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COMPUTING GORENSTEIN COLENGTH

H. ANANTHNARAYAN

ABSTRACT. Given an Artinian local ring R, we define
(in [1]) its Gorenstein colength g(R) to measure how closely
we can approximate R by a Gorenstein Artin local ring. In
this paper, we show that R = T/b satisfies the inequality
g(R) ≤ λ(R/soc(R)) in the following two cases: (a) T is a
power series ring over a field of characteristic zero and b an
ideal that is the power of a system of parameters or (b) T is a
2-dimensional regular local ring with infinite residue field and
b is primary to the maximal ideal of T .

In the first case, we compute g(R) by constructing a Goren-
stein Artin local ring mapping onto R. We further use this
construction to show that an ideal that is the nth power of a
system of parameters is directly linked to the (n− 1)st power
via Gorenstein ideals. A similar method shows that such ide-
als are also directly linked to themselves via Gorenstein ideals.

1. Introduction. Let us first recall the definition of Gorenstein
colength and review some of its basic properties from [1] in this section.

Definition 1.1. Let (R,m, k) be an Artinian local ring. Define the
Gorenstein colength ofR, denoted g(R) as: g(R) = min{λ(S)−λ(R) : S
is a Gorenstein Artin local ring mapping onto R}, where λ( ) denotes
length.

The main questions one would like to answer are the following:

Question 1.2.

a) How does one intrinsically compute g(R)?

b) How does one construct a Gorenstein Artin local ring S mapping
onto R such that λ(S) − λ(R) = g(R)?
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In order to answer Question 1.2(a), we prove the following inequalities
in [1], which give bounds on g(R).

λ(R/(ω∗(ω))) ≤ min{λ(R/a) : a is an ideal in R, a � a∨} ≤ g(R) ≤ λ(R),

Fundamental Inequalities

where ω is the canonical module of R, ω∗(ω) = 〈f(ω) : f ∈
HomR(ω,R)〉 is the trace ideal of ω in R and a∨ = HomR(a, ω).

A natural question one can ask in this context is Question 3.10 in [1],
which is the following:

Question 1.3. Let (R,m, k) be an Artinian local ring and a an ideal
in R such that a � a∨. Does there exist a Gorenstein Artinian local
ring S mapping onto R, such that λ(S) − λ(R) = λ(R/a)?

The socle of R, soc(R), is a direct sum of finitely many copies of k,
hence it is isomorphic to soc(R)∨. Hence a particular case of the above
question is the following:

Question 1.4. Is there a Gorenstein Artin local ring S mapping
onto R such that λ(S) − λ(R) = λ(R/soc(R))?

A weaker question one can ask is the following:

Question 1.5. Is g(R) ≤ λ(R/soc(R))?

We answer Question 1.5 in two cases in this paper. In section 3, we
show that if T is a power series ring over a field and d = (f1, . . . , fd)
is an ideal generated by a system of parameters, then g(T/dn) ≥
λ(T/dn−1). Further, if the residue field of T has characteristic zero, we
construct a Gorenstein Artin local ring S mapping onto T/dn such that
λ(S) − λ(T/dn) = λ(T/dn−1) using a theorem of L. Ried, L. Roberts
and M. Roitman proved in [7]. This shows that g(T/dn) = λ(T/dn−1).
In particular, this proves that R = T/dn satisfies the inequality in
Question 1.5.
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In [5], Kleppe, Migliore, Miro-Roig, Nagel and Peterson show that
dn can be linked to dn−1 via Gorenstein ideals in 2 steps and hence
to d in 2(n − 1) steps. In section 4, we use the ideal corresponding to
the Gorenstein ring constructed in section 3, to show that dn can be
directly liked to dn−1 and hence to d in (n− 1) steps.

When R is an Artinian quotient of a two-dimensional regular local
ring with an infinite residue field, we use a formula due to Hoskin and
Deligne (Theorem 5.6) in order to answer Question 1.5 in section 5.

2. Computing ω∗(ω). Let (R,m, k) be an Artinian local ring with
canonical module ω. As noted in [1], maps from ω to R play an
important role in the study of Gorenstein colength. In this section,
we prove a lemma which helps us compute the trace ideal ω∗(ω) of ω
in R. We use the following notation in this section.

Notation. Let (T,mT , k) be a regular local ring mapping onto R.
Let

0 → T bd
φ→ T bd−1 → · · · → T → R → 0 (�)

be a minimal resolution of R over T . Then a resolution of the canonical
module ω of R over T is given by taking the dual of the above
resolution, i.e., by applying HomT ( , T ) to the above resolution. Hence

a presentation of ω is T bd−1
φ∗
→ T bd → ω → 0. Tensor with R and apply

HomR(−, R) to get an exact sequence 0 −→ ω∗ −→ Rbd
φ⊗R−→ Rbd−1 .

Let ω∗ be generated minimally by bd+1 elements. Thus we have an

exact sequence Rbd+1
ψ−→ Rbd

φ⊗R−→ Rbd−1 , where ω∗ = im(ψ).

Lemma 2.1. With notation as above, let ψ be given by the matrix
(aij). Then the trace ideal of ω, ω∗(ω), is the ideal generated by the
aij’s.

The above lemma is a particular case of the following lemma.

Lemma 2.2. Let (R,m, k) be a Noetherian local ring and M a
finitely generated R-module. Let Rn

B−→ Rm −→ M −→ 0 be
a minimal presentation of M . Apply HomR( , R) to get an exact
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sequence 0 −→ M∗ −→ (R∗)m B∗−→ (R∗)n. Map a free R-module, say

Rk, minimally onto M∗ to get an exact sequence Rk A−→ (R∗)m B∗
−→

(R∗)n, where M∗ = ker(B∗) = im(A). Then the trace ideal of M ,
M∗(M) = (aij : aij are the entries of the matrix A).

Proof. Let w1, . . . , wm be a minimal generating set of M , e1, . . . , em
be a basis of Rm such that ei 	→ wi, and e∗1, . . . , e

∗
m be the correspond-

ing dual basis of (R∗)m.

Let f ∈ M∗. Write f = Σmi=1rie
∗
i ∈ (R∗)m. Then f acts on M by

sending wj to rj . Hence if A = (aij), then the generators of M∗ are
fj = Σmi=1aije

∗
i , 1 ≤ j ≤ k. Thus fj(wi) = aij . Thus M∗(M) = (aij).

Corollary 2.3. With notation as above, let (T ′,mT ′ , k) be a regular
local ring which is a flat extension of T such that mTT

′ ⊆ mT ′ and let
R′ = T ′ ⊗T R. Then ω∗

R′(ωR′) = ω∗(ω)T ′.

Proof. Since T ′ is flat over T , R′ = T ′ ⊗T R and mTT
′ ⊆ mT ′ , a

minimal resolution of R′ over T ′ is obtained by tensoring (�) by T ′

over T . Therefore ω∗
R′(ωR′) is the ideal generated by the entries of the

matrix ψ ⊗T T ′. Now, by Lemma 2.1, the ideal in R generated by the
entries of ψ is ω∗(ω). Therefore, ω∗

R′(ωR′) = ω∗(ω)T ′.

3. Powers of Ideals Generated by a System of Parameters.
In this section, the main theorem we prove is the following:

Theorem 3.1. Let T = k[|X1, . . . , Xd|] be a power series ring over a
field k of characteristic zero. Let f1, . . . , fd be a system of parameters
in T and R = T/(f1, . . . , fd)n. Then g(R) = λ(T/(f1, . . . , fd)n−1).

In order to prove this, we first prove the theorem when fi = Xi, i =
1, . . . , d, and then use the fact that T is flat over T ′ = k[|f1, . . . , fd|].

Theorem 3.2. Let T = k[|X1, . . . , Xd|] be a power series ring over
a field k with maximal ideal mT = (X1, . . . , Xd). Let R = T/mn

T and
ω be the canonical module of R. Then ω∗(ω) = soc(R) = mn−1

T /mn
T .
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Proof. In order to prove this, we show that if φ ∈ Hom(ω,R), then
φ(ω) ⊆ soc(R). Since soc(R) ⊆ ω∗(ω), this will prove the theorem.

Note that we can consider R to be the quotient of the polynomial
ring k[X1, . . . , Xd] by (X1, . . . , Xd)n. Thus change notation so that
T = k[X1, . . . , Xd] and mT = (X1, . . . , Xd) is its unique homogenous
maximal ideal.

The injective hull of k over T , ET (k), is k[X−1
1 , . . . , X−1

d ], where the
multiplication is defined by

(Xa1
1 · · ·Xad

d )·(X−b1
1 · · ·X−bd

d )=
{
Xa1−b1

1 · · ·Xad−bd

d if ai ≤ bi for all i
0 otherwise

and extended linearly (e.g., see [6]).

Let b = mn
T . The canonical module ω of R is isomorphic to the

injective hull of the residue field of R. Hence ω � HomR(R,ET (k)) �
(0 :k[X−1

1 ,... ,X−1
d

] b). Note that b · (X−a1
1 · · ·X−ad

d ) = 0 whenever ai ≥ 0
and n >

∑
ai. Since λ(ω) = λ(R), we conclude that

ω � k-span of

{
X−a1

1 · · ·X−ad

d : ai ≥ 0;n >
d∑
i=1

ai

}
.

Observe that ω is generated by {X−a1
1 · · ·X−ad

d :
∑d

i=1 ai = n − 1} as
an R-module. Let φ ∈ ω∗. We will now show that φ(X−a1

1 · · ·X−ad

d ) ∈
soc(R) by induction on a1. Let w = X−a1

1 · · ·X−ad

d ,
∑d

i=1 ai = n− 1.

If a1 = 0, then X1 · w = 0. Hence φ(w) ∈ (0 :R X1) =
soc(R). If not, then X1w = X2(X

−(a1−1)
1 X

−(a2+1)
2 · · ·X−ad

d ). We
have φ(X−(a1−1)

1 X
−(a2+1)
2 · · ·X−ad

d ) ∈ soc(R) by induction. Thus
X2φ(X−(a1−1)

1 X
−(a2+1)
2 · · ·X−ad

d ) = 0 which yields X1φ(w) = 0. But
(0 :R X1) = soc(R), which proves that φ(ω) ⊆ soc(R).

Since we know that λ(R/(ω∗(ω)) ≤ g(R) by the fundamental inequal-
ities, we immediately get the following:

Corollary 3.3. With notation as in Thoerem 3.2, g(R) ≥ λ(R/soc(R)).

We prove the reverse inequality in Theorem 3.8 by constructing a
Gorenstein Artin ring S mapping onto R such that λ(S) − λ(R) =
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λ(R/soc(R)). The following theorem of Ried, Roberts and Roitman is
used in the construction.

Theorem 3.4. (Reid, Roberts, Roitman) Let k be a field of char-
acteristic zero, S = k[X1, . . . , Xd]/(Xn1

1 , . . . , Xnd

d ) = k[x1, . . . , xd].
Let m ≥ 1 and f be a nonzero homogeneous element in S such
that (x1 + · · · + xd)mf = 0. Then deg (f) ≥ (t − m + 1)/2, where
t =

∑d
i=1(ni − 1).

We use the following notation in this section.

Notation. Let k be a field. For any graded ring S (with S0 = k), by
hS(i) we mean the k-dimension of the ith graded piece of the ring S
and if S is Artinian, Max(S) := max{i : hS(i) �= 0}. All k-algebras in
this section are standard graded, i.e., they are generated as a k-algebra
by elements of degree 1.

We also need the following basic fact in order to prove Theorem 3.8.

Remark 3.5. Let S = k[X1, . . . , Xd]/(Xn1
1 , . . . , Xnd

d ) be a quotient
of the polynomial ring over a field k and f be a non-zero homoge-
neous element in S of degree s. Then S/(0 :S f) is Gorenstein and
Max(S/(0 :S f)) = Max(S) − s.

Proposition 3.6. Let T = k[X1, . . . , Xd] be a polynomial ring over
k and mT = (X1, . . . , Xd) be its unique homogeneous maximal ideal.
Let f be a homogeneous element and c = (Xn

1 , . . . , X
n
d ) :T f be such

that c ⊆ mn. Then the following are equivalent:

i) λ(mn
T /c) = λ(T/mn−1

T ).

ii) Max(T/c) = 2(n− 1).

iii) deg (f) = (d− 2)(n− 1).

Proof. Since Max(T/(Xn
1 , . . . , X

n
d )) = d(n − 1), (ii) ⇔ (iii) follows

from Remark 3.5.

Let R = T/mn
T and S = T/c. Since T/(Xn

1 , . . . , X
n
d ) is a Gorenstein

Artin local ring, so is S. Note that soc(R) = mn−1
T /mn

T and λ(S) −
λ(R) = λ(mn

T /c).
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The rings R and S are quotients of the polynomial ring k[X1, . . . , Xd]
by homogeneous ideals. Thus, both R and S are graded under the
standard grading. Since c ⊆ mn

T ,

hS(i) = hR(i) for i < n. (∗)

Since S is Gorenstein,

hS(i) = hS(Max(S) − i). (∗∗)

Using (∗) and (∗∗), we see that the Hilbert function of S is:

degree i 0 1 2 3 . . . n-1

hR(i) 1 d
(
d+ 1

2

) (
d+ 2

3

)
. . .

(
d+ n− 2
n− 1

)

hS(i) 1 d
(
d+ 1

2

) (
d+ 2

3

)
. . .

(
d+ n− 2
n− 1

)

degree i . . . Max(S) - (n-1) Max(S) - (n-2) . . . Max(S) - 1 Max(S)
hR(i) . . . 0 0 . . . 0 0

hS(i) . . .
(
d+ n− 2
n− 1

) (
d+ n− 3
n− 2

)
. . . d 1

Thus we have

λ(T/mn−1
T ) = hR(n− 2) + hR(n− 3) + · · · + hR(0)

= hS(n− 2) + hS(n− 3) + · · · + hS(0)
= hS(Max(S) − (n− 2)) + hS(Max(S) − (n− 3))

+ · · · + hS(Max(S))

=
∑

i≥Max(S)−(n−2)

hS(i)

≤ λ(S) − λ(R) = λ(mn
T /c).

Moreover, from the above table, equality holds if and only if Max(S)−
(n− 1) = n− 1, proving (i) ⇔ (ii).

In the following corollary, we show that f = (X1 + . . .+Xd)(d−2)(n−1)

satisifies the hypothesis of Proposition 3.6.
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Corollary 3.7. Let T = k[X1, . . . , Xd] be a polynomial ring over k,
a field of characteristic zero, and mT = (X1, . . . , Xd) be its unique
homogeneous maximal ideal. Let cn = (Xn

1 , . . . , X
n
d ) : l(d−2)(n−1),

where l = X1 + · · · +Xd. Then cn ⊆ mn
T .

Moreover, λ(mn
T /cn) = λ(T/mn−1

T ).

Proof. By Theorem 3.4, if F is a homogeneous element in T such that
lmF ∈ (Xn

1 , . . . , X
n
d ), then deg (F ) ≥ (d(n− 1)−m+ 1)/2. Therefore,

for m = (d − 2)(n − 1), we see that deg (F ) ≥ n − 1/2, i.e., F ∈ mn
T .

Thus (Xn
1 , . . . , X

n
d ) : (X1 + · · · +Xd)(d−2)(n−1) ⊆ mn

T .

Moreover, by Proposition 3.6, since deg (l(d−2)(n−1)) = (d−2)(n−1),
λ(mn

T /cn) = λ(T/mn−1
T ).

Theorem 3.8. Let T = k[|X1, . . . , Xd|] be a power series ring
over a field k of characteristic zero, with unique maximal ideal mT =
(X1, . . . , Xd). Let R := T/mn

T . Then g(R) ≤ λ(R/soc(R)) =
λ(T/mn−1).

Proof. Let cn = (Xn
1 , . . . , X

n
d ) :T l(d−2)(n−1), where l = X1 +

· · · + Xd. Let S = T/cn. Then S is a Gorenstein Artin local ring
mapping onto R. Note that R � k[X1, . . . , Xd]/(X1, . . . , Xd)n and
S � k[X1, . . . , Xd]/((Xn

1 , . . . , X
n
d ) :T l(d−2)(n−1)).

Hence, by Corollary 3.7, λ(S) − λ(R) = λ(R/soc(R)) = λ(T/mn−1
T ).

This shows that g(R) ≤ λ(R/soc(R)).

Remark 3.9. The ring S constructed in the proof of the theorem does
not work when char(k) = 2. For example, when d = 3 and n = 3, we
have hR(i) = 1, 3, 6 and hS(i) = 1, 2, 5, 2, 1.

Remark 3.10. Let S be a graded Gorenstein Artin quotient of
T = k[X1, . . . , Xd], where k is a field of characteristic zero. We say
that S is a compressed Gorenstein algebra of socle degree t = Max(S),
if for each i, hS(i) is the maximum possible given d and t, i.e., hS(i) =
min{hT (i), hT (t−i)} (e.g., see [3]). Note that the proofs of Proposition
3.6 and Corollary 3.7 show that S = T/((Xn

1 , . . . , X
n
d ) :T l(d−2)(n−1)) is

a compressed Gorenstein Artin algebra of socle degree 2n−2. A similar
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technique also shows that S = T/((Xn
1 , . . . , X

n
d ) :T l(d−2)(n−1)−1) is a

compressed Gorenstein Artin algebra of socle degree 2n− 1.

In the following remark, we record some key observations which we
will use to prove Theorem 3.1.

Remark 3.11. Let T = k[|X1, . . . , Xd|] be a power series ring
over a field k. Let f1, . . . , fd be a system of parameters. Then
T ′ = k[|f1, . . . , fd|] is a power series ring and T is free over T ′ of
rank e = λ(T/(f1, . . . , fd)). Thus, if b and c are ideals in T ′, then
(c :T ′ b)T = (cT :T bT ) and λ(T/bT ) = e · λ(T ′/b).

Firstly, we construct a Gorenstein Artin ring S mapping onto R
such that λ(S) − λ(R) = λ(T/(f1, . . . , fd)n−1) which proves g(R) ≤
λ(T/(f1, . . . , fd)n−1). We do this as follows:

Suppose that char(k) = 0. Let d = (f1, . . . , fd), c = (fn1 , . . . , f
n
d ) :T ′

l(d−2)(n−1), where l = (f1 + · · ·+fd). We see that since (fn1 , . . . , f
n
d ) :T ′

l(d−2)(n−1) ⊆ dn in T ′ by Corollary 3.7, the same holds in T by
using Remark 3.11. Moreover, since λ(dnT/cT ) = eλ(dn/c) and
λ(T/dn−1T ) = eλ(T ′/dn−1), the length condition in Corollary 3.7 gives
λ(dnT/cT ) = λ(T/dn−1T ).

This implies that if R = T/dnT , then S = T/cT is a Gorenstein Artin
ring mapping onto R and λ(S) − λ(R) = λ(dnT/cT ) = λ(T/dn−1T ).
Therefore g(R) ≤ λ(T/dn−1T ). Thus as a consequence of Theorem 3.8,
we have proved

Theorem 3.12. Let T = k[|X1, . . . , Xd|] be a power series ring over
a field k of characteristic zero, f1, . . . , fd be a system of parameters and
d = (f1, . . . , fd). Let R = T/dn. Then g(R) ≤ λ(T/dn−1).

In order to prove Theorem 3.1, we know need to show that g(R) ≥
λ(T/dn−1). We prove this by first computing the trace ideal ω∗(ω) of
the canonical module and use the fundamental inequalities. We use the
lemmas concerning the computation of ω∗(ω) proved in section 2.
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Theorem 3.13. Let T = k[|X1, . . . , Xd|] be a power series ring
over a field k. Let f1, . . . , fd be a system of parameters and R =
T/(f1, . . . , fd)n. Then ω∗(ω) = (f1, . . . , fd)n−1/(f1, . . . , fd)n, where
ω is the canonical module of R.

Proof. Let T ′ = k[[f1, . . . , fd]], d = (f1, . . . , fd)nT ′ and R′ � T ′/dn.
By Theorem 3.2, ω∗

R′(ωR′) = dn−1/dn. Therefore, since T is free over
T ′, by Corollary 2.3, ω∗(ω) = dn−1T/dnT = (f1, . . . , fd)n−1/(f1, . . . , fd)n.

Proof of Theorem 3.1. By Theorem 3.12, g(R) ≤ λ(T/(f1, . . . , fn−1
d )).

The other inequality follows from Theorem 3.13 which can be seen as
follows:

Let ω be the canonical module of R. We know that g(R) ≥
λ(R/ω∗(ω)) by the fundamental inequalities. This yields g(R) ≥
λ(T/(f1, . . . , fd)n−1) since R = T/(f1, . . . , fd)n and
ω∗(ω) = (f1, . . . , fd)n−1/(f1, . . . , fd)n. This gives us the equality
g(R) = λ(T/(f1, . . . , fd)n−1) proving the theorem.

Corollary 3.14. Let T = k[|X1, . . . , Xd|] be a power series ring over
a field k of characteristic zero. Let f1, . . . , fd be a system of parameters
and R = T/(f1, . . . , fd)n. Then g(R) ≤ λ(R/soc(R)).

Proof. We have λ(R/soc(R)) ≥ λ(T/(f1, . . . , fd)n−1) = g(R),
since (f1, . . . , fd)n :T (X1, . . . , Xd) ⊆ (f1, . . . , fd)n :T (f1, . . . , fd) =
(f1, . . . , fd)n−1.

Remark 3.15. Let T = k[[X,Y ]], R = T/(X,Y )n and S =
T/(Xn, Y n). Then S is a Gorenstein Artin local ring mapping onto
R such that λ(S)−λ(R) = λ(T/mn−1

T ) = λ(R/soc(R)). This, together
with Corollary 3.3, shows that g(R) = λ(R/mn−1) without any assump-
tions on the characteristic of k. Thus, when d = 2, using the technique
described in Remark 3.11, we see that the conclusion of Theorem 3.1
is independent of the characteristic of k.
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Remark 3.16. By taking d to be the maximal ideal in Theorem 3.1,
we get the following: Let k be a field of characteristic zero and T =
k[|X1, . . . , Xd|] be a power series ring over k. Let mT = (X1, . . . , Xd)
be the maximal ideal of T and R := T/mn

T . Then

g(R) = λ(T/mn−1
T ) = λ(R/soc(R)).

This also follows immediately from Theorems 3.2 and 3.8.

Remark 3.17. If R = k[X1, . . . , Xd]/(X1, · · · , Xd)n, where k is a field
of characteristic zero, it follows from Theorem 3.1 and Theorem 3.8 that
g(R) = λ(R/ω∗(ω)). Thus Question 3.9 in [1] has a positive answer,
i.e., in this case,

min{λ(R/a) : a � a∨} = g(R).

4. Applications to Gorenstein Linkage.

Proposition 4.1. Let (S,m, k) be a graded Gorenstein Artin local
ring such that deg (soc(S)) = t. Let f ∈ m be a homogeneous element
in S of degree s and c = (0 :S f). Then (c :S mn) = m(t+1)−(s+n) + c.

Proof. Note that m(t+1)−(s+n) · mn · f ⊆ mt+1 = 0. Hence
m(t+1)−(s+n) + c ⊆ cn :S mn. To prove the other inclusion, let g be
a homogeneous form of degree less than (t + 1) − (s + n). Then g · f
is a homogeneous form of degree t− n or less. If g · f = 0, then g ∈ c.
If g · f �= 0, since S is Gorenstein, there is some element h ∈ mn such
that (gf) ·h generates soc(S) and hence is not zero. Thus gfmn �= 0 for
g �∈ m(t+1)−(s+n) + c. Therefore (c :S mn) ⊆ m(t+1)−(s+n) + c, proving
the proposition.

Corollary 4.2. Let k be a field of characteristic zero and T =
k[|X1, . . . , Xd|] be a power series ring. Let m = (X1, . . . , Xd) and
cn = ((Xn

1 , . . . , X
n
d ) :T ls), where l = (X1 + · · · + Xd) and s ≥

(d− 2)(n− 1) − 1. Then (cn :T mn) = m(d−1)(n−1)−s.

Proof. By taking S = T/(Xn
1 , . . . , X

n
d ), it follows from Proposition

4.1 that (cn :T mn) = m(d−1)(n−1)−s + cn. It remains to prove that
cn ⊆ m(d−1)(n−1)−s.
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Let f be a homogeneous element of T such that f ∈ c, i.e., f · ls ⊆
(Xn

1 , . . . , X
n
d ). Hence by Theorem 3.4, deg(f) ≥ (d(n−1)−s+1)

2 ≥
(d − 1)(n − 1) − s by the hypothesis on s. This shows that cn ⊆
m(d−1)(n−1) − s.

Let T = k[|X1, . . . , Xd|] be a power series ring over a field k.
Let f1, . . . , fd be a system of parameters. Let T ′ = k[|f1, . . . , fd|],
d = (f1, . . . , fd)nT ′ and cn = (fn1 , . . . , fnd ) :T ′ ls, where l = f1+· · ·+fd
and s ≥ (d − 2)(n − 1) − 1. Since, by Corollary 4.2, (cn :T ′ dn) =
d(d−1)(n−1)−s in T ′, the same holds in T by Remark 3.11. Therefore
(cnT :T dnT ) = d(d−1)(n−1)−sT . Thus we see that

Proposition 4.3. Let k be a field of characteristic zero and T =
k[|X1, . . . , Xd|] be a power series ring. Let d = (f1, . . . , fd), where
f1, . . . , fd form a system of parameters. Let l = f1 + · · · + fd and
s ≥ (d− 2)(n− 1)− 1. Then cn = ((fn1 , . . . , f

n
d ) :T ls) is a Gorenstein

ideal such that (cn :T dn) = d(d−1)(n−1)−s.

Definition 4.4. Let (T,mT , k) be a regular local ring. An unmixed
ideal b ⊆ T is said to be in the Gorenstein linkage class of a complete
intersection (glicci) if there is a sequence of ideals cn ⊆ bn, b0 = b,
satisfying

1) T/cn is Gorenstein for every n

2) bn+1 = (cn :T bn) and

3) bn is a complete intersection for some n.

We say that b is linked to bn via Gorenstein ideals in n steps.

Remark 4.5.

1. Let k be a field of characteristic zero and T = k[|X1, . . . , Xd|]
be a power series ring. Let d = (f1, . . . , fd), where f1, . . . , fd form a
system of parameters. In [5], Kleppe, Migliore, Miro-Roig, Nagel and
Peterson show that dn can be linked to dn−1 via Gorenstein ideals in
2 steps and hence to d in 2(n − 1) steps. But in Proposition 4.3, by
taking s = (d− 2)(n− 1), we see that dn can be linked directly via the
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Gorenstein ideal (fn1 , . . . , f
n
d ) :T ′ l(d−2)(n−1) to dn−1, and hence to d,

a complete intersection, in n− 1 steps.

2. In a private conversation, Migliore asked if this technique will
show that dn is self-linked. We see that this can be done by taking
s = (d− 2)(n− 1)− 1 in Proposition 4.3. Thus dn is linked to itself via
the Gorenstein ideal (fn1 , . . . , f

n
d ) :T ′ l(d−2)(n−1)−1.

A Possible Approach to the Glicci Problem.

The Glicci problem. Given any homogeneous ideal b ⊆ T :=
k[X1, . . . , Xd], such that R := T/b is Cohen-Macaulay, is it true that
b is glicci?

A possible approach to the glicci problem is the following: Choose
cn ⊆ bn to be the closest Gorenstein. The question is: Does this ensure
that bn is a complete intersection for some n?

Example 4.6. Let T = k[|X1, . . . , Xd|], where char(k) = 0. Let
d = (f1, . . . , fd) be an ideal generated minimally by a system of
parameters. We know by Theorems 3.1 and 3.12 that the ideal cn =
(fn1 , . . . , f

n
d ) :T (f1 + · · ·+ fd)(d−2)(n−1) is a Gorenstein ideal closest to

dn. Now by taking s = (d − 2)(i − 1) in Proposition 4.3, we see that
ci :T di = di−1, 2 ≤ i ≤ n. Thus dn can linked to d by choosing a
closest Gorenstein ideal at each step.

5. The Codimension Two Case. We begin this section by
recalling the following result of Serre characterizing Gorenstein ideals
of codimension two.

Remark 5.1. Let (T,mT , k) be a regular local ring of dimension two.
Let c be an mT primary ideal such that S = T/c is a Gorenstein Artin
local ring. Then S is a complete intersection ring, i.e., c is generated
by 2 elements.

Notation. For the rest of this section, we will use the following
notation: Let (T,mT , k) be a regular local ring of dimension 2, where
that k is infinite. By μ( ), we denote the minimal number of generators
of a module and by e0( ), we denote the multiplicity of an mT -primary
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ideal in T . For an ideal b in T , by b̄, we denote the integral closure of
b in T .

Remark 5.2. We state the basic facts needed in this section in this
remark. Their proofs can be found in [2] (Chapter 14).

1. Let b be an mT -primary ideal. We define the order of b as
ord(b) = max{i : b ⊆ mi

T }.
Since mT is integrally closed, ord(b) = ord(b).

2. Let b be an mT -primary ideal. Since k is infinite, a minimal
reduction of b is generated by 2 elements.

Further, if c is a minimal reduction of b, the multiplicity of b,
e0(b) = λ(T/c).

3. The product of integrally closed mT -primary ideals is integrally
closed. In particular, if b is an integrally closed mT -primary ideal, then
so is bn for each n ≥ 2.

4. For an mT -primary ideal b, λ((b : mT )/b) = μ(b) − 1 ≤ ord(b).
Further, if b is integrally closed, μ(b) − 1 = ord(b).

In particular, this yields μ(b) ≤ μ(b).

Proposition 5.3. Let (T,mT , k) be a regular local ring of dimension
two and let b be an mT -primary ideal. The closest (in terms of length)
Gorenstein ideals contained in b are its minimal reductions.

Proof. Let c ⊆ b be any Gorenstein ideal (and hence a complete
intersection by the above remark). It is easy to see that λ(T/c) ≥
λ(T/(f, g)), where (f, g) ⊆ b is a minimal reduction of b. The reason
is that

λ(T/c) = e0(c)
≥ e0(b) since c ⊆ b

= λ(T/(f, g)).

As a consequence,

λ(T/c) − λ(T/b) ≥ λ(T/(f, g)) − λ(T/b),
i.e., λ(b/c) ≥ λ(b/(f, g)).
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Thus the closest Gorenstein ideal contained in b is a minimal reduction
(f, g).

We now prove the following theorem which shows that g(R) ≤
λ(R/soc(R)) where R is the Artinian quotient of a 2-dimensional
regular local ring.

Theorem 5.4. Let (T,mT , k) be a regular local ring of dimension 2,
with infinite residue field k. Set R = T/b where b is an mT -primary
ideal. Then g(R) ≤ λ(R/soc(R)), i.e., there is a Gorenstein ring S
mapping onto R such that λ(S) − λ(R) ≤ λ(R/soc(R)).

In order to prove Theorem 5.4, we use a couple of formulae for e0(b)
and λ(R) (which can be found, for example, in [4]). We need the
following notation.

Let (T,m) and (T ′, n) be two-dimensional regular local rings. We say
that T ′ birationally dominates T if T ⊆ T ′, n ∩ T = m and T and T ′

have the same quotient field. We denote this by T ≤ T ′. Let [T ′ : T ]
denote the degree of the field extension T/m ⊆ T ′/n.

Further if b is an m-primary ideal in T , let bT
′

be the ideal in T ′

obtained from b by factoring bT ′ = xbT
′
, where x is the greatest

common divisor of the generators of bT ′. The following theorem ([4],
Theorem 3.7) gives a formula for e0(b).

Theorem 5.5. Let (T,mT , k) be a two-dimensional regular local ring
and b be an mT -primary ideal. Then

e0(b) =
∑
T≤T ′

[T ′ : T ]ord(bT
′
)2.

The following formula ([4], Theorem 3.10) is attributed to Hoskin
and Deligne.

Theorem 5.6. (Hoskin-Deligne Formula) Let T , b and R be as in
Theorem 5.4. Further assume that b is an integrally closed ideal. Then,

λ(R) =
∑
T≤T ′

(
ord(bT

′
) + 1

2

)
[T ′ : T ].
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Corollary 5.7. Let T , b and R be as in the Hoskin-Deligne formula.
Then we have the inequality

e0(b) + ord(b) ≤ 2λ(R).

Proof. By Theorem 5.5, we have e0(b) =
∑

T≤T ′ ord(bT
′
)2[T ′ : T ].

Using the Hoskin-Deligne formula, we see that

λ(R) =
∑
T≤T ′

ord(bT
′
)2 + ord(bT

′
)

2
[T ′ : T ]

giving us
2λ(R) = e0(b) +

∑
T≤T ′

ord(bT
′
)[T ′ : T ].

Since T ≤ T and bT = b, we get the required inequality.

Corollary 5.8. Let T , R and b be as in Theorem 5.4. Then

e0(b) + μ(b) − 1 ≤ 2λ(T/b).

Proof. Let b be the integral closure of b. By the previous corollary,
we have e0(b)+ord(b) ≤ 2λ(T/b). Since b is integrally closed, ord(b) =
μ(b)− 1. Thus we get e0(b) + μ(b) − 1 ≤ 2λ(T/b). Now e0(b) = e0(b),
μ(b) ≤ μ(b) and λ(T/b) ≤ λ(T/b), giving the required inequailty. �

Proof of Theorem 5.4. For any ideal b in T , we have μ(b) − 1 =
λ((b : m)/m). But (b : m)/b � soc(R). Thus by the previous corollary,
we have

e0(b) + λ(soc(R)) ≤ 2λ(R). (��)

Let (f, g) be a minimal reduction of b. Then S := T/(f, g) is a
complete intersection ring (and hence Gorenstein) mapping onto R.
Moreover λ(S) = e0(b). Thus (��) can be read as λ(S) + λ(soc(R)) ≤
2λ(R). Rearranging, we get λ(S) − λ(R) ≤ λ(R) − λ(soc(R)). This
proves that g(R) ≤ λ(R/soc(R)). �
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