ARTINIANNESS OF LOCAL COHOMOLOGY

M. HELLUS AND J. STÜCKRAD

ABSTRACT. Let R = k[[x, y, u, v]] over a field $k, I = \langle u, v \rangle$ and p = xu + yv. Hartshorne has proved that $H_I^2(R/pR)$ is not artinian. We show that the same is true for *every* element p of (x, y)R. In fact, we show an even stronger statement. We use Matlis duals of local cohomology modules.

1. Introduction. It is an interesting question to determine if a given local cohomology module $H_I^i(M)$ is artinian, where I is an ideal of a local ring (R, m) and M is a finite R-module; this is one of Huneke's problems on local cohomology (see [3, third problem]). In this note, we prove that a large class of local cohomology modules is not artinian:

Theorem 1.1. Let (R,m) be a local, complete ring, $n = \dim(R) \ge 4$. Let I be an ideal of R of height n-2 such that $H_I^{n-1}(R) = H_I^n(R) = 0$. Let $a, b \in R$ such that (a, b)R is a prime ideal of height two and such that a, b defines a system of parameters for R/I. Then, for every $p \in (a, b)R$, $H_I^{n-2}(R/pR)$ is not artinian.

We actually prove something stronger: the Matlis dual $D(H_I^{n-2}(R/pR))$ has infinitely many associated prime ideals and is therefore not noetherian.

Theorem 1.1 immediately specializes to the following result which was proved by Hartshorne ([2, Section 3]): $H_I^2(R)$ is not artinian, where R = k[[x, y, u, v]]/(xu+yv), k is a field and $I \subseteq R$ is the ideal generated by the classes of u and v in R; in fact, according to Theorem 1.1, we can replace xu + yv by any element of (x, y)R and the statement is still true.

²⁰⁰⁰ AMS Mathematics subject classification. Primary MSC2000: 13D45, 13E10.

Keywords and phrases. Local Cohomology, Artinianness Received by the editors on November 20, 2007, and in revised form on May 12,

^{2008.}

DOI:10.1216/JCA-2009-1-2-269 Copyright ©2009 Rocky Mountain Mathematics Consortium

²⁶⁹

In Theorem 2.3 of [6], Marley and Vassilev generalize Hartshorne's example in a different direction; due to different hypotheses, their and our generalization can be compared only in a special case, see Example 2.7 for details.

2. Results. Let (R, m) be a noetherian local ring; by E we denote a fixed R-injective hull of R/m and by D the Matlis dual functor for R-modules, i.e. $D(M) := \operatorname{Hom}_R(M, E)$ for an R-module M.

Theorem 2.1. Let (R,m) be a local, noetherian ring, $n := \dim(R) \ge 4$. Let I be an ideal of R of height n-2 such that $H_I^{n-1}(R) = H_I^n(R) = 0$. Let $a, b \in R$ such that (a, b)R is a prime ideal of height two and such that a, b defines a system of parameters for R/I. Then, for every $p \in (a, b)R$, the set

$$\{Q \in \operatorname{Ass}_R(D(H_I^{n-2}(R))) | p \in Q\}$$

is infinite. In particular, if R is complete, $H_I^{n-2}(R/pR)$ is not artinian.

Proof. We may assume that $p \notin bR$, because: If $p \in bR$, then we first replace p by b (this is possible because $V(bR) \subseteq V(pR)$); now we have $p \notin (b-a)R$ (because $p \in (b-a)R$ implies $b-a \mid p = b$ and hence (a,b)R = (b-a,b)R = (b-a)R, contradiction) and replace b by b-a. Because of $p \notin bR$, there exists, by Krull's Intersection Theorem, $q \in \mathbb{N}^+$ such that

$$p \in (a^q, b)R \setminus (a^{q+1}, b)R$$
.

In particular, there are $f,g\in R$ such that

$$p = fa^q + gb$$
.

f is not an element of (a, b)R, because otherwise there would be $u, v \in R$ such that f = ua + vb and hence $p = ua^{q+1} + (g + va^q)b \in (a^{q+1}, b)R$. Now, choose $x \in I \setminus (a, b)R$ arbitrary (this is possible as the height of I + (a, b)R is n which is > 2). For every $l \in \mathbb{N}^+$, we have

$$p = f(a^q + x^l g) + g(b - x^l f)$$

and hence $p \in I_l := (a^q + x^l g, b - x^l f)R$. The height of I_l is two (because $\sqrt{I_l + xR} = \sqrt{(a, b, x)R}$ and $3 = \text{height}(a, b, x)R = \text{height}(I_l + xR) \leq 1$

height (I_l) + 1). Clearly, $a^q + x^l g$, $b - x^l f$ defines a system of parameters for R/I; this implies that there exists a $p_l \in \text{Ass}_R(D(H_I^{n-2}(R)))$ containing I_l (because

$$\operatorname{Hom}_{R}(R/I_{l}, D(H_{I}^{n-2}(R))) = \operatorname{Hom}_{R}(R/I_{l}, \operatorname{Hom}_{R}(H_{I}^{n-2}(R), E))$$

= $D((R/I_{l}) \otimes_{R} H_{I}^{n-2}(R))$
= $D(H_{I}^{n-2}(R/I_{l}))$
= $D(H_{m}^{n-2}(R/I_{l}))$
 $\neq 0$

by the right-exactness of H_I^{n-2} ; note that the dimension of R/I_l is precisely n-2, because: It is at least n-2 because I_l is generated by two elements and it is at most n-2 because the height of I_l is two). The height of p_l is two by Lemma 2.3. For $l, l' \in \mathbb{N}^+, l \neq l'$, we have

$$\sqrt{I_l + I_{l'}} = \sqrt{(x, a, b)R} \cap \sqrt{(f, g, a, b)R} ;$$

in particular, the height of $I_l + I_{l'}$ is three (both f and x are not in (a, b)R by construction); therefore, $p_l \neq p_{l'}$.

$$\begin{split} H_I^{n-2}(R/pR) &\text{ is not artinian because its Matlis dual is} \\ D(H_I^{n-2}(R/pR)) &= \operatorname{Hom}_R(H_I^{n-2}(R/pR), E) \\ &= \operatorname{Hom}_R((R/pR) \otimes_R H_I^{n-2}(R), E) \\ &= \operatorname{Hom}_R(R/pR, \operatorname{Hom}_R(H_I^{n-2}(R), E)) \\ &= \operatorname{Hom}_R(R/pR, D(H_I^{n-2}(R))) ; \end{split}$$

but the latter module has infinitely many associated prime ideals and thus is not noetherian.

Remark 2.2. Note that, in the situation of Theorem 2.1, it can easily happen that $H_I^{n-2}(R/pR)$ consists only of *m*-torsion: This is for example the case if *R* is complete and *p* is a prime element of *R* such that dim(R/pR) = n - 1 and all minimal prime divisors of I + pR have height n-2 (because then, for every prime ideal $q \neq m$ of R/pR one has $H_I^{n-2}(R/pR)_q = H_{I+pR}^{n-2}((R/pR)_q) = 0$ by Hartshorne-Lichtenbaum vanishing). In those cases the socle dimension of $H_I^{n-2}(R/pR)$ is infinite because of Theorem 2.1 and the general fact that an *R*-module is artinian iff it is only m-torsion and its socle has finite (vector space) dimension.

Lemma 2.3. Let (R,m) be a noetherian local ring, $n := \dim(R)$. Let $I \subseteq R$ be an ideal of height n-2 such that $H_I^{n-1}(R) = H_I^n(R) = 0$. Set $D := D(H_I^{n-2}(R))$. Then height $q \leq 2$ for every $q \in \operatorname{Ass}_R(D)$.

Proof. For $q \in Ass_R(D)$, one has

 $\begin{aligned} 0 &\neq \operatorname{Hom}_{R}(R/q, D) \\ &= \operatorname{Hom}_{R}(R/q, \operatorname{Hom}_{R}(H_{I}^{n-2}(R), E)) \\ &= \operatorname{Hom}_{R}((R/q) \otimes_{R} H_{I}^{n-2}(R), E) \\ &= \operatorname{Hom}_{R}(H_{I}^{n-2}(R/q), E) \end{aligned}$

and it follows that $\dim(R/q) \ge 2$ and hence height $q \le 2$.

Corollary 2.4. Let (R, m) be a noetherian, local, complete, regular ring containing a separably closed coefficient field, dim(R) := n. Let $I \subseteq R$ be an height n - 2 ideal such that R/I is Cohen-Macaulay. Let $a, b \in R$ such that (a, b)R is a prime ideal of R and such that a, b define a system of parameters for R/I. Then, for every $p \in (a, b)R$, the set

$$\{Q \in \operatorname{Ass}_R(D(H_I^{n-2}(R))) | p \in Q\}$$

is infinite. In particular, $H_I^{n-2}(R/pR)$ is not artinian.

Proof. All hypotheses of Theorem 2.1 are fulfilled: The height of (a, b)R is necessarily two because $\sqrt{(a, b)R + I} = m$ and R is regular (the height of the sum of two ideals is at most the sum of their heights). Spec(R/I) is two-dimensional and is connected in codimension one because R/I is Cohen-Macaulay (this is well-known; it follows e. g. from a Mayer-Vietoris-sequence argument); hence, by a well-known vanishing theorem (e. g. [4, Theorem 2.9]), one has $H_I^{n-1}(R) = H_I^n(R) = 0$.

Remark 2.5. Note that the statement of Corollary 2.4 remains true for an arbitrary field k if we assume instead that $H_I^{n-1}(R) = 0$;

this holds for example if I is generated by a regular sequence or if $\operatorname{Spec}(R/I) \setminus \{m/I\}$ is formally geometrically connected, see [4 Theorem 2.9].

In particular, we may set R := k[[x, y, u, v]] where k is a field with variables x, y, u, v, I := (u, v)R, p := xu + yv and we get Hartshorne's example: $H_I^{n-2}(R/pR)$ is not artinian.

Marley and Vassilev have shown

Theorem. ([6, Theorem 2.3]) Let (T, m) be a noetherian local ring of dimension at least two. Let $R = T[x_1, \ldots, x_n]$ be a polynomial ring in n variables over T, $I = (x_1, \ldots, x_n)$, and $f \in R$ a homogenous polynomial whose coefficients form a system of parameters for T. Then the *socle of $H_I^n(R/fR)$ is infinite dimensional. In particular, $H_I^n(R/fR)$ is not artinian.

Theorem 2.1 and Theorem 2.3 of [6] are both generalizations of Hartshorne's example and can be compared in the following special case:

Example 2.6. Let k be a field, $n \ge 4$,

$$R_0 = k[[x_{n-1}, x_n]][x_1, \dots, x_{n-2}] , \qquad R = k[[x_1, \dots, x_n]] ,$$

 $I = (x_1, \ldots, x_{n-2})R$, p a homogenous element of R_0 . Then [6, Theorem 2.3] says (implicitly) that

$$H_I^{n-2}(R/pR)$$

is not artinian, if the coefficients of $p \in R_0$ in $k[[x_{n-1}, x_n]]$ form a system of parameters for $k[[x_{n-1}, x_n]]$, while Theorem 2.1 says that $H_I^{n-2}(R/pR)$ is not artinian if p is contained in $(x_{n-1}, x_n)R$, i. e. if none of the coefficients of p is a unit in $k[[x_{n-1}, x_n]]$.

Acknowledgments. We thank Gennady Lyubeznik for bringing Hartshorne's example to our attention.

REFERENCES

1. A. Grothendieck, Local Cohomology, Lecture Notes in Mathematics, Springer Verlag, (1967).

2. R. Hartshorne, Affine Duality and Cofiniteness, Invent. Math. 9, (1970) 145-164.

3. C. Huneke, Problems on Local Cohomology, Res. Notes Math. 2, (1992) 93-108.

4. C. Huneke, and G. Lyubeznik, On the vanishing of local cohomology modules, Invent. Math. 102, (1990) 73–93.

5. E. Matlis, Injective modules over noetherian rings, Pacific J. Math. 8, (1958) 511 - 528.

6. M. Marley and J. C. Vassilev, Local cohomology modules with infinite dimensional socles, Proc. Amer. Math. Soc. Vol. 132, No 12, (2004) 3485-3490.

UNIVERSITÄT LEIPZIG, FAKULTÄT FÜR MATHEMATIK UND INFORMATIK, PF 10 09 20, D-04009 Leipzig, Germany Email address: hellus@math.uni-leipzig.de

Universität Leipzig, Fakultät für Mathematik und Informatik, PF 100920, D-04009 Leipzig, Germany

Email address: stueckrad@math.uni-leipzig.de