L), we can redo
the same reasoning for P(L)/S(L) as we did for R/J in Lemma 5.1.
The result is that Exth(L,m?) — Extk(L,R) is onto if and only if
for any map ¢ : S(L) — R there is a map j¢ : P(L) — R such that
#(s) — jo(s) € m? for all s € S(L) C P(L). Note that P(L) is free so
that jy is given by a matrix of elements in R.

Remark 5.2. In the selfinjective case (0-selfinjective) it is of course

sufficient to require b) for the maximal ideal J = m. In the “m?-

selfinjective” case it is not clear (for us) what the right definition should
be. We hope to return to this later. Therefore the definition below is
maybe too strong.

Definition 5.1. We say that R is m>2-selfinjective if the conditions
of Remark 5.2 are valid for L = k and all syzygies of k.

Using this definition we can formulate the following consequence of
Lemma 5.1 and Remark 5.1:

Corollary 5.1. The following conditions are equivalent:

a) Exth(k,m?) — Ext%(k, R) is onto.

B) R is m?-selfinjective.

Remark 5.3. In the commutative case, it seems that many rings
(R,m) with m® = 0 of the form R = k[z1,Z2,... ,2.)/(f1, fo,- -, ft)

where the f; are homogeneous quadratic forms are m?2-selfinjective. For
the case when n =4, cf. Remark 5.4 below.

Observation 5.1. Let (R, m) be a local ring with m® = 0, residue
field k = R/m and soc (R) = m?.

The following two conditions are equivalent:

a) R is m?-selfinjective and Condition 5.ii above is true.

b) The Bass series of R, i.e. Bassg(Z) = Y5, [Ext'(k,R)|Z" is
related to the Poincaré-Betti series Pr(Z) = >, |Ext, (k,k)|Z" by

the “Bggvad formula” Bassg(Z) = Z2R(—1/z)Pg(Z), where R(Z) =
1+ |m/m?|Z + |m?|Z? is the Hilbert series of R.
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Proof. Consider the long exact sequence obtained when we apply
Ext%(k, —) to the short exact sequence 0 — m? — R — R/m? — 0:

0 — Hompg(k,m?) — Hompg(k, R) — Homg(k, R/m?) — Extk(k, m?)
— Exth(k, R) — Extk(k, R/m?) — Ext%(k,m?) — Ext%(k, R)
— Ext%(k, R/m?) — Ext%(k, m?) —

Since soc(R) = m? the natural monomorphism Hompg(k,m?) —
Hompg(k, R) is indeed an isomorphism. Now according to a) all the
maps Ext% (k, m?) — Ext(k, R) are also epimorphisms for 7 > 1. It
follows that we have an exact sequence:

0 — s 'Exth(k, R/m?) — Exth(k,m?) — Exth(k,R) — 0

so that Bassg(Z) — |m?|Pg(2) + Z.Ext}(k, R/m?)(Z) = 0. But it is
now easy to apply Condition 5.ii and this gives the result that a) =
b). The converse is easy.

Remark 5.4. In the commutative case most rings of embedding
dimension 4, which are quotients of k[z, y, z, u] by an ideal I generated
by homogeneous quadratic forms and having m3 = 0, are according to
[34] given by (the numbers of the ideals comes from [34)):

Iy = (2? +a:yy + zu, 2% + zu, 2u + u?, yz)

2

Iy = (22, 2y, 4%, 22, yu + 2u, u?)

Iss = (22 + zy, 2z + yu, zu, 32, 22, 2u + u?)
Ise = (2 + 22 + u? :py,wu z? —y?, 2% 2u)

Is7; = (2? —l—yz—i—u ru, 2?4+ 2y, 22 + yu, 2u + u?, y? + 2%)
2

In—( 2,27 0P wy, 2, yz + wu)
= (2, :vy,y ,z2 2u,u?, 2 + yu, yz — ru)
181 (x?,y%, 22,4, xy, 2, y2 — U, Yu, 2u).

The Hilbert series R(z) of the different cases R = k[z,y, z,u]/I are

1+ 4z + 522 (case 29), 1+ 4z + 422 (cases 54, 55, 56, 57),
1+ 4z +32% (case 71), 1+ 4z + 22% (case 78)
and 1 + 4z + 2% (case 81).
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But the Hilbert series R'(z) of the Koszul duals R' are respectively (all
different):

(L+2)* 1 (1—z+22%)2
(1-22)5" 1—4z+422" (1—2)3(1—32z+ 322 —323)’
1—z+ 22 1 1
(1—2)2(1—32+222—-23)" (1—2)2(1 —22—22)" 1—4z+ 322’
1 1
22 ™ T

and in all cases the “Lofwall formula”

Prey) (14 1/z)/R (zy) — R(-zy)/x

holds true. In all these cases except I7s the Bggvad formula also holds
true.

Remark 5.5. The Bggvad formula is indeed a two-variable formula:

1
Bassg(z,y)/ Pr(z,y) = x2y23( - x—y)

which shows that the non-diagonal elements occur for the two-variable
Bass series in “the same way” as they occur in the two-variable
Poincaré-Betti series. In the case of I7g this is not true. Indeed I7g
is a Koszul ideal but the corresponding Bass series has non-diagonal
elements. More precisely we have in that case:

1
Bassg(z,y)/Pr(z,y) = m2y2R< — x_y> + 22y? + zy’

Remark 5.6. There are of course similar results to those of Remarks
5.4 and 5.5 in the skew-commutative case. What corresponds to the
“bad” case Izs in the case of four commuting variables is the case of
four skew-commuting variables: E(z,y, z,u)/(zy, xz — yu, yz — zu, zu).

Remark 5.7. In general it is not true that Bassg(z,y)/Pr(z,y)
is a rational function. This was first noted by Lescot in his thesis
[21]. Take, e.g., S a ring with transcendental Bass series. Form
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T =8 «x I(S/m) and let R be T/(socleT). Then R is a so-called
Teter ring [37], where the maximal ideal is isomorphic to its Matlis
dual (this even characterizes Teter rings [16]), and from this one sees
that Bassg(x,y)/Pr(z,y) is transcendental [19, Corollary 1.9].

APPENDIX

How to prove that an algebra is Koszul using non-commutative
permuted Grobner bases, or Macaulay?2 [13].

It is well known that a quadratic algebra (generators in degree 1,
relations in degree 2) is Koszul if it has a quadratic Grébner basis
[12] for some ordering of the variables. This is stronger than being a
Koszul algebra, but most of the dual Koszul algebras of Theorem 3.2
above satisfy this stronger condition for a suitable permutation of the
variables. Since there are 9 variables, there are 9! permutations.
But several years ago Jorgen Backelin constructed at my request a
programme permutebetter.sl written in PSL and running under
BERGMAN that in this case goes through the permutations of the
variables and indicates the length of Grébner basis for each permutation
of the variables. We will only indicate how this works for case 63 in
Table 6 of Vinberg et al. Here the 3-form is in their notations 129 138
167 246 257 345 leading according to Th-Rec. 2.1 to the algebra

k(el,e2,e3,e4,e5,e6,e7,e8,e9)
([e2,e9]+[e3,e8]+[e6,eT],[e1,e9] —[e4,e6] —[e5,eT],[e1,e8] —[e4,e5],[e2,e6]+[e3,e5] ?

[€2,e7] — [e3, ed], [el,eT] — [e2, ed], [el, e6] + [e2, €5], [e1, €3], [e1, e2]).

We now construct the input file for BERGMAN (no variables mentioned
—they will be permuted) invinberg63:
(setq embdim 9)
(setq maxdeg 6)
(noncommify)
(off GC)
(ALGFORMINPUT)
e2*e9-eO*e2+e3*e8-e8*xe3+eb*e7-e7*eb,-el*xe9+eI*elted*eb
-ebxed+ebxe7-e7*eb,—elxeB8+e8*xel+ted*eb-eb*ed,e2*eb

-eb6*e2+e3*eb-eb*e3,-e2*xe7+e7*e2+e3*ed-ed*e3,
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—el*xe7+e7T*el+e2*ed—ed*e2,el*xeb
-ebxel+e2xeb-ebxe2,el*e3-e3*el,el*e2—-e2*el;

We also need the varsfile9 which numbers the variables el, e2, e3,
ed, eb, €6, e7, e8, €9:

((1.el)(2.€2) (3.€3) (4.€e4) (5.€5) (6.¢e6)(7.€e7)(8.e8)(9.e9)).

We are now ready to go and we start BERGMAN and load in the
programme needed to do the work: permutebetter.sl that can be
found on http://www.maths.lth.se/matematiklth/personal/ufn/
bergman/permutebetter.sl

We get a command permutedgbases that we use as seen below
creating an outputfile outvinberg63:

Bergman 1.001, 29-Aug-20

1 lisp> (dskin ¢ ‘permutebetter.sl’’)

nil

permutedgbases

nextpermalist

x** Function ‘degreeenddisplay’ has been redefined

degreeenddisplay

nil

nil

[

2 lisp> (permutedgbases °‘varsfile9’’ ‘invinberg63’’

¢ ‘outvinberg63’’)

The outputfile outvinberg63 contains all the information we need. In
particular we see using a PERL programme, that Torsten Ekedahl has
written for me (I thank him for that), that the order of the variables:
eb, el, e2, ed, eb, €7, e3, e8, €9 gives a non-commutative quadratic
Groebner basis and therefore case 63 is Koszul. More precisely: of the
362880 permutations there are 18618 that give a quadratic Groebner
basis. Indeed:
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fgrep -e ’J 2’ outvinberg63 | wc -1

gives 362880, but

fgrep -e ’% 3’ outvinberg63 | wc -1

gives 344262, and 362880-344262=18618.

However for case 77 in Table 6 of Vinberg et al: 129 136 138 147 234
256 both we -1 give 362880. In this case we can use Macaulay2 [13] on
the skew-commutative Koszul dual and find that in this case we have
a quadratic Groebner basis as follows (here we use ei as a notation for
the dual variables too):

R:=QQ[el,e2,e3,e4,e5,e6,e7,e8,e9,SkewCommutative => truel

I:=ideal(el*eb,el*xe6,e2*e7,e2*e8,e3*eb5,e3*eb6,e3*e7,

e3*e9,ed*eb,ed*xeb,ed*xe8,ed*e9,eb*e7,

eb*e8,eb*xe9,eb*e7,e6%e8,e6%e9,e7*e8,e7*e9,e8%e9,el*xe7
+e2xe3,el*e8-e2%*e4,
elxe9+e3*ed,el*ed+eb*e6,e2*e9-e3*e8,e3*e8-ed*eT)

G= gens gb I

The output file contains

i3 : G=gens gb I

03 = | e8e9 e7e9 e6e9 ebe9 ede9 e3e9 e7e8 e6e8 ebe8 e4del
e3e8-e2e9

e2e8 ebe7 ebe7 ede7-e2e9 e3e7 e2e7 ebeb+ele9 edeb e3eb
ele6 edeb

e3eb5 eleb e3edt+ele9 e2ed-ele8 e2e3+ele? |

which shows that the (skew-commutative) Groebner basis is quadratic
and thus case 77 also gives a Koszul algebra.
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