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MINIMAL INTERSECTIONS
AND VANISHING (CO)HOMOLOGY

DAVID A. JORGENSEN AND W. FRANK MOORE

ABSTRACT. We introduce a class of local Noetherian rings,
which we call minimal intersections, and show that over such
rings there exist classes of modules for which the derived
functors Ext and Tor vanish non-trivially. This generalizes
a well-known phenomenon of non-trivial vanishing of Ext and
Tor for modules over complete intersections of codimension at
least two.

1. Introduction. Let R be a commutative local Noetherian ring,
and M and N finitely generated R-modules. In many cases the van-
ishing of all higher Ext and Tor can only occur in a trivial way. For
instance, in [9, 11, 12, 20] it is shown that over hypersurfaces (which
are codimension one complete intersections), Golod rings and Goren-
stein rings of low codimension, the vanishing of all higher TorR

i (M, N)
or Exti

R(M, N) implies that either M has finite projective dimension,
or N has finite projective dimension (or finite injective dimension for
Ext vanishing if R is not Gorenstein). This raises a question of the
rarity of non-trivial vanishing of all higher homology and cohomology
over local rings.

The most well-known class of local rings over which the vanishing of
all higher Ext and Tor occurs non-trivially is that of complete intersec-
tions of codimension at least two (see, for example, [14, Theorem 3.1],
and [4]). In this paper we isolate a property of complete intersections
which enables non-trivial vanishing, and consider, more generally, local
Noetherian rings having this property:
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Definition. Let R = Q/I with Q a regular local ring and I an ideal
in the square of the maximal ideal of Q. We say that R is a minimal
intersection (with respect to Q) if I is the sum of two non-zero ideals
I1 and I2 of Q such that I1 ∩ I2 = I1I2.

We prove that there exist classes of modules over a minimal inter-
section demonstrating non-trivial vanishing of all higher homology and
cohomology. That is, if R is a minimal intersection then there exist
classes of finitely generated R-modules M and N of infinite projective
dimension over R, and (not necessarily finitely generated) R-modules
L of infinite injective dimension over R, such that TorR

i (M, N) = 0 for
all i � 0, and ExtiR(M, L) = 0 for all i � 0. Outside of the special
case of both Q/I1 and Q/I2 having only finitely many non-isomorphic
indecomposable syzygy (or cosyzygy) modules, these classes of modules
exhibiting non-trivial vanishing are quite large. If we further assume
that R is Cohen-Macaulay, then they consist of finitely generated max-
imal Cohen-Macaulay modules.

Minimal intersections are a generalization of complete intersections of
codimension two or greater. For if I is generated by a regular sequence
f1, . . . , fc with c ≥ 2, then for 1 ≤ r ≤ c we have (f1, . . . , fr) ∩
(fr+1, . . . , fc) = (f1, . . . , fr)(fr+1, . . . , fc).

In Section 2 we give general results for Ext and Tor that are needed
in subsequent sections. We prove in Section 3 properties of minimal in-
tersections which are also needed in subsequent sections. For instance,
we show that the Cohen-Macaulay and Gorenstein properties are pre-
served after minimal intersection. Section 4 is the main part of the
paper. We discuss how non-trivial vanishing of Ext and Tor can occur
over complete intersections of codimension at least two, and then prove
the same result assuming only that R is a minimal intersection. We also
show that such non-trivial vanishing over Cohen-Macaulay and Goren-
stein minimal intersections (respectively) behaves similarly to that over
complete intersections. The final Section 5 gives several examples, and
a sufficient condition for detecting modules in the classes exhibiting
non-trivial vanishing. This sufficient condition looks at the form of the
free resolution of the module, and is aptly implemented on the com-
puter. We do this using the computer algebra package Macaulay 2 .
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2. General Results on Ext and Tor. In this section we give some
preliminary results involving Ext and Tor.

We make major use of the following standard result (see, for example,
[19, 11.51]).

2.1. Suppose that A is a commutative ring, J an ideal of A, and set
B = A/J .

(1) If X is an A-module such that TorA
i (X, B) = 0 for all i ≥ 1, then

for any B-module Y we have

TorA
i (X, Y ) ∼= TorB

i (X ⊗A B, Y ) for all i,

and
Exti

A(X, Y ) ∼= ExtiB(X ⊗A B, Y ) for all i.

(2) If Y is an A-module such that Exti
A(B, Y ) = 0 for all i ≥ 1, then

for any B-module X we have

Exti
A(X, Y ) ∼= Exti

B(X, HomA(B, Y )) for all i.

The following formula from [12, 2.2] is instrumental to the proofs in
the subsequent sections.

2.2. Let X and Y be finitely generated modules over a local
Noetherian ring A with pdAX < ∞. Then

sup{i | TorA
i (X, Y ) 	= 0} = sup{depthAp

Ap−depthAp
Xp−depthAp

Yp},

where the second sup is taken over all p ∈ SpecA.

Proposition 2.3. Let A be a Gorenstein local ring, B = A/J such
that pdAB < ∞, and X be a maximal Cohen-Macaulay A-module.
Then we have

HomA(X, A) ⊗A B ∼= HomB(X ⊗A B, B)

Proof. Hom-tensor adjointness gives HomB(X⊗AB, B) ∼= HomA(X, B),
therefore it suffices to exhibit an isomorphism HomA(X, A) ⊗A B ∼=
HomA(X, B). This isomorphism is easily seen when X is a free A-
module. In general, let G → F → X → 0 be an A-free presentation
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of X . On the one hand we apply HomA(−, B), and on the other hand
we apply HomA(−, A) first then −⊗A B. The result is a commutative
diagram:

0 � HomA(X, B) � HomA(F, B) �

�

∼=

HomA(G, B)

�

∼=

0 � HomA(X, A) ⊗A B � HomA(F, A) ⊗A B � HomA(G, A) ⊗A B

We just need to know that the bottom row is exact to establish the
proposition. For this, consider the short exact sequences 0 → Ω →
F → X → 0, and 0 → Ω′ → G → Ω → 0. Applying HomA(−, A),
and using the fact that Ext1A(X, A) = Ext1A(Ω, A) = 0 (since X and
Ω are maximal Cohen-Macaulay A-modules), we get the short exact
sequences 0 → HomA(X, A) → HomA(F, A) → HomA(Ω, A) → 0 and
0 → HomA(Ω, A) → HomA(G, A) → HomA(Ω′, A) → 0. Now applying
−⊗A B we obtain

TorA
1 (HomA(Ω, A), B) → HomA(X, A) ⊗A B →
HomA(F, A) ⊗A B → HomA(Ω, A) ⊗A B → 0

and

TorA
1 (HomA(Ω′, A), B) → HomA(Ω, A) ⊗A B →
HomA(G, A) ⊗A B → HomA(Ω′, A) ⊗A B → 0.

Since HomA(Ω, A) and HomA(Ω′, A) are maximal Cohen-Macaulay A-
modules and pdAB < ∞, 2.2 shows that TorA

i (HomA(Ω, A), B) =
TorA

i (HomA(Ω′, A), B) = 0 for all i > 0, and so we have short exact
sequences

0 → HomA(X, A)⊗AB → HomA(F, A)⊗AB → HomA(Ω, A)⊗AB → 0

and

0 → HomA(Ω, A)⊗AB → HomA(G, A)⊗AB → HomA(Ω′, A)⊗AB → 0.

Splicing these together, we see that the bottom row of the diagram
above is exact.
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Proposition 2.4. Assume that A is a Cohen-Macaulay local ring
with canonical module ω. Let (−)∨ denote the dual HomA(−, ω). Let
X and Y be finitely generated A-modules, with Y maximal Cohen-
Macaulay. Then Exti

A(X, Y ) = 0 for all i � 0 if and only if
TorA

i (X, Y ∨) = 0 for all i � 0.

If X is moreover maximal Cohen-Macaulay, then the following are
equivalent:

(1) Exti
A(X, Y ) = 0 for all i ≥ 1;

(2) TorA
i (X, Y ∨) = 0 for all i ≥ 1, and X ⊗A Y ∨ is maximal Cohen-

Macaulay.

Proof. That (1) and (2) are equivalent is proven in [16, 2.7]. To
prove the “if” direction of the first statement, choose a sufficiently
high syzygy module Ωn(X) of X such that TorA

i (Ωn(X), Y ∨) = 0 for
all i ≥ 1. This yields short exact sequences

0 → Ωn+i(X) ⊗A Y ∨ → Fn+i−1 ⊗A Y ∨ → Ωn+i−1(X) ⊗A Y ∨ → 0

for all i ≥ 1, derived from a minimal free resolution

· · · → Fn → · · · → F1 → F0 → X → 0

of X . Since Fn+i−1⊗AY ∨ are maximal Cohen-Macaulay for all i, count-
ing depths along these short exact sequences shows that Ωn+i(X)⊗AY ∨

are maximal Cohen-Macaulay for all i ≥ d = dimA. Thus we
have TorA

i (Ωn+d(X), Y ∨) = 0 for all i ≥ 1, and Ωn+d(X) ⊗A Y ∨

is maximal Cohen-Macaulay. By the second part of the theorem,
Exti

A(Ωn+d(X), Y ) = 0 for all i ≥ 1, and so ExtiA(X, Y ) = 0 for all
i � 0.

The “only if” direction of the first statement also uses the second
part of the theorem, and is easier.

3. Minimal Intersections. Throughout this section we assume
that Q is a regular local ring, and R = Q/(I1 + I2) with I1 and I2

nonzero ideals contained in the square of the maximal ideal of Q, and
we set R1 = Q/I1 and R2 = Q/I2. We start with some basic facts.

3.1. The ring R is a minimal intersection if and only if TorQ
i (R1, R2) =

0 for all i ≥ 1. Indeed, it is standard that TorQ
1 (R1, R2) = 0 if and
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only if I1∩I2 = I1I2 (see for example [19]). The statement follows now
from rigidity of Tor for regular local rings [1, 18].

Lemma 3.2. Assume that R is a minimal intersection. Then

(1) pdQR = pdQR1 + pdQR2;

(2) depthQQ + depthQR = depthQR1 + depthQR2.

Proof. The first statement follows by noting that if F and G are
minimal free resolutions of R1 and R2 over Q, then F⊗QG is a minimal
free resolution of R ∼= R1 ⊗Q R2 over Q, by 3.1, and this resolution is
of length pdQR1 + pdQR2. Statement (2) follows from Statement (1)
and the Auslander-Buchsbaum formula:

depthQQ + depthQR = depthQQ + (depthQQ − pdQR)
= depthQQ + (depthQQ − (pdQR1 + pdQR2))
= (depthQQ − pdQR1) + (depthQQ − pdQR2)
= depthQR1 + depthQR2.

The following result discusses Cohen-Macaulay and Gorenstein min-
imal intersections.

Proposition 3.3. With the notation above, we have:

(1) R is Cohen-Macaulay if and only if both R1 and R2 are Cohen-
Macaulay. When this is the case, height(I1 +I2) = heightI1 +heightI2.

(2) R is Gorenstein if and only if both R1 and R2 are Gorenstein.

(3) R is a complete intersection if and only if both R1 and R2 are
complete intersections.

Proof. The “if” direction of (1) is given in [8, Lemma 1.10]. For
the “only if” direction we use the the Intersection Theorem of Peskine-
Szpiro and Roberts, which implies the inequality

dimQ + dimR ≥ dimR1 + depthR2.
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(See [5, Corollary 9.4.6].) Therefore by Lemma 3.2(2)

depthR1 + depthR2 = depthQQ + depthQR

= dimQ + dimR

≥ dimR1 + depthR2.

Thus depthR1 ≥ dimR1 and so R1 is Cohen-Macaulay. By symmetry,
so is R2.

To prove the second statement of (1), the statement of Lemma 3.2(2)
gives

heightI = dimQ − dim R

= depthQQ − depthQR

= depthQQ − (depthQR1 + depthQR2 − depthQQ)
= (depthQQ − depthQR1) + (depthQQ − depthQR2)
= (dim Q − dimR1) + (dimQ − dim R2)
= heightI1 + heightI2.

To prove (2) it suffices by (1) to show only that

Ext
pdQR1+pdQR2

Q (R, Q) ∼= R

if and only if both

Ext
pdQR1

Q (R1, Q) ∼= R1 and Ext
pdQR2

Q (R2, Q) ∼= R2,

assuming R is Cohen-Macaulay. Let F and G be (deleted) minimal
Q-free resolutions of R1 and R2, respectively. By the vanishing of
TorQ

i (R1, R2) = 0 for all i ≥ 1, a minimal Q-free resolution of R
is given by F ⊗Q G. Let (−)∗ denote the dual HomQ(−, Q). Since
R1 and R2 are Cohen-Macaulay, both F∗ and G∗ are complexes with
homology Ext

pdQR1

Q (R1, Q) and Ext
pdQR2

Q (R2, Q), respectively, and
since R is Cohen-Macaulay, (F ⊗Q G)∗ is a complex with homology
Ext

pdQR

Q (R, Q). From the natural isomorphism of complexes (F ⊗Q

G)∗ ∼= F∗ ⊗Q G∗ it follows that

Ext
pdQR1+pdQR2

Q (R, Q) ∼= Ext
pdQR1

Q (R1, Q) ⊗Q Ext
pdQR2

Q (R2, Q).
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Now it is clear that R is Gorenstein if R1 and R2 are Gorenstein. For
the converse, one concludes that if Ext

pdQR1+pdQR2

Q (R, Q) ∼= R, then

Ext
pdQR1

Q (R1, Q) ∼= Q/I ′1 and Ext
pdQR2

Q (R2, Q) ∼= Q/I ′2 for ideals I ′1
and I ′2 of Q satisfying I1 ⊆ I ′1 and I2 ⊆ I ′2. Dualizing F∗ and G∗ back
to F and G shows the reverse inclusions of ideals, yielding I1 = I ′1 and
I2 = I ′2.

Statement (3) follows easily from (1) and the fact that μQ(I) =
μQ(I1) + μQ(I2), where μQ(J) denotes the minimal number of gen-
erators of an ideal J of Q.

Theorem 3.4. With the notations above, the following are equiva-
lent:

(1) R is a minimal intersection.

(2) Rp is a minimal intersection for all prime ideals p of Q.

(3) For all primes p of Q,

depthQp
Qp + depthQp

Rp = depthQp
(R1)p + depthQp

(R2)p

If R1 and R1 are Cohen-Macaulay, then (1)–(3) are equivalent to

(4) Rp is a proper intersection for all primes p of Q.

Recall that R is a called a proper intersection if dimR = dimR1 +
dimR2 − dimQ. Thus, in the Cohen-Macaulay case, part (4) of the
theorem says that minimal intersections are proper intersections in a
strong sense.

Proof. Suppose that R is a minimal intersection. We have
R = Q/(I1 + I2) with Q a regular local ring, and I1I2 = I1 ∩ I2.
Let p be a prime ideal of Q. Then Rp = Qp/((I1)p + (I2)p) with Qp

a regular local ring. Thus Rp is a minimal intersection if and only if
(I1)p(I2)p = (I1)p ∩ (I2)p, but this follows easily from the fact that
I1I2 = I1 ∩ I2.

That (2) implies (3) is simply Lemma 3.2(2).
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To show that (3) implies (1) we use 2.2 and 3.1:

sup{i | TorQ
i (R1, R2) 	= 0} = sup

{
depthQp

Qp − depthQp
(R1)p

−depthQp
(R2)p

}
= sup{−depthQp

Rp} = 0.

The equivalence of (4) is clear, using Proposition 3.3.

It is useful to have a criteria for when a local ring is a minimal
intersection. Recall that if X is a module over a local ring A with
residue field κ, then the Poincaré series of X over A is the formal
power series PA

X(t) =
∑

i≥0 dimκ TorA
i (X, κ)ti.

Proposition 3.5. The local ring R = Q/(I1 + I2) is a minimal

intersection (with respect to Q) only if
dPQ

R

dt
(−1) = 0.

Proof. Since Q is a regular local ring, PQ
R1

(t) and PQ
R2

(t) are
polynomials in t, and since R1 and R2 are Q-modules of rank zero,
we have PQ

R1
(−1) = 0 and PQ

R2
(−1) = 0. Now 3.1 shows that

PQ
R(t) = PQ

R1
(t)PQ

R2
(t). Thus PQ

R(t) has −1 as a double root.

Remark. The converse of Proposition 3.5 does not hold. Indeed, the
Poincaré series over Q = k[[x, y]] of the local ring R = k[[x, y]]/(x2, xy)
has −1 as a double root, yet R is not a minimal intersection with respect
to Q.

4. Vanishing over Minimal Intersections. This section
contains the main results on non-trivial vanishing of Ext and Tor for
modules over minimal intersections. The phenomenon of non-trivial
vanishing is patterned on what happens over complete intersections,
so we first briefly describe how non-trivial vanishing can occur in this
case.
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Vanishing over Complete Intersections. We first recall the following
remarkable theorem of Avramov and Buchweitz [4], which makes use
of support varieties, and which are reviewed below:

4.1. ([4]) Let M and N be finitely generated modules over a complete
intersection R. Then the following are equivalent.

(1) TorR
i (M, N) = 0 for all i � 0;

(2) Exti
R(M, N) = 0 for all i � 0;

(3) Exti
R(N, M) = 0 for all i � 0;

(4) V(M) ∩ V(N) = {0}.

Thus non-trivial vanishing occurs over complete intersections pre-
cisely when M and N are finitely generated modules, both of infinite
projective dimension, such that V(M)∩V(N) = {0}. We now describe
a situation in which this trivial intersection of support varieties holds:

Proposition 4.2. Let Q be a regular local ring, and R = Q/(f1, . . . , fc)
a compete intersection of codimension c ≥ 2. For 1 ≤ r ≤ c, let
R1 = Q/(f1, . . . , fr) and R2 = Q/(fr+1, . . . , fc). Suppose that M ′ is
a maximal Cohen-Macaulay module over R1 and that N ′ is a max-
imal Cohen-Macaulay module over R2. For M = M ′ ⊗R1 R and
N = N ′ ⊗R2 R we have

(1) V(M) ∩ V(N) = {0}
(2) pdR1

M ′ = pdRM , and pdR2
N ′ = pdRN .

Thus non-trivial vanishing occurs whenever M ′ and N ′ are chosen to
have infinite projective dimension over R1 and R2, respectively.

We briefly recall the definition of support variety (cf. [2]). Let R
be a complete intersection. We can without loss of generality assume
that the residue field k of R is algebraically closed. For any finitely
generated R-module M , the sequence of Ext modules ExtR(M, k) has
the structure of finitely generated graded module over the polynomial
ring R = k[χ1, . . . , χc] of cohomology operators. Thus annRExtR(M, k)
is a homogeneous ideal of R, and we define the support variety of M ,
V(M), to be the cone in c-dimensional affine space over k defined by
annRExtR(M, k).
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Proof. The proof is really that of [14, 3.1]: by construction, M lifts to
M ′, and the proof of [14, 3.1] gives (χr+1, . . . , χc) ⊆ annRExtR(M, k).
Thus we have V ((χr+1, . . . , χc)) ⊇ V(M). Similarly, V ((χ1, . . . , χr)) ⊇
V(N), and so

V(M) ∩ V(N) ⊆ V ((χ1, . . . , χr)) ∩ V ((χr+1, . . . , χc)) = {0}.

There are two other relevant properties of vanishing Ext and Tor
which hold over complete intersections. Both are well-known, and the
first is referred to as the uniform Auslander condition in [17]. See [3,
4.2] and [13, 2.2] for the proofs.

4.3. Let M and N be finitely generated modules over a complete
intersection R. Then

(1) ExtiR(M, N) = 0 for all i � 0 if and only if ExtiR(M, N) = 0 for
all i > min{depthR − depthM, depthR − depthN}.

(2) TorR
i (M, N) = 0 for all i � 0 if and only if TorR

i (M, N) = 0 for
all i > min{depthR − depthM, depthR − depthN}.

The second relevant property is a special case of what is proved in
[4, 5.6]. Below we let (−)∗ denote the dual HomR(−, R).

4.4. Let M and N be finitely generated modules over a complete
intersection R. Then

(1) Exti
R(M, N) = 0 for all i � 0 if and only if Exti

R(M, N∗) = 0 for
all i � 0.

(2) TorR
i (M, N) = 0 for all i � 0 if and only if TorR

i (M, N∗) = 0 for
all i � 0.

We can generalize these aspects of non-trivial vanishing to minimal
intersections. The trade-off to considering a class of rings much more
general than the complete intersections is that we establish non-trivial
vanishing for specific classes of modules — those consisting of modules
as described in Proposition 4.2. We remark that Proposition 4.2 does
not describe the only way in which non-trivial vanishing can occur over
complete intersections. See Example 5.2 below.
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Vanishing over Arbitrary Minimal Intersections. We assume now that
R = Q/(I1 + I2) is a minimal intersection with Q a regular local ring,
and R1 = Q/I1 and R2 = Q/I2. The following theorem is the main
result of the paper.

Theorem 4.5. Let R be a minimal intersection, M ′ any sufficiently
high syzygy module over R1 of a finitely generated R1-module, and N ′

any sufficiently high syzygy module over R2 of a finitely generated R2-
module. Let L′ any sufficiently high cosyzygy module over R2 of a
finitely generated R2-module. Then for M = M ′⊗R1 R, N = N ′⊗R2 R,
and L = HomQ(R1, L

′) the following hold:

(1) TorR
i (M, N) = 0 for all i > dimQ;

(2) Exti
R(M, L) = 0 for all i > dimQ;

(3) pdRM = pdR1
M ′, pdRN = pdR2

N ′, idRL = idR2L
′.

Proof. Let N ′′ be any finitely generated R2-module. Since Q is a
regular local ring we have TorQ

i (R1, N
′′) = 0 for all i � 0. Take an

exact sequence 0 → N ′ → Rb
2 → N ′′ → 0. Then from the derived long

exact sequence of Tor

· · · → TorQ
i (R1, N

′) → TorQ
i (R1, R

b
2) → TorQ

i (R1, N
′′) → · · · ,

and the fact that TorQ
i (R1, R2) = 0 for all i ≥ 1, we have the

isomorphisms TorQ
i+1(R1, N

′′) ∼= TorQ
i (R1, N

′) for all i ≥ 1. Thus if
N ′ is a sufficiently high syzygy over R2, we may assume that

(4.5.1) TorQ
i (R1, N

′) = 0 for all i ≥ 1.

Applying 2.1(1) we get the isomorphisms

TorQ
i (M ′, N ′) ∼= TorR1

i (M ′, N ′ ⊗Q R1) = TorR1
i (M ′, N)

for all i. Note that TorQ
i (R1, R2) = 0 for all i ≥ 1 implies that a

minimal free resolution of R over R1 is attained by tensoring a minimal
free resolution of R2 over Q with R1. Thus R has finite projective
dimension over R1. By choosing a sufficiently high syzygy M ′ over R1

we can assume that

(4.5.2) TorR1
i (M ′, R) = 0 for all i ≥ 1.
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By 2.1(1) we have the isomorphisms

TorR1
i (M ′, N) ∼= TorR

i (M ′ ⊗R1 R, N) = TorR
i (M, N)

for all i. Thus TorR
i (M, N) = 0 for all i > dimQ, and this establishes

the claim about the vanishing of homology.

To see the statements regarding the projective dimensions of M and
N , note that by (4.5.2) a minimal free resolution of M over R is
obtained by tensoring a minimal free resolution of M ′ over R1 with
R. Thus pdRM = pdR1

M ′. By symmetry we have pdRN = pdR2
N ′.

For (2), let L′′ be an R2-module. Since Q is a regular local ring,
Exti

Q(R1, L
′′) = 0 for all i � 0. Let 0 → L′′ → I → L′ → 0 be

an exact sequence of R2-modules with I injective. Then I is a direct
sum of injective hulls ER2(R2/p) of quotients R2/p with p a prime
ideal of R2. If P is a prime ideal of Q which is a preimage of p, then
ER2(R2/p) = HomQ(R2, EQ(Q/P )), where EQ(Q/P ) is the injective
hull of Q/P . Thus we can write I = HomQ(R2,J ) where J is an injec-
tive Q-module. We have the isomorphisms ExtiQ(R1, HomQ(R2,J )) ∼=
HomQ(TorQ

i (R1, R2),J ) for all i (see, for example, [19, page 360]).
Therefore we have ExtiQ(R1, I) = 0 for all i ≥ 1, and so from the long
exact sequence of Ext

· · · → Exti
Q(R1, L

′′) → Exti
Q(R1, I) → Exti

Q(R1, L
′) → · · · .

we get
ExtiQ(R1, L

′) ∼= Exti+1
Q (R1, L

′′)

for all i ≥ 1. Now it is clear that we can replace L′′ by an R2-module
L′ such that

(4.5.3) Exti
Q(R1, L

′) = 0 for all i ≥ 1.

By 2.1(2) we have the isomorphisms

Exti
Q(M ′, L′) ∼= Exti

R1
(M ′, HomQ(R1, L

′)) = ExtiR1
(M ′, L)

for all i. As in the part of the proof for (1) above, we can choose a
finitely generated R1-module M ′ such that TorR1

i (M ′, R) = 0 for all
i ≥ 1, which by 2.1(1) gives

Exti
R1

(M ′, L) ∼= Exti
R(M ′ ⊗R1 R, L) = ExtiR(M, L)
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for all i. Therefore we have Exti
R(M, L) = 0 for all i > dimQ.

To finish the proof we just need to justify that idRL = idR2L
′.

By 3.1, TorQ
i (R1, R2) = 0 for all i ≥ 1. Then 2.1(1) shows that

Exti
Q(R1, L

′) ∼= Exti
R2

(R, L′) for all i, in particular, L ∼= HomR2(R, L′).
Then by (4.5.3) we have Exti

R2
(R, L′) = 0 for all i ≥ 1. Thus a minimal

injective resolution of L over R is obtained by applying HomR2(R,−)
to a minimal injective resolution of L′ over R2, and so idRL = idR2L

′.

Over Cohen-Macaulay minimal intersections we can establish non-
trivial vanishing of Tor for a larger class of modules, and non-trivial
vanishing of Ext for pairs of finitely generated modules. Indeed, over
a Cohen-Macaulay ring a higher syzygy module is maximal Cohen-
Macaulay, but a maximal Cohen-Macaulay module need not be a higher
syzygy module.

Note that for the classes of modules identified in the following corol-
lary, Property 4.3 holds.

Recall from 3.3 that R is Cohen-Macaulay if and only if both R1 and
R2 are Cohen-Macaulay. We let (−)∨ denote the dual HomR(−, ω),
were ω is the canonical module of R.

Corollary 4.6. Let R be a Cohen-Macaulay minimal intersection.
Suppose that M ′ is a maximal Cohen-Macaulay R1-module, and N ′ is
a maximal Cohen-Macaulay R2-module. Then for M = M ′ ⊗R1 R and
N = N ′ ⊗R2 R we have

(1) M , N , and M ⊗R N are maximal Cohen-Macaulay R-modules;

(2) TorR
i (M, N) = 0 for all i ≥ 1;

(3) Exti
R(M, N∨) = 0 for all i ≥ 1;

(4) pdRM = ∞ if and only if M ′ is not free; pdRN = ∞ if and only
if N ′ is not free if and only if idRN∨ = ∞.

Proof. (1). From Theorem 3.4 we have that

depthQp
Qp − depthQp

(R1)p − depthQp
(R2)p = −depthQp

Rp ≤ 0

for all primes p of Q. Since M ′ is a maximal Cohen-Macaulay R1-
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module and N ′ is a maximal Cohen-Macaulay R2-module,

depthQp
(R1)p = depthQp

M ′
p and depthQp

(R2)p = depthQp
N ′

p

for all primes p of Q. Thus for all primes p of Q,

depthQp
Qp − depthQp

M ′
p − depthQp

N ′
p =

depthQp
Qp − depthQp

(R1)p − depthQp
(R2)p ≤ 0

Thus by 2.2 we obtain

(4.6.1) TorQ
i (M ′, N ′) = 0 for all i ≥ 1.

It follows that pdQ(M ′⊗QN ′) = pdQM ′+pdQN ′. Now the Auslander-
Buchsbaum formula gives the equation

depthQQ + depthQ(M ′ ⊗Q N ′) = depthQM ′ + depthQN ′

Using the fact that M ′ and N ′ are maximal Cohen-Macaulay, and
comparing with depthQQ + depthQR = depthQR1 + depthQR2 from
3.2, we see that depthQR = depthQ(M ⊗Q N), and this is the same as
depthRR = depthR(M ⊗R N).

The same proof shows that M and N are both maximal Cohen-
Macaulay, just by replacing N ′ by R2, and M ′ by R1, respectively.

(2). Following the proof of Theorem 4.5(1), and in light of (4.6.1),
we just need to show that (4.5.1) and (4.5.2) hold. As in the argument
for part (1), we have TorQ

i (R1, N
′) = 0 for all i ≥ 1, which is (4.5.1).

Similarly, TorQ
i (M ′, R2) = 0 for all i ≥ 1, and since TorQ

i (R1, R2) = 0
for all i ≥ 1, 2.1(1) implies we also have TorR1

i (M ′, R) = 0 for all i ≥ 1,
which is (4.5.2).

Property (3) follows from (1), (2), and Proposition 2.4.

By Theorem 4.5(3,4) the only part of (4) we need to show is the last
statement. We have N ′ is free over R2 if and only if TorR

i (k, N) = 0
for all i � 0 if and only if (by Proposition 2.4) Exti

R(k, N∨) = 0 for all
i � 0 if and only if idRN∨ < ∞.

Remark. The plentitude of modules involved in non-trivial vanish-
ing according to Corollary 4.6 thus depends on the number of non-
isomorphic indecomposable maximal Cohen-Macaulay modules over R1
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and R2. Much work has been done on the classification of Cohen-
Macaulay rings having only finitely many isomorphism classes of inde-
composable maximal Cohen-Macaulay modules, the so-called rings of
finite Cohen-Macaulay type. See [21] for a survey of the subject. In
particular, a Cohen-Macaulay ring of finite Cohen-Macaulay type has
at most an isolated singularity [10]. Outside of this case, the literature
suggests that the number of non-isomorphic indecomposable maximal
Cohen-Macaulay modules over a Cohen-Macaulay ring is quite large
(see, for example, [6]).

A stronger analogy to vanishing over complete intersections is at-
tained when we assume that R is Gorenstein: Properties (4) and (5)
below mimic 4.4, and (6) that of 4.1(3).

Recall by Proposition 3.3 that R is Gorenstein if and only if both R1

and R2 are Gorenstein. Below we let (−)∗ denote the dual HomR(−, R).

Corollary 4.7. Let R be a Gorenstein minimal intersection. Suppose
that M ′ is a maximal Cohen-Macaulay R1-module, and N ′ is a maximal
Cohen-Macaulay R2-module. Then for M = M ′ ⊗R1 R and N =
N ′ ⊗R2 R we have

(1) M , N , and M ⊗R N are maximal Cohen-Macaulay R-modules;

(2) TorR
i (M, N) = 0 for all i ≥ 1;

(3) Exti
R(M, N∗) = 0 for all i ≥ 1;

(4) TorR
i (M, N∗) = 0 for all i ≥ 1;

(5) Exti
R(M, N) = 0 for all i ≥ 1;

(6) Exti
R(N, M) = 0 for all i ≥ 1;

(7) pdRM = ∞ if and only if M ′ is not free, and pdRN∗ = ∞ if and
only if N ′ is not free.

Proof. Properties (1)-(3) and (7) are handled by Corollary 4.6. For
(4), (5), and (6) it suffices to show that N∗ ∼= HomR2(N ′, R2) ⊗R2 R.
But this is exactly the statement of Proposition 2.3.

5. Examples and a Sufficient Condition. The following is an
example illustrating that non-trivial vanishing can occur over rings
which are not minimal intersections.
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Example 5.1. Let Q = k[[W, X, Y, Z]] where k is a field, and

R = Q/(W 2, X2, Z2, XY, WX + XZ, WY + Y Z, Y 2 − WZ).

Then one may check that R is a zero-dimensional local ring with
PQ

R(t) = 1+7t+13t2+10t3+3t4. According to Proposition 3.5, R is not
a minimal intersection with respect to Q. Let w denote the image of
W in R, etc. Consider the finitely generated R-modules M = cokerϕ,
where ϕ is represented with respect to the standard basis of R2 by the

matrix
(

w x
y z

)
, and N = R Then we have Exti

R(M, N) = 0 for all

i > 0. Moreover, pdRM = ∞, and idRN = ∞.

The following example shows that Proposition 4.2 does not describe
the only way non-trivial vanishing occurs over complete intersections.
The details of the example are proven in [15].

Example 5.2. Let Q = k[[V, W, X, Y, Z]], with k a field, and
R = Q/(V W, XY ). Then R is a codimension two complete intersection.
Let v denote the image of V in R, etc., and M be the cokernel of the
map ϕ : R8 → R8 represented with respect to the standard basis of R8

by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−v 0 0 −z 0 0 0 y
−w 0 −z 0 0 0 y 0
0 0 v −w 0 y 0 0
0 0 0 w y 0 0 0
0 −w 0 x 0 0 0 0
0 −w x 0 0 0 0 0
0 y 0 0 0 0 0 0
x z 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For N = R/(v), we have TorR
i (M, N) = 0 for all i ≥ 1. Moreover,

M is not of the form described in Proposition 4.2. That is, for no
minimal generator f of (V W, XY ) is there a maximal Cohen-Macaulay
R1 = Q/(f)-module M ′ such that M ∼= M ′ ⊗R1 R.

A Sufficient Condition. Let R = Q/(I1+I2) be a minimal intersection
with Q a regular local ring, and R1 = Q/I1, R2 = Q/I2. In this section



524 D. A. JORGENSEN AND W. F. MOORE

we discuss a sufficient condition for determining whether a finitely
generated R-module M has a syzygy over R of the form M ′ ⊗R1 R for
some R1-module M ′ of infinite projective dimension over R1 satisfying
TorR1

i (M ′, R) = 0 for all i ≥ 1, and hence of the form identified in
Theorem 4.5.

Let
F : · · · → F2

∂2−→ F1
∂1−→ F0 → M → 0

be a minimal R-free resolution of M . Choose a sequence of free Q-
modules F̃i and maps ∂̃i between them

F̃ : · · · → F̃2
∂̃2−→ F̃1

∂̃1−→ F̃0 → 0

such that F and F̃⊗Q R are isomorphic complexes. It is useful to think
of the maps ∂i as being given by matrices over R (with respect to some
fixed bases of the Fi), in which case the maps ∂̃i may be thought of as
matrices of preimages in Q of the entries of the matrices representing
the ∂i. Since F is a complex of R-modules we have ∂̃i−1∂̃i ≡ 0 modulo
I1 + I2, in other words (∂̃i−1 ⊗Q R)(∂̃i ⊗Q R) = 0. For the sufficient
condition given below we will be considering the sequences of maps

(5.2.1) F̃i ⊗Q Rj
∂̃i⊗Rj−→ F̃i−1 ⊗Q Rj

∂̃i−1⊗Rj−→ F̃i−2 ⊗Q Rj

For j = 1, 2 and i ≥ 2.

Proposition 5.3. Let M be a finitely generated R-module of infinite
projective dimension over R, and suppose (F̃, ∂̃) is some lifting to Q
of a minimal R-free resolution (F, ∂) of M . If the sequence of maps
(5.2.1) forms an exact sequence for some i ≥ 2, then M has a syzygy
over R of the form M ′ ⊗Q Rj where M ′ is an Rj module satisfying
TorRj

l (M ′, R) = 0 for all l ≥ 1, and hence M participates in a non-
trivial vanishing of all higher Tor.

Proof. Without loss of generality assume that j = 1, and that (5.2.1)
forms an exact sequence for fixed i ≥ 2. Let M ′

i−2 := coker(∂̃i−1 ⊗R1).
Then

F̃i ⊗Q R1
∂̃i⊗R1−→ F̃i−1 ⊗Q R1

∂̃i−1⊗R1−→ F̃i−2 ⊗Q R1 → M ′
i−2 → 0
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is the beginning of an R1-free resolution of M ′
i−2. Tensoring this

complex with R we get Fi
∂i−→ Fi−1

∂i−1−→ Fi−2, which is exact. This
means that TorR1

1 (M ′
i−2, R) = 0. Since TorQ

i (R1, R2) = 0 for all i ≥ 1,
by 2.1(1) we have TorR1

l (M ′
i−2, R) ∼= TorQ

l (M ′
i−2, R2) for all l ≥ 1.

Therefore, by rigidity of Tor for regular local rings, TorR1
l (M ′

i−2, R) = 0
for all l ≥ 1. This finishes the proof, since M ′

i−2 ⊗R1 R ∼= coker∂i−1 is
a syzygy of M over R.

Remark. Suppose j = 1. If I2 happens to be generated by a Q-regular
sequence, then we a priori only need to know that the sequence of maps
in (5.2.1) with j = 1 forms a complex in order to invoke the conclusion
of Proposition 5.3. For if (5.2.1) forms a complex with j = 1, and I2 is
generated by a Q-regular sequence, then this sequence is also regular on
R1, and by working our way inductively from R up to R1, Nakayama’s
lemma yields that (5.2.1) is exact.

Next we give examples using Macaulay 2 which illustrate Proposition
5.3. We first discuss a few details of the liftings (F̃, ∂̃), and define special
maps based on the notion of Eisenbud operators, which were developed
in [7] for finitely generated modules over a complete intersection.

Fix a minimal generating set f1, . . . , fc of I1 + I2 such that I1 is
generated by f1, . . . , fr and I2 generated by fr+1, . . . , fc. (By our
assumption that I1 and I2 are non-zero, we have 1 ≤ r ≤ c − 1.)
Since the products ∂̃i−1∂̃i are zero modulo I1 + I2, we may express
them in terms of the fj: write

(5.3.1) ∂̃i−1∂̃i =
c∑

j=1

fj t̃i,j ,

where the t̃i,j are maps t̃i,j : F̃i → F̃i−2. Note that these maps are not
uniquely defined. They depend first on the resolution F, then on the
lifting (F̃, ∂̃), and then on the choice of the expression in (5.3.1).

In investigating when the sequence (5.2.1)

F̃i ⊗Q Rj
∂̃i⊗Rj−→ F̃i−1 ⊗Q Rj

∂̃i−1⊗Rj−→ F̃i−2 ⊗Q Rj
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is exact, we proceed in two steps. First we need to know when it forms
a complex. For j = 1 this is implied by the condition

(5.3.2) t̃i,r+1 ⊗ R1 = · · · = t̃i,c ⊗ R1 = 0,

and for j = 2 the condition

(5.3.3) t̃i,1 ⊗ R2 = · · · = t̃i,r ⊗ R2 = 0.

Once we know conditions (5.3.2) or (5.3.3) hold, we compute the
homology of the corresponding complex (5.2.1) to see that it is zero.

In the following examples, we perform both steps using Macaulay 2.
For the first step we use a special script, which can be obtained from
the authors, called getEisoplist which computes the maps t̃ij and
stores them as a list of lists called Eisoplist. Because the internal
indexing used by Macaulay 2 starts at 0, the element Eisoplist#i#j
actually represents the map t̃i+2,j+1. The code may also compute the
Eisenbud operators, which are the maps ti,j = t̃i,j ⊗Q R defined in [7]
in the case where R is a complete intersection.

The input for this script is a chain complex and an integer. Presum-
ably, the chain complex is a free resolution (F, ∂) over R of the module
M , and this may be obtained simply by using the res command in
Macaulay 2. The integer tells the script up to what degree i the maps
t̃i,j should be computed. The lifting (F̃, ∂̃) of the given resolution (F, ∂)
is done in the script using the Macaulay 2 command lift. Finally, the
choice of the t̃i,j defined by expression (5.3.1) is decided in the script
using the //Igb command in Macaulay 2 , where Igb is a Gröbner basis
of the ideal (f1, . . . , fc).

Example 5.4. Let Q = Q[x, y, z] and R = Q/I, where

I := (x2 − yz, xz − y2, z2 − xy, x2 + yz).

Then R is a zero-dimensional minimal intersection, and the R-module
M = R/(x + y + z) participates in non-trivial vanishing of all higher
Tor.

We first load the script getEisoplist, then show that R is in fact an
minimal intersection by testing TorQ

1 (Q/I1, Q/I2) = 0, then exhibit
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a minimal resolution of M , showing that it has infinite projective
dimension over R.

i1 : load"getEisoplist.m2"
--loaded getEisoplist.m2

i2 : Q = QQ[x,y,z];

i3 : I = ideal(x^2-y*z,x*z-y^2,z^2-x*y,x^2+y*z);

o3 : Ideal of Q

i4 : Tor_1(coker matrix{{x^2-y*z,x*z-y^2,z^2-x*y}},coker
matrix{{x^2+y*z}}) == 0

o4 = true

i5 : R = Q/I

o5 = R

o5 : QuotientRing

i6 : M = coker matrix{{x+y+z}}

o6 = cokernel | x+y+z |

1
o6 : R-module, quotient of R

i7 : Mres = res(M,LengthLimit=>6)

1 1 2 4 8 16 32
o7 = R <-- R <-- R <-- R <-- R <-- R <-- R

0 1 2 3 4 5 6

o7 : ChainComplex

Now we compute the maps t̃i,j . What is shown is {t̃2,1, t̃2,2, t̃2,3, t̃2,4}.
Notice that t̃2,4 = 0, and so it is also zero modulo I1.

i8 : MEisoplist = getEisoplist(Mres,2)

o8 = {{{2} | 0 1 |, {2} | -1 0 |, {2} | -1 -1 |, 0}}

o8 : List
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The next step is check that the homology of the complex

F̃2 ⊗Q R1

∂̃2⊗R1−−−→ F̃1 ⊗Q R1

∂̃1⊗R1−−−→ F̃0 ⊗Q R1

is zero (although we do not really need this step, by the remark
following Proposition 5.3, since I2 = (x2 +yz) is generated by a regular
element). First we need to define the ring R1.

i9 : use Q

o9 = Q

o9 : PolynomialRing

i10 : R1 = Q/ideal(x^2-y*z,x*z-y^2,z^2-x*y)

o10 = R1

o10 : QuotientRing

i11 : homology(lift(Mres.dd_1,Q) ** R1,lift(Mres.dd_2,Q) ** R1) ==
0

o11 = true

Therefore, by Proposition 5.3, M participates in non-trivial vanish-
ing.

We can build a companion module N for M as per Theorem 4.5,
which yield non-trivial vanishing of all higher TorR

i (M, N). The steps
below are: define R2, resolve the residue field over this ring, take an
appropriate syzygy, and tensor this syzygy down to the ring R.

i12 : use Q;

i13 : R2 = Q/ideal(x^2+y*z)

o13 = R2

o13 : QuotientRing
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i14 : Ntres = res coker vars R2

1 3 4 4 4
o14 = R2 <-- R2 <-- R2 <-- R2 <-- R2

0 1 2 3 4

o14 : ChainComplex

i15 : N = (coker lift(Ntres.dd_3,Q)) ** R

o15 = cokernel {2} | x z 0 x |
{2} | -y x 0 -y |
{2} | z 0 x 0 |
{2} | 0 z y x |

4
o15 : R-module, quotient of R

The beginning of a minimal resolution of N over R is given to show
that pdRN = ∞. Afterwards we compute {t̃2,1, t̃2,2, t̃2,3, t̃2,4} for N .
Note that t̃2,1 = t̃2,2 = t̃2,3 = 0
i16 : Nres = res(N,LengthLimit=>6)

4 4 4 4 4 4 4
o16 = R <-- R <-- R <-- R <-- R <-- R <-- R

0 1 2 3 4 5 6

o16 : ChainComplex

i17 : NEisoplist = getEisoplist(Nres,2)

o17 = {{0, 0, 0, {2} | 1 0 0 1 |}}
{2} | 0 1 0 0 |
{2} | 0 0 1 0 |
{2} | 0 0 0 1 |

o17 : List

Finally, we compute the homology of the corresponding complex
to show that it is zero. We also show that indeed the first several
TorR

i (M, N) are zero.
i18 : homology(lift(Nres.dd_1,Q) ** R2,lift(Nres.dd_2,Q) ** R2) ==
0

o18 = true
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i19 : Tor_1(M,N)==0,Tor_2(M,N)==0,Tor_3(M,N)==0

o19 = (true, true, true)

o19 : Sequence

Example 5.5. Let Q = Q[u, v, w, x, y, z] and R = Q/I, where

I = (uv − vx, uw − uz − wx + xz, vw − vz, u2 − v2 − 2ux + x2,

v2 − w2 + 2wz − z2, xy − vx, xz, yz − vz,

x2 − y2 + 2vy − v2, v2 + y2 − 2vy − z2).
Then R is a zero-dimensional Gorenstein minimal intersection.
i20 : Q = QQ[u,v,w,x,y,z];

i21 : I = ideal(u*v-v*x,u*w-u*z-w*x+x*z,v*w-v*z,u^2-v^2-2*u*x
+x^2,v^2-w^2+2*w*z-z^2,x*y-v*x,x*z,y*z-v*z,x^2-y^2+2*v*y-v^2,v^2
+y^2-2*v*y-z^2);

o21 : Ideal of Q

If we let I1 be generated by the first five generators of I and I2

generated by the second five, then we exhibit that R is an minimal
intersection.
i22 : Tor_1(coker matrix{{ u*v-v*x,u*w-u*z-w*x+x*z,v*w-v*z,
u^2-v^2-2*u*x+x^2,v^2-w^2 +2*w*z-z^2}}, coker matrix{{x*y-v*x,x*z,
y*z-v*z,x^2-y^2+2*v*y-v^2,v^2+y^2-2*v*y-z^2}}) == 0

o22 = true

The last map in the following resolution of I over Q shows that in
fact R is Gorenstein.
i23 : C=res I

1 10 35 52 35 10 1
o23 = Q <-- Q <-- Q <-- Q <-- Q <-- Q <-- Q <-- 0

0 1 2 3 4 5 6 7

o23 : ChainComplex

i24 : ideal transpose C.dd_6 == I

o24 = true
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Next we identify a module M which participates in non-trivial van-
ishing. We compute the t̃i,j for M and show that t̃2,6 = t̃2,7 = t̃2,8 =
t̃2,9 = t̃2,10 = 0. Then we show that the corresponding complex

F̃2 ⊗Q R1

∂̃2⊗R1−−−→ F̃1 ⊗Q R1

∂̃1⊗R1−−−→ F̃0 ⊗Q R1

has zero homology.

i25 : R = Q/I;

i26 : M = coker matrix{{u-x,v,w-z}};

i27 : Mres = res(M,LengthLimit=>6)

1 3 8 21 55 144 377
o27 = R <-- R <-- R <-- R <-- R <-- R <-- R

0 1 2 3 4 5 6

o26 : ChainComplex

i28 : tM = getEisoplist(Mres,2);

i29 : tM#0#5,tM#0#6,tM#0#7,tM#0#8,tM#0#9

o29 = (0, 0, 0, 0, 0)

o29 : Sequence

i30 : use Q;

i31 : R1 = Q/ideal(u*v-v*x,u*w-u*z-w*x+x*z,v*w-v*z,
u^2-v^2-2*u*x+x^2,v^2-w^2+2*w*z-z^2);

i32 : homology(lift(Mres.dd_1,Q) ** R1,lift(Mres.dd_2,Q) ** R1) ==
0

o32 = true

Now we identify a companion module N for M such that the pair has
non-trivial vanishing of all higher Tor. We compute the t̃i,j for N and
show that t̃2,1 = t̃2,2 = t̃2,3 = t̃2,4 = t̃2,5 = 0. Then we show that the
corresponding complex has zero homology.
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i33 : use R;

i34 : N = coker matrix{{x,y-v,z}};

i35 : Nres = res(N,LengthLimit=>6)

1 3 8 21 55 144 377
o35 = R <-- R <-- R <-- R <-- R <-- R <-- R

0 1 2 3 4 5 6

o35 : ChainComplex

i36 : tN = getEisoplist(Nres,2);

i37 : tN#0#0,tN#0#1,tN#0#2,tN#0#3,tN#0#4

o37 = (0, 0, 0, 0, 0)

o37 : Sequence

i38 : use Q;

i39 : R2 =
Q/ideal(x*y-v*x,x*z,y*z-v*z,x^2-y^2+2*v*y-v^2,v^2+y^2-2*v*y-z^2);

i40 : homology(lift(Mres.dd_1,Q) ** R2,lift(Mres.dd_2,Q) ** R2) ==
0

o40 = true

Finally, we compute the first few Tors, and then following Theo-
rem 4.7, we show that the first few Exti

R(M, HomR(N, R)) vanish.

i41 : Tor_1(M,N) == 0,Tor_2(M,N) == 0,Tor_3(M,N) == 0

o41 = (true, true, true)

o41 : Sequence

i42 : Hom(N,R)

o42 = image | z2 |

1
o42 : R-module, submodule of R

i43 : Ext^1(M,Hom(N,R)) == 0,Ext^2(M,Hom(N,R)) ==
0,Ext^3(M,Hom(N,R)) == 0
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o43 = (true, true, true)

o43 : Sequence

Appendix. Here is the Macaulay 2 script getEisoplist.m2. The
script can also be used to compute the Eisenbud operators in the case
where R is a complete intersection by simply adding the line(s)

--- tensor t_(ij) with R ( = ring N)
tempCoef = substitute(tempCoef, ring N);

immediately following the line
l := 0;

near the end.

getEisoplist=method() getEisoplist(ChainComplex, ZZ):=(Nres,n)->(
---Input : A free resolution of a module over a graded quotient
--- ring and an integer indicating how far the
--- Eisenbud operators should be constructed.
---Output: A List of Lists of Matrices, which contain the generalized
--- Eisenbud operators t_(ij).
--- get the module that the ChainComplex is a resolution of
N := cokernel Nres.dd_1;
--- get the ring that the module is over
R := ring N;
--- get the ring that R is a quotient of
Q := ambient R;
--- n is the highest degree for which the generalized Eisenbud
--- operators are constructed
firstMatrList := {};
i := 1;
--- the below loop builds a list of matrices which have entries
--- in R and are the liftings of differentials of the resolution
while (i <= n) do
(

firstMatrList = firstMatrList | {lift(Nres.dd_i, Q)};
i = i + 1;

);
secondMatrList := {};
i = 0;
--- the below loop takes the entries of firstMatrList and composes
--- the maps pairwise. Using the n above, this creates a list of
--- length n-1.
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while (i < n-1) do
(

secondMatrList =
secondMatrList | {firstMatrList#i * firstMatrList#(i+1)};
i = i + 1;

);
--- create a groebner basis for the ideal that we are modding out
--- in the ring of our module N
I := ideal R;
--- must use ChangeMatrix => true for division to be used
Igb := gb(I, ChangeMatrix => true);
i = 0;
Eisoplist := {};
--- the below loop builds a list of lists of matrices. Each
--- entry in Eisoplist is a list of matrices whose length is
--- the number of generators of the ideal we are modding out by.
--- Since each product matrix is congruent to zero mod the f’s,
--- we are able to represent the entries in terms of the generators
--- of the ideal. We decompose each matrix to the form
--- (matrix_1)f1 * ... * (matrix_c)fc, where c is the number of
--- generators of the ideal we are modding out by. Thus, when you
--- see Eisoplist#i#j below, it represents t_(ij), the f_jth component
--- of the ith matrix in the above secondMatrList
while (i < n-1) do
(

j := 0;
--- had to be a Mutable List to access and change elements
tempMatrList := new MutableList from {};
while (j < numgens target secondMatrList#i) do
(

tempRow := secondMatrList#i^{j};
--- the below command inputs a row of a matrix and
--- outputs a matrix whose columns are the components
--- of the elements of the input matrix in the original
--- basis of I.
tempCoef := tempRow // Igb;
--- if we are on the first row, we need to insert the
--- matrix in the list, otherwise, just append to the
--- one that we’re on.
l := 0;
while (l < numgens I) do
(

if (j == 0) then
(

tempMatrList = append(tempMatrList, tempCoef^{l});
)
else
(

tempMatrList#l = tempMatrList#l || tempCoef^{l};
);
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l = l + 1;
);
j = j + 1;

);
i = i + 1;
Eisoplist = Eisoplist | {toList(tempMatrList)};

);
Eisoplist

)
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