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GENERATING IDEALS IN PULLBACKS

EVAN HOUSTON

ABSTRACT. Let T be a domain, M a maximal ideal of T ,
ϕ : T → k = T/M the canonical projection, D a subring of

the field k, and R = ϕ−1(D). We prove that if I � M is an

ideal of R for which ϕ(I) can be generated by n elements of
D and IT can be generated by m elements of T , then I can
be generated by max{2, n, m} elements of R.

Consider the following pullback diagram:

R �

�

D

�

T �

ϕ
k

Here, T is a domain, M is a maximal ideal of T , k = T/M , ϕ :
T → k is the canonical projection, D is a subring of k, and R =
ϕ−1(D). Pullbacks of this type have frequently been used to provide
important (counter-)examples for many years now. In [3] Gabelli and
the present author discussed much of what is known about ideal theory
in pullbacks. Although that work was primarily a survey, we did
consider the problem of determining the number of generators of an
ideal I of R from knowledge of the number of generators of ϕ(I) in D
and of IT in T . The purpose of this note is to give a complete solution
to that problem. Our main result is

Theorem. Let I � M be an ideal of R such that ϕ(I) is an n-
generated ideal of D and IT is an m-generated ideal of T . Then I can
be generated by max{2, n, m} elements of R.

Since an r-generated ideal I of R both maps to an r-generated ideal of
D and extends to an r-generated ideal of T , it is easy to see that this is
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the best possible result one could hope to obtain when max{m, n} ≥ 2.
It is also best possible when m = n = 1; this is explained below.
Perhaps a comment on the requirement I � M is in order. If I ⊆ M ,
then ϕ(I) = (0), and the number of generators of I in R cannot be
determined from the number of generators of IT alone. For example,
if F is a field, k = F (X), T = k[[Y ]], M = Y T , and D = F ; then
R = F +M , and the common ideal M of R and T is principal in T but
not even finitely generated in R.

Notation. As in [3], for an element t ∈ T \ M , we use t′ to denote
an element of T for which ϕ(t′) = 1/ϕ(t). It is useful to observe that
tt′ ∈ R (since ϕ(tt′) = 1 ∈ D) and 1 − tt′ ∈ M .

We shall need the following result from [3].

Lemma 1. ([3, Lemma 2.25]) If P is a maximal ideal of R with
P ⊇ M and x ∈ R \ M , then M ⊆ xRP .

Lemma 2. If I, J are ideals of R which are not contained in M and
are such that ϕ(I) = ϕ(J) and IT = JT , then I = J . In particular, if
a subset A of I satisfies ϕ(I) = ϕ(A)D and IT = AT , then A generates
I in R.

Proof. First, let x ∈ I. Then ϕ(x) ∈ ϕ(I) = ϕ(J), so that
x ∈ ϕ−1(ϕ(J)) = J + M . Hence I ⊆ J + M , and, by symmetry,
I + M = J + M . We now establish the result locally. Thus let P be
a maximal ideal of R. If P ⊇ M , then by Lemma l, M ⊆ IRP and
M ⊆ JRP , so that

IRP = (I + M)RP = (J + M)RP = JRP .

If P � M , it is well known (see [3, Theorem 1.9]) that there is a unique
prime Q of T with Q ∩ R = P and RP = TQ, and we have

IRP = ITQ = JTQ = JRP .

We now proceed to prove our Theorem in a series of steps. We begin
by reproving the main theorem in [3] on the number of generators of I.
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Lemma 3. ([3, Theorem 2.26]) Let I be an ideal of R with I � M ,
suppose that x1, . . . , xn are elements of I with x1 /∈ M whose images
under ϕ generate ϕ(I) in D, and suppose that y1, . . . , ym are elements
of T which generate IT . Then I is generated in R by the following
elements:

x1, . . . , xn, (1 − x1x
′
1)y1, . . . , (1 − x1x

′
1)ym.

Proof. First note that (1 − x1x
′
1)yi ∈ MIT ⊆ I. Now the images of

the xi generate ϕ(I) by hypothesis, and the equation

yi = x1x
′
1yi + (1 − x1x

′
1)yi

shows that the generators yi of IT are contained in the ideal

(x1, . . . , xn, (1 − x1x
′
1)y1, . . . , (1 − x1x

′
1)ym)T.

The result now follows from Lemma 2.

The next result handles the case m = n = 1 in our Theorem.

Proposition. Let I � M be an ideal of R such that ϕ(I) is principal
in D and IT is principal in T . Then:

(1) I can be generated by two elements in R, and

(2) I is principal in R ⇔ there is an element x ∈ I with ϕ(x)D =
ϕ(I)D and xT = IT .

Proof. That I can be generated by two elements follows from Lemma
3, and statement (2) follows easily from Lemma 2.

We note that it is possible for ϕ(I) and IT to be principal while I
is non-principal. The paper [2] by Fontana and Gabelli contains an
explicit example. (Other examples may be found in [3].) It is useful to
compare statement (2) of the Proposition with [2, Theorem 2.3].
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Lemma 4. If I is an ideal of R with I � M , then

(1) IT ∩ R = I ⇔ ϕ(I) = D, and

(2) IT = T ⇔ I ⊇ M .

Proof. (1) Suppose that IT ∩ R = I. Pick x ∈ I \ M . Then
xx′ ∈ IT ∩ R = I, and ϕ(xx′) = 1. For the converse, note that
D = ϕ(I) ⊆ ϕ(IT ∩ R) ⊆ D. Thus ϕ(I) = ϕ(IT ∩ R). Since
(IT ∩ R)T = IT , the result follows from Lemma 2.

(2) If IT = T , then M = MT = IMT ⊆ I. For the converse,
note that we have assumed I � M , so that IT properly contains the
maximal ideal M of T .

Lemma 5. If I is an ideal of R with I � M and is such that ϕ(I)
is principal in D and IT can be generated by m > 1 elements in T ,
then there are m elements a1, . . . , am−1, z ∈ I such that

(1) ai ∈ M ∩ I for i = 1, . . . , m − 1,

(2) ϕ(z)D = ϕ(I), and

(3) I = (a1, . . . , am−1, z).

Proof. We first deal with the case where ϕ(I) = D. Let IT =
(y1, . . . , ym). We may assume y1 /∈ M . By Lemma 4, I = IT ∩ R. In
particular, y1y

′
1 ∈ I. Now consider the m elements

(1 − y1y
′
1)y1, . . . , (1 − y1y

′
1)ym−1, y1y

′
1 + (1 − y1y

′
1)ym.

Since 1 − y1y
′
1 ∈ M , these elements satisfy condition (1), and the last

one satisfies (2). With an eye toward using Lemma 2, we observe
that, in particular, the images of these elements generate ϕ(I) = D.
Moreover, the equation

y1 = (1 − y1y
′
1)y1(−ym + 1) + [y1y

′
1 + (1 − y1y

′
1)ym]y1

shows that the ideal generated by these elements in T contains the
element y1. It then follows easily that the ideal also contains y2, . . . , ym.
Lemma 2 now applies.

For the general case, pick x ∈ I so that ϕ(x) generates ϕ(I) in D.
Note that x /∈ M since I � M . Then

ϕ(x′I) = ϕ(x′)ϕ(I) = ϕ(x′)ϕ(x)D = D;
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in particular, x′I is an ideal of R. We have that ϕ(x′I) = D and
x′IT is generated by m > 1 elements of T . By the first case,
x′I is generated by elements a1, . . . , am−1, z with ai ∈ M ∩ x′I for
i = 1, . . . , m− 1 and ϕ(z)D = D. Thus I is generated by the elements
a1/x′, . . . , am−1/x′, z/x′. For i = 1, . . . , m− 1, we have ai/x′ ∈ M ∩ I
(since x′ /∈ M). Moreover,

ϕ(z/x′)D = ϕ(x′x)ϕ(z/x′)D = ϕ(x)ϕ(z)D = ϕ(x)D = ϕ(I),

and the proof is complete.

Lemma 6. Let I � M be an ideal of R with ϕ(I) n-generated in
D and IT m-generated in T and such that m ≥ n > 1. Then I can be
generated by m elements.

Proof. Let x1, . . . , xn be elements of I whose images under ϕ
generate ϕ(I) in D. We may assume x1 /∈ M . Let IT be generated by
y1, . . . , ym in T . By Lemma 3, I can be generated by x1, . . . , xn, (1 −
x1x

′
1)y1, . . . , (1−x1x

′
1)ym. Consider the ideal J ⊆ I of R generated by

x1, (1 − x1x
′
1)y1, . . . , (1 − x1x

′
1)ym. Note that ϕ(J) is principal in D.

Moreover, since yi = x1x
′
1yi + (1 − x1x

′
1)yi, we have yi ∈ JT , whence

JT = IT . By Lemma 5, J has a generating set a1, . . . , am−1, z where
ϕ(z)D = ϕ(x1)D and each ai ∈ M ∩ J . Since JT = IT , we see that
IT is generated by z, a1, . . . , am−1 in T . We shall use this below. Also,
we have that I is generated by z, x2, . . . , xn, a1, . . . , am−1.

We shall now show that I is generated by the following m elements:

z, a1 + zz′x2, a2 + zz′x3, . . . , an−1 + zz′xn, an, . . . , am−1.

(Of course, if m = n, the list stops with the element an−1 + zz′xn.)
Recall that ϕ(z)D = ϕ(x1)D. Also, ϕ(ai + zz′xi+1) = ϕ(xi+1) for
i = 1, . . . , n − 1. Hence the images of these elements generate ϕ(I).
Moreover, the fact that z, ai + zz′xi+1 lie in the extension to T of the
ideal generated by these elements immediately implies that ai is also
in this ideal. It now follows from Lemma 2 that the given elements
generate I.

We note that this completes the proof of our Theorem in the case
m ≥ n. The case 1 ≤ m < n follows from this case by adding
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n − m “dummy” generators to an m-element generating set for IT .
The following result yields an alternate approach.

Lemma 7. If I � M is an ideal of R such that ϕ(I) is generated
by n > 1 elements in D and IT is generated by m < n elements in T ,
then I can be generated by n elements in R.

Proof. Choose x1, . . . , xn ∈ I such that their images generate ϕ(I)
in D. We may assume x1 
= 0. Let IT = (y1, . . . , ym)T . We claim that
the following n elements of I generate I:

x1, . . . , xn−m, xn−m+1x1x
′
1 +(1−x1x

′
1)y1, . . . , xnx1x

′
1 +(1−x1x

′
1)ym.

Observe that the image in D of the element xn−m+jx1x
′
1 +(1−x1x

′
1)yj

is ϕ(xn−m+j), so that the images of these elements do generate ϕ(I).
Moreover, the equation

yj = x1x
′
1(−xn−m+j + yj) + xn−m+jx1x

′
1 + (1 − x1x

′
1)yj

shows that the extension to T of the ideal generated by these elements
is (y1, . . . , ym)T . Apply Lemma 2.

We observe that by following the proofs of Lemmas 5 and 6, one
can actually write down the generators for I. Then one can show
that the generators work using only Lemma 2. Thus assuming that
x1, . . . , xn ∈ I are chosen so that their images generate ϕ(I) (with
x1 /∈ M) and y1, . . . , ym ∈ T are chosen so that they generate IT (with
y1 /∈ M), set a = 1 − x1x

′
1y1y

′
1 and z = x1y1y

′
1 + aym. We claim that

the following elements generate I:

z, ay1 + zz′x2, . . . , ayn−1 + zz′xn, ayn, . . . , aym−1.

(If m ≤ n, the list stops at ayn−1 + zz′xn, and if m < n − 1, we
set yi = 0 for i > m.) To verify the claim, let J be the ideal of R
generated by these elements. To show that I = J , note that the images
of the first n elements listed are exactly ϕ(x1), . . . , ϕ(xn). The fact
that z, ay1 + zz′x2 are listed in the set of purported generators implies
that ay1 is in JT; the equation

y1 = zy1x
′
1 + ay1(−ymx′

1 + 1)
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then shows that y1 is also in JT . It is now easy to see that y2, . . . , ym ∈
JT . Thus I = J by Lemma 2.

We close with a few remarks. The section on generators in [3] ended
with two problems. The first was to determine whether the bound
given on the number of generators in Lemma 3 is the best possible. Of
course, our Theorem answers that question in the negative. Indeed,
apart from the case m = n = 1, the situation is exactly as in the
generalized D + M -construction (see [3, Theorem 2.28], which was
inspired by [1, Theorem 10]. The second problem asked whether a
pullback construction such as we have considered here could be used
to produce examples of Prüfer domains with invertible ideals requiring
more than two generators. Unfortunately, our Theorem again shows
that the answer is negative.
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