
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 1, Number 2, Summer 2009

PROPERTIES OF FACTORIZATIONS
WITH SUCCESSIVE LENGTHS

IN ONE-DIMENSIONAL LOCAL DOMAINS

WOLFGANG HASSLER

ABSTRACT. Let D be an atomic domain. Then every
non-unit a ∈ D\{0} decomposes (in general in a highly non-
unique way) into a product

(1) a = u1 · . . . · un

of irreducible elements (atoms) ui of D. The integer n is
called the length of (1) and L(a) = {n ∈ N | a decomposes
into n irreducible elements of D} is called the set of lengths
of a. Two integers k < l are called successive lengths of a if
L(a) ∩ {m ∈ N | k ≤ m ≤ l} = {k, l}.

Suppose that D is a one-dimensional local domain with
finite normalization. Then it is well known that Δ(D) =
{l − k | 0 �= a ∈ D\D× , k < l are successive lengths of a
} is finite. Let 0 �= a ∈ D be a non-unit and denote by Zn(a)
the set of factorizations of a with length n. In the present
paper we investigate the structure of Zn(a) and the relations
between Zk(a) and Zl(a) if k and l are successive lengths of a.
We prove that Zk(a) and Zl(a) are “similar” in a very strong
sense except if k and l are close to the “boundaries” of L(a).
We show by examples that in the latter case Zk(a) and Zl(a)
may have a completely different structure. Finally, we apply
our results to local quadratic orders of algebraic number fields.

1. Introduction. Let D be an integral domain. A nonzero non-
unit u ∈ D is called irreducible (or an atom) if u does not decompose
into a product of two non-units of D. D is called atomic if every nonzero
non-unit a ∈ D has a factorization

(2) a = u1 · . . . · un
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into irreducible elements ui of D. Important examples for atomic
domains are Noetherian domains and Krull domains. The integer n
is called the length of the factorization (2). In general, elements of
atomic domains decompose into atoms in a highly non-unique way.
Let D be an atomic domain. For 0 �= a ∈ D\D× (where D× denotes
the group of units of D) we call

L(a) = LD(a)
= {n ∈ N | a has a factorization into n irreducible elements of D}

the set of lengths of a. Sets of lengths play an important role in the
theory of non-unique factorizations. The reader is referred to [6] and
[17] for survey articles on this topic. Two integers k, l ∈ N with k < l
are called successive lengths of a ∈ D if {m ∈ L(a) | k ≤ m ≤ l} =
{k, l}. The invariant

Δ(D) = {l− k | 0 �= a ∈ D\D×, k < l are successive lengths of a} ⊂ N

is called the set of differences of D. It provides a measure for the size
of the gaps occurring in sets of lengths of elements of D.

If D is a one-dimensional local domain, then it is known that the sets
of lengths of D have a special structure: they are, up to a bounded
initial and final segment, arithmetical progressions with some period
d which only depends on D. For more details see Definition 2.4 and
Theorem 2.5. In particular, Δ(D) is a finite set. Furthermore, D has
finite catenary degree, i.e. there exists a bound B ∈ N (which only
depends on D) such that for every element 0 �= a ∈ D\D× and for all
factorizations z and z′ of a there exists a finite sequence of factorizations

(3) z = z0, . . . , zs = z′

of a such that zi−1 and zi differ by at most B irreducible elements for
all 1 ≤ i ≤ s. In the case when D is analytically unramified (i.e. if the
integral closure of D is a finitely generated D-module) this was proved
in [13], Proposition 7.3. For the analytically ramified case see [19].

Let D be a one-dimensional local domain whose normalization is a
finitely generated D-module and let 0 �= a ∈ D\D×. For m ∈ L(a) we
denote by Zm(a) the set of factorizations of a with length m. In the
present paper we are interested in the structure of the sets Zm(a). We
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study the question whether Zk(a) and Zl(a) are “similar” with respect
to the natural metric (see (4) in section 2) if k and l are successive
lengths of a. Furthermore, we study whether for arbitrary n ∈ L(a) and
factorizations z, z′ ∈ Zn(a) there exists a chain z = z0, z1, . . . , zs = z′

of elements zi ∈ Zn(a) such that zi−1 and zi have bounded distance
for all 1 ≤ i ≤ s (where the bound should only depend on D). Note
that in the above mentioned case of the (ordinary) catenary degree no
conditions on the lengths of the zi in (3) are imposed. One motivation
to study these questions is to investigate the structure of chains of
factorizations. For example, is it always possible to choose the chain in
(3) in such a way that the lengths of the zi form a monotone sequence
of integers?

It turns out that in general the answer to our questions is negative
(except if D is a Cohen-Kaplansky domain, i.e. if D\{0} is a finitely
generated monoid, see [3] and [8]). Already simple examples show
that factorizations with given successive lengths may have a completely
different structure (see Examples 6.3 and 6.5). However, we prove that
we get a positive answer to our questions if k, l and n are not contained
in a bounded neighborhood of min L(a) and max L(a). To be more
precise, there exist some constant C ∈ N and some bound B ∈ N
(which both only depend on D) such that for all a ∈ D and for all
n ∈ L(a) with min L(a) + C ≤ n ≤ max L(a) − C the strong successive
distance δn(a) at length n (cf. Definition 3.4) and the catenary degree
cn(a) at length n (cf. Definition 3.3) are bounded by B. Thus the
observed “irregular” behavior of factorizations with successive lengths
is due to boundary phenomena.

The methods we use to prove this result (see Theorem 4.1) are
combinatorial in nature. We couch our considerations in the language
of monoids which turned out to be very convenient in the theory of non-
unique factorizations. The theorem is obtained by studying a suitable
multiplicative model for the domain D (cf. Definition 4.2). It should be
mentioned that our proof strongly makes use of Geroldinger’s Structure
Theorem for sets of lengths of D (cf. Theorem 2.5).

As a corollary of our result (Corollary 4.16) we give a new proof
of Theorem 4.8 3) in [8]. Our investigations moreover show that this
Theorem also holds if D has infinite residue class field. As a second
application of our result we prove that every localization of an order
of some quadratic number field at a singular place has finite monotone
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catenary degree, i.e. in the case of these rings we indeed can choose the
chain in (3) in such a way that the lengths of the zi form a monotone
sequence (see Theorem 5.3). However, we must leave it open whether
the global version of this theorem is also true.

The organization of the paper is as follows: in section 2 we fix our
notation and recall some facts from factorization theory which are
needed in the sequel. In section 3 we define the invariants which lie
in the center of our interest. Section 4 is devoted to the proof of the
Main Theorem (Theorem 4.1). In section 5 we show the finiteness of
the monotone catenary degree for local quadratic orders. In section 6
we construct examples for rings whose strong successive distance and
monotone catenary degree are infinite.

2. Preliminaries and results from factorization theory. We
denote by N (resp. N0) the set of positive (resp. non-negative) integers.
For sets A and B we write A ⊂ B if A is a subset of B and equality
may hold. We write A � B if A ⊂ B and A �= B. For a, b ∈ Z
we set [a, b] = {x ∈ Z | min{a, b} ≤ x ≤ max{a, b}}. If (M,≤) is a
partially ordered set and x ∈ M , we put M≤x = {y ∈ M | y ≤ x} and
M≥x = {y ∈ M | y ≥ x}.

We call a commutative ring R local (resp. semi-local) if it has only
one (resp. finitely many) maximal ideals and if it is Noetherian.

By a monoid we always mean a (usually multiplicatively written)
commutative semigroup H with identity element for which the cancel-
lation law holds, i.e. ab = ac implies b = c for all a, b, c ∈ H . The
main examples for monoids we have in mind are the multiplicative
semigroups of nonzero divisors of commutative rings. For monoids the
notions “irreducible element” and “prime element” are defined com-
pletely analogously as in case of domains. Let H be a monoid. Then
H× denotes the group of invertible elements of H , A(H) denotes the
set of irreducible elements (atoms) of H and P(H) denotes the set
of prime elements of H . If E ⊂ H is a subset, then [E] denotes the
submonoid of H which is generated by E. H is called atomic (resp. fac-
torial) if H× ∪ A(H) (resp. H× ∪ P(H)) generates H . We define the
reduced monoid of H by Hred = H/H× and H itself is called reduced
if H× = {1}. Since H satisfies the cancellation law, we can form the
quotient group of H . We denote it by Q(H).
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Let P be a set. We write F(P ) for the free monoid generated by
P . Then every x ∈ F(P ) can be uniquely written as a product
x =

∏
p∈P pnp , where np ∈ N0 and np = 0 for almost all p ∈ P .

We call |x| = |x|F(P ) =
∑

p∈P np the length of x. We have a canonical
metric d = dF(P ) : F(P ) ×F(P ) → N0 given by

(4) d(x, y) = max
{∣∣∣ x

gcd(x, y)

∣∣∣, ∣∣∣ y

gcd(x, y)

∣∣∣},

cf. for instance [11], section 2.

Let H be an atomic monoid. The monoid Z(H) = F(A(Hred))
is called the factorization monoid of H . For x, y ∈ Z(H) we call
d(x, y) = dH(x, y) = dZ(H)(x, y) the distance of x and y and we
call |x| = |x|H = |x|Z(H) the length of x. We denote by π = πH :
Z(H) → Hred the canonical homomorphism. For a ∈ H we denote by
Z(a) = ZH(a) = π−1(aH×) the set of factorizations of a. If k ∈ N0,
then Zk(a) = {z ∈ Z(a) | |z| = k} denotes the set of factorizations of a
with length k. We call

L(a) = LH(a) = {|z| | z ∈ Z(a)}
the set of lengths of a. H is called a BF-monoid if L(a) is a finite set for
all a ∈ H . Important examples for BF-monoids are the multiplicative
monoids of Noetherian domains, see [2], Proposition 2.2.

Let H be an atomic monoid. The quantity

ρ(H) = sup
{ sup L(a)

min L(a)

∣∣∣ a ∈ H\H×
}
∈ R≥1 ∪ {∞}

is called the elasticity of H . The reader is referred to [4] or [1] for
survey articles on this important invariant. An atomic monoid H is
called half-factorial if its elasticity is equal to one.

Definition 2.1.

(1) Let T ⊂ Z. Two elements k, l ∈ T are called successive elements
of T if k �= l and T ∩ [k, l] = {k, l}.

(2) We call

Δ(T ) = {|k − l| | k and l are successive elements of T } ⊂ N
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the set of differences of T . (Observe that Δ(T ) = ∅ if and only if
|T | ≤ 1.)

(3) Let H be an atomic monoid. We call

Δ(H) =
⋃

a∈H

Δ(L(a)) ⊂ N

the set of differences of H .

The set of differences measures the size of “gaps” which occur in the
sets of lengths of an atomic monoid.

Next we recall the notion of a finitely primary monoid. Finitely pri-
mary monoids were introduced by F. Halter-Koch in [16] as multiplica-
tive models for one-dimensional local domains with finite normalization
(cf. Proposition 6.1, where we prove a slightly more general result).
Since that time they proved many times to be a very useful tool for
the investigation of multiplicative properties of these rings. However,
we need to refine this notion later (Definition 4.2).

Definition 2.2. A monoid H is called finitely primary of rank
s ∈ N and exponent α ∈ N if it is a submonoid of a factorial monoid F
with s pairwise non-associated prime elements p1, . . . , ps,

H ⊂ F = F× × [p1, . . . , ps]

such that the following conditions are satisfied:

(1) (p1 · . . . · ps)αF ⊂ H .

(2) If εpα1
1 ·. . .·pαs

s ∈ H , where ε ∈ F×, then either α1 = · · · = αs = 0
and ε ∈ H× or α1 ≥ 1, . . . , αs ≥ 1.

If H is a finitely primary monoid, then the factorial monoid F in
Definition 2.2 is isomorphic to the complete integral closure Ĥ of H ,
see [10].

Definition 2.3. Let H be a finitely primary monoid with rank s
and complete integral closure Ĥ = Ĥ×× [p1, . . . , ps]. We denote by Vi :
Q(H) → Z the pi-valuation and we define the group homomorphism
V : Q(H) → Zs by setting V(a) = (V1(a), . . . , Vs(a)) for all a ∈ Q(H).
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Note that a finitely primary monoid H is strongly primary, i.e. for
every a ∈ H there exists some N ∈ N such that a |H b for every b ∈ H
with max L(b) ≥ N . We denote the smallest such N by M(a).

Definition 2.4. A non-empty finite set L ⊂ Z is called an
almost arithmetical progression with bound M ∈ N and period d ∈ N
if there exists a decomposition L = L1 ∪ L∗ ∪ L2 such that L∗ �=
∅, L1 ⊂ [−M,−1] + min L∗, L2 ⊂ maxL∗ + [1, M ] and L∗ =
[minL∗, maxL∗] ∩ (min L∗ + dZ).

Theorem 2.5. (Structure Theorem for sets of lengths) Let H be
a finitely primary monoid. Then there exists some M ∈ N such that
L(a) is an almost arithmetical progression with bound M and period
d = min Δ(H) for every a ∈ H. In particular, H has a finite set of
differences Δ(H).

Proof. See Theorem 5.1 and Corollary 5.2 of [12].

Remark 2.6. The Structure Theorem for sets of lengths indeed holds
for any one-dimensional local domain D. If D is analytically unramified
(i.e. if D has finite normalization), then D\{0} is finitely primary and
the assertion follows from Theorem 2.5. For the analytically ramified
case see [19], Theorem 3.5. Furthermore, the Structure Theorem for
sets of lengths holds (in a slightly more general form) for domains and
monoids which play important roles in Algebraic Number Theory and
Algebraic Geometry, see [14, 15, 20].

Next we recall the notion of local tameness of factorizations. This
notion plays a crucial role in recent papers, cf. [14, 15].

Definition 2.7. Let H be an atomic monoid and a ∈ H .

(1) The tame degree t(H, a) of a is the minimum of all N ∈ N0∪{∞}
with the following property: if b ∈ H with a |H b, z ∈ Z(b) and
x ∈ Z(a), then there exists a factorization z′ ∈ Z(b) with x |Z(H) z′ and
d(z, z′) ≤ N .

(2) H is called locally tame if t(H, a) < ∞ for every a ∈ H .
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By [13] Lemma 5.3, every finitely primary monoid is locally tame.

3. The monotone catenary degree and the strong successive
distance. In this section we define the invariants which lie in the
center of our interest.

Definition 3.1. Let (X, d) be a metric space and f : X → R a
map. Let A ⊂ X , r ∈ R≥0 ∪ {∞} and x, x′ ∈ A. An f -monotone
r-chain from x to x′ in A is a finite sequence x0, x1, . . . , xk in A such
that x = x0, x′ = xk, d(xi−1, xi) ≤ r for all i ∈ [1, k] and such that
f(x0), . . . , f(xk) forms a monotone sequence of real numbers. We call

cf (A) = inf{r ∈ R≥0 ∪ {∞} | for all x, x′ ∈ A there exists an
f -monotone r-chain from x to x′ in A}

the f -monotone catenary degree of A. (Observe that cf (∅) = 0.) The
f -monotone catenary of A with f = 0 is called the catenary degree of
A. It is denoted by c(A).

Definition 3.2. Let (X, d) be a metric space and let A, B ⊂ X be
nonempty subsets.

(1) We set d(A, B) = inf{d(a, b) | a ∈ A, b ∈ B}.
(2) Dist(A, B) = sup{d({a}, B), d(A, {b}) | a ∈ A, b ∈ B} is called

the strong distance of A and B.

Let H be an atomic monoid. In the following we always regard the
factorization monoid Z(H) of H as a metric space via the natural
distance function (4). If not otherwise stated, a monotone chain in
Z(H) is always an f -monotone chain, where f is the length function.
Let a ∈ H . Two integers k, l ∈ N are called successive lengths of a if
k, l are successive elements of L(a) (cf. Definition 2.1).

Definition 3.3. Let H be an atomic monoid and let a ∈ H . Let
f = | . |H : Z(H) → N0 be the length function.

(1) The catenary degree c(Z(a)) of Z(a) is called the (ordinary) cate-
nary degree of a and is denoted by c(a). We call c(H) = sup{c(a) | a ∈
H} the (ordinary) catenary degree of H .



FACTORIZATIONS WITH SUCCESSIVE LENGTHS 245

(2) cf (Z(a)) is called the monotone catenary degree of a. We denote
it by cmon(a). The quantity cmon(H) = sup{cmon(a) | a ∈ H} is called
the monotone catenary degree of H .

(3) Let k ∈ N0. The quantity c(Zk(a)) = cf (Zk(a)) is called the
catenary degree of a at length k. We denote it by ck(a).

Definition 3.4. Let H be an atomic monoid and let a ∈ H , k ∈ N0.
If there exists some l > k such that k, l are successive lengths of a (i.e. if
k ∈ L(a) and k �= sup L(a)), then we set

δk(a) = Dist(Zk(a), Zl(a)) ∈ N.

Otherwise we set δk(a) = 0. We call δk(a) the strong successive distance
of a at length k.

A few remarks are in order. The ordinary catenary degree was
introduced in [9]. It is known that every finitely primary monoid has
finite catenary degree, see [13], Proposition 7.3. Indeed, every one-
dimensional local domain has finite catenary degree, see [19]. The
notions of the monotone catenary degree and the strong successive
distance first appeared in [8]. A. Foroutan proved in [8], Theorem
3.9 that for every monoid H for which Hred is a finitely generated
monoid, the quantities cmon(H) and sup{δk(a) | a ∈ H, k ∈ L(a)} are
finite. Let H be an atomic monoid. Note that ck(a) ≤ cmon(H) for all
a ∈ H , k ∈ N0. On the other hand, if sup{δk(a) | a ∈ H, k ∈ L(a)}
and sup{ck(a) | a ∈ H, k ∈ L(a)} are both finite, then cmon(H) is finite,
too.

Our main interest in this paper is focused on the quantities ck(a)
and δk(a) if H is the multiplicative monoid of a one-dimensional local
domain.

4. Proof of the Main Theorem. In this section we prove our
main result (Theorem 4.1). To reach this end, we first introduce a
suitable multiplicative model for a one-dimensional local domain with
finite normalization (cf. Definition 4.2 and Theorem 4.3). Then we
prove the analogous theorem for this model (see Theorem 4.14). At the
end of the section we examine the structure of chains of factorizations
by means of our results (see Corollary 4.16).
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We first state the Main Theorem. Its proof is an immediate conse-
quence of Theorem 4.3 and Theorem 4.14.

Theorem 4.1. (Main Theorem). Let D be a one-dimensional
local domain whose integral closure is a finitely generated D-module.
Put H = D\{0}. Then there exists some constant C ∈ N0 with the
following properties:

(1) sup{ck(a) | a ∈ H, k ∈ N , min L(a)+C ≤ k ≤ max L(a)−C} < ∞.

(2) sup{δk(a) | a ∈ H, k ∈ N , min L(a)+C ≤ k ≤ max L(a)−C} < ∞.

It was shown in [8], Theorem 3.9 that the Theorem holds for C = 0 if
D is either a discrete valuation ring or a Cohen-Kaplansky domain
(i.e. D has finite residue class field and is analytically irreducible,
cf. [3]). In general, this is not true, see Examples 6.3 and 6.5.

Next we give the definition of our multiplicative models.

Definition 4.2. Let H be a finitely primary monoid with complete
integral closure Ĥ and rank s ∈ N.

(1) We call H a ring-like finitely primary monoid if the following
conditions are fulfilled:

(a) There exist some exponent α ∈ N of H and some system
{p1, . . . , ps} of representatives of prime elements of Ĥ with the following
property: for all i ∈ [1, s] and for all a ∈ Ĥ with Vi(a) ≥ α we have
pia ∈ H if and only if a ∈ H .

(b) Either Ĥ×/H× is finite or V(H\H×) ⊂ Ns possesses a
smallest element with respect to the partial order.

(2) We call H strongly ring-like if it is ring-like and both conditions
in (b) are satisfied.

Theorem 4.3. Let (D, m) be a one-dimensional, local domain such
that the integral closure D of D is a finitely generated D-module. Then
D\{0} is a ring-like finitely primary monoid.
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Supplement: Let s denote the number of maximal ideals of D. If
s ≤ |D/m|, then the set of values of D\(D× ∪ {0}) has a smallest
element. In particular, if s ≤ |D/m| < ∞, then D\{0} is strongly
ring-like.

Proof. In [18], Theorem 2.7 it was shown that the finitely primary
monoid D\{0} satisfies condition (1)(a) of Definition 4.2. In order to
verify (1)(b) assume without loss of generality that D is not a discrete
valuation ring. Then D/m is finite if and only if D

×
/D× is finite, see for

instance [21], Theorem 2.1. Hence it is enough to prove the supplement.
By [7], Proposition 1.1 or by Proposition 6.1 (3), the semigroup of
values of the completion D̂ of D coincides with the semigroup of values
of D. Since the number of maximal ideals of D equals the number of
minimal primes of D̂, the supplement follows from [7], Proposition 1.2.

Our next goal is to prove Theorem 4.14. This requires a large amount
of preparatory work. Throughout the rest of the section we keep the
following notation.

General Notation. If H is a finitely primary monoid, then s ∈ N
denotes its rank and α ∈ N is an exponent of H. We denote by
Ĥ = Ĥ× × [p1, . . . , ps] the complete integral closure of H. If H is
ring-like, we assume that α and the prime elements p1, . . . , ps of Ĥ are
chosen in such a way that condition (1)(a) of Definition 4.2 is satisfied.

We set A(H) = {q ∈ A(H) | Vi(q) ≤ 2α for all i ∈ [1, s]}. Note that
if Ĥ×/H× is finite, then A(H) is a finite set.

Let L ⊂ Z be a finite set and M ∈ N0. We set L〈M〉 = {x ∈
L | min L + M ≤ x ≤ maxL − M}.

If X =
∏

i∈I Xi is a product of non-empty sets and x ∈ X, then we
denote by xi ∈ Xi the i-th component of x.

The following Proposition plays a key role in our investigations:
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Proposition 4.4. Let H be a ring-like finitely primary monoid.
Let u ∈ H and i ∈ [1, s]. If Vi(u) ≥ 2α, then u is irreducible if and
only if piu is irreducible.

Proof. Let u ∈ H and i ∈ [1, s] with Vi(u) ≥ 2α. Clearly, piu ∈ H
since H is ring-like. If u = bc is a decomposition into non-units, then
we can assume without restriction that Vi(b) ≥ α. But then pib ∈ H ,
whence we have a decomposition piu = (pib)c. The “only” part is
proved similarly.

The (Pγ) property we now define is the pivotal point in our proof of
Theorem 4.14.

Definition 4.5. Let H be a finitely primary monoid and γ ∈ N0.
We say that H has property (Pγ) if for all M ∈ N0 there exists some
constant C ∈ N with the following property: if a ∈ H and z ∈ Z(a)
with |z| ∈ L(a)〈M + γ〉, then there exists some x ∈ Z(H) such that
x |Z(H) z, |x| ≤ C and |x| ∈ L(π(x))〈M〉. The smallest C with this
property is denoted by C(γ, M).

The following two lemmas are invoked in the proof of Proposition 4.8.

Lemma 4.6. Let s ∈ N, N = (N1, . . . , Ns) ∈ Ns
0 and x1, . . . , xn ∈

Ns
0 with

∑n
i=1 xi ≥ N . Set N =

∑s
i=1 Ni ∈ N0. Then there exists

some subset J ⊂ [1, n] such that |J | ≤ N and
∑

j∈J xj ≥ N .

Proof. We prove the Lemma by induction on N . The case N = 0
is clear. Let N and x1, . . . , xn be as in the assumptions and suppose
that N > 0. Then there exists some i ∈ [1, s] such that Ni > 0.
Without restriction let i = 1. Set N ′ = (N1−1, N2, . . . , Ns). Then the
induction hypothesis implies that there exists some subset J ′ ⊂ [1, n]
such that |J ′| ≤ N −1 and S′ ≥ N ′, where S′ =

∑
j∈J′ xj. If S′ ≥ N ,

then we set J = J ′ and we have nothing else to show. Hence assume
S′ � N . Then the first component of S′ is equal to N1 − 1. But from∑n

i=1 xi ≥ N we infer that there exists some j ∈ [1, n]\J ′ such that
the first component of xj is non-vanishing. Hence the assertion follows
if we set J = J ′ ∪ {j}.
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Lemma 4.7 Let H be a finitely primary monoid with rank one. Set
μmax = max{V(q) | q ∈ A(H)} ∈ N.

(1) For every b ∈ H we have the estimate

min L(b) ≤ V(b)
μmax

+ 3α.

(2) Let M ∈ N0, a ∈ H and z ∈ Z(a) such that |z| ≥ min L(a) +
M + 3α. Then there exists some x′′ ∈ Z(H) with x′′ |Z(H) z and
min L(π(x′′)) + M ≤ |x′′| ≤ μmax(3α + M).

Proof. (1) Since μmax is the valuation of an atom qmax of H ,
we have μmax < 2α. Assume without restriction that V(b) ≥ α and
let t ∈ N0 and r ∈ [0, μmax − 1] with V(b) − α = μmaxt + r. Then
V(bq−t

max) = α + r, whence bq−t
max ∈ H . Let ξ ∈ Z(bq−t

max) be arbitrary
and set x = ξqt

max ∈ Z(b). Then |x| = t+|ξ| ≤ t+α+r ≤ V(b)μ−1
max+3α.

(2) Let M , a and z be as in the assumptions. Suppose that z =
z1 · . . . · zk with zi ∈ A(H) and consider the estimate μmax|z| − V(a) ≥
μmax(3α + M + min L(a)) − V(a) = μmax(3α + M) + μmax min L(a) −
V(a) ≥ μmax(3α + M). Then

k∑
i=1

hi ≥ (3α + M)μmax,

where hi = μmax −V(zi) ∈ N0 for all i ∈ [1, k]. Hence there exists some
I ⊂ [1, k] such that |I| ≤ (3α + M)μmax and

∑
i∈I hi ≥ (3α +M)μmax.

Set x′′ =
∏

i∈I zi. Then V(π(x′′)) = −∑
i∈I hi + |I|μmax ≤ (|I| − 3α−

M)μmax. Therefore min L(π(x′′)) ≤ (|I|− 3α−M)+3α = |x′′|−M by
(1).

Proposition 4.8. Let H be a ring-like finitely primary monoid.
Then H has property (Pγ) for some γ ∈ N.

Proof. Without loss of generality we assume that H is reduced. The
proof is divided into two different parts. We first assume that Ĥ× is
finite. Then we treat the case when the semigroup of values of H has a
smallest element. Note that if H has rank one, then V(H\{1}) always
has a smallest element.
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Let Ĥ× be finite and assume that the rank of H is bigger than one.
Set γ = α and A = A(H). To begin with, we define maps Θ : H → H
and R : H → Ns

0 as follows: let a ∈ H and i ∈ [1, s]. If Vi(a) > 2α, we
set ki = Vi(a) − 2α. If Vi(a) ≤ 2α, then we set ki = 0. We define

Θ(a) = a

s∏
i=1

p−ki

i and R(a) = (k1, . . . , ks).

Then we indeed have Θ(H) ⊂ H . Furthermore, Θ(A(H)) ⊂ A by
Proposition 4.4.

The maps Θ and R induce homomorphisms on the factorization monoid
of H :

Θ :

{
Z(H) −→ F(A) ∼= NA

0

z1 · . . . · zn �→ Θ(z1) · . . . · Θ(zn)
and

R :

{
Z(H) −→ Ns

0

z1 · . . . · zn �→ R(z1) + · · · + R(zn).

Next we define the homomorphism Ψ : Z(H) → NA
0 × Ns

0 by setting
Ψ(z) = (Θ(z), R(z)). Finally, we set

Π :

{
NA

0 × Ns
0 −→ Ĥ

(m, n) �→ ∏
q∈A

qmq
∏s

i=1 pni

i .

Let M ∈ N0. Set

M =
{
(m, n, m̃, ñ) ∈ (NA

0 × Ns
0)

2 | Π(m, n) = Π(m̃, ñ) and∑
q∈A

(m̃q − mq) ≥ α + M
}
.

By Dickson’s Theorem (see [25], Satz 12), the set Min(M) of minimal
points of M is finite (note that A is finite!). Furthermore, for every
u ∈ M there exists some v ∈ Min(M) with v ≤ u. Let Min(M) =
{(m1, n1, m̃1, ñ1), . . . , ( mt, nt, m̃t, ñt)}. Since we assumed that the
rank of H is greater than one, L = sup{min L(b) | b ∈ H} is finite, see
[17], Proposition 4.1. Set

C = max{|mi| + |ni| | i ∈ [1, t]} + M + L,
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where |m| denotes
∑r

i=1 mi for some vector m = (m1, . . . , mr) ∈ Nr
0.

Let a ∈ H and z ∈ Z(a) with |z| ∈ L(a)〈α + M〉. We write z = z1 ·. . .·zk

with zi ∈ A(H) for all i ∈ [1, k] and we can assume without loss
of generality that k = |z| ≥ C (otherwise we set x = z and we
are done). Let w ∈ Z(a) be a factorization with |w| = max L(a).
Then (Ψ(z), Ψ(w)) ∈ M. Let p = (m, n, m̃, ñ) ∈ Min(M) be an
element with p ≤ (Ψ(z), Ψ(w)). Set m = |m|, n = |n|, m̃ = |m̃|
and ñ = |ñ|. By reordering the zi (if necessary) we can assume that
Θ(z1 · . . . · zm) = m. Since R(z) ≥ n, there exists some y′ ∈ Z(H) such
that y′ |Z(H) zm+1 · . . . · zk, |y′| ≤ n and R(z1 · . . . · zmy′) ≥ n. Then
|z| − |z1 · . . . · zmy′| ≥ C − m − n ≥ M + L. Let y′′ be an arbitrary
divisor of z(z1 · . . . · zmy′)−1 with |y′′| = M + L and set y = y′y′′. Set

x = z1 · . . . · zmy ∈ Z(H).

Then x |Z(H) z and M+L = |y′′| ≤ |x| = m+|y| = m+|y′|+M+L ≤ C.
Since min L(π(x)) ≤ L, we get min L(π(x)) + M ≤ |x|.

Our next aim is to show that h = π(x)Π(m̃, ñ)−1π(Θ(y))−1 ∈ Q(Ĥ)
is already contained in Ĥ . We have Ψ(x) = (Θ(x), R(x)) = (m, n) +
(Θ(y), η), where η = R(x)−n ≥ 0. Thus π(x) = Π(m, n)Π(Θ(y), η) =
Π(m̃, ñ)Π(Θ(y), η), whence we immediately see that h ∈ Ĥ .

To simplify notation we rewrite Θ(y)
∏

q∈A
qm̃q as a product u1 · . . . ·

uμ with ui ∈ A and μ = m̃ + |y|. Since m̃ − m ≥ α + M , we have
μ ≥ m̃ ≥ α + M ≥ α. Thus we can form the element

ξ = u1 · . . . · uαh
s∏

i=1

pñi

i

and it is contained in H . Let ξ1 · . . . · ξr ∈ Z(ξ) be an arbitrary
factorization of ξ into atoms ξi ∈ A(H) and set v = ξ1 · . . . · ξruα+1 · . . . ·
uμ ∈ Z(H). Then we see easily that π(v) = π(x) ∈ H . Furthermore,
we get the estimate

|v| − |x| = (m̃ + |y| − α + r) − (m + |y|)
= m̃ − m − α + r ≥ (α + M) − α + r = M + r ≥ M.

This proves the Proposition if Ĥ× is finite.
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Now we come to the second part of the proof. We assume that H has
arbitrary rank and that the set of values {(V1(a), . . . , Vs(a)) ∈ Ns | a ∈
H\{1}} possesses a smallest element μ = (μ1, . . . , μs).

Let M ∈ N0, γ ∈ N0, a ∈ H and z ∈ Z(a) with |z| ∈ L(a)〈M + γ〉.
We see easily that Vi(a) ≥ μi max L(a) holds for all i ∈ [1, s]. Hence we
have Vi(a)−μi|z| ≥ μi max L(a)−μi|z| = μi(max L(a)−|z|) ≥ μi(γ+M)
for all i ∈ [1, s].

Write z = z1 · . . . · zk with zi ∈ A(H) and set gi = V(zi) − μ ∈ Ns
0.

Then

k∑
j=1

gj =
k∑

j=1

V(zj) − kμ = V(a) − |z|μ ≥ (γ + M)μ.

Hence we see by Lemma 4.6 that there exists some subset J ⊂ [1, k]
with |J | ≤ (γ + M)

∑s
i=1 μi and

∑
j∈J gj ≥ (γ + M)μ. Define

x′ =
∏
j∈J

zj ∈ Z(H).

Then x′ |Z(H) z and |x′| = |J | ≤ (γ + M)
∑s

i=1 μi. Set c′ = π(x′) ∈ H
and consider the estimate

(5) V(c′) − (M + |J |)μ =
∑
j∈J

gj − Mμ ≥ γμ.

Let qmin ∈ A(H) be an atom with V(qmin) = μ. If we assume that
γ ≥ α, we get c′q−(M+|J|)

min ∈ H from (5) (recall that α is an exponent
of H). Therefore, max L(c′) ≥ M + |J | = M + |x′|.

In order to finish the proof we distinguish two cases:

Case 1. H has rank one. Set γ = 3α and let μmin = μ1 (resp. μmax)
denote the minimum (resp. maximum) of the finite set {V(q) | q ∈
A(H)} ⊂ N. By Lemma 4.7(2) there exists some x′′ ∈ Z(H) with
x′′ |Z(H) z and min L(π(x′′)) + M ≤ |x′′| ≤ μmax(3α + M). Set
x = gcd(x′x′′, z) and C = (μmin + μmax)(3α + M). Then x |Z(H) z,
|x| ≤ C and min L(π(x)) + M ≤ |x| ≤ max L(π(x)) − M . The last
inequality follows from the respective properties of x′ and x′′.

Case 2: H has rank greater than one. Set γ = α and define C =
(α+M)

∑s
i=1 μi +M +L, where L = max{min L(a) | a ∈ H}. Without
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restriction we may assume that |z| = k ≥ C. Then |zx′−1| ≥ M + L.
Let x′′ ∈ Z(H) with x′′ |Z(H) zx′−1 and |x′′| = M + L. Set x = x′x′′.
Then |x| = |x′|+ |x′′| ≤ C, x |Z(H) z and min L(π(x)) + M ≤ L + M ≤
|x| ≤ max L(π(x)) − M .

Lemma 4.9. Let H be an atomic BF-monoid and a, b ∈ H.
Set l = min L(a) + min L(b) and L = max L(a) + max L(b). Then
l − t(H, a) ≤ min L(ab) ≤ l and L ≤ max L(ab) ≤ L + t(H, a).

Proof. The inequalities min L(ab) ≤ l and L ≤ max L(ab) are
obvious. We first show l − t(H, a) ≤ min L(ab). Let x ∈ Z(a) and
z ∈ Z(ab) whose lengths are minimal. Then there exists some z′ ∈ Z(ab)
such that x |Z(H) z′ and d(z, z′) ≤ t(H, a). Thus |z′|− |z| ≤ t(H, a) and
|z′| ≥ l. Hence |z| = min L(ab) = |z| − |z′| + |z′| ≥ −t(H, a) + |z′| ≥
−t(H, a) + l. Likewise, one proves the remaining inequality.

Lemma 4.10 Let H be a finitely primary monoid.

(1) There exists some constant L ∈ N0 such that for all a ∈ H and
m ∈ L(a)〈L〉 we have m+min Δ(H) ∈ L(a) and m−min Δ(H) ∈ L(a).

(2) There exists some constant L ∈ N0 with the following property: if
q ∈ A(H), b ∈ H and m ∈ L(b)〈L〉, then q |H b and m − 1 ∈ L(bq−1).

Proof. (1) is an immediate consequence of Theorem 2.5. In order
to show (2)., let T denote the maximum of the set {t(H, q) | q ∈
A(H)} (this set is indeed finite, see [13], Lemma 5.3) and set M =
max{M(q) | q ∈ A(H)} ∈ N (for the definition of M(q) see the
paragraph after Definition 2.3). The Structure Theorem for sets of
lengths of H implies that there exists some M ∈ N0 such that every set
of lengths of H is an almost arithmetical progression bounded by M .
Set L = max{M + T,M + 1}. Let b ∈ H , m ∈ L(b)〈L〉 and q ∈ A(H).
Then max L(b) ≥ M + 1, whence c = bq−1 ∈ H\H×. From Theorem
2.5 we know that there is a decomposition L(c) = L1 ∪ L∗ ∪ L2 such
that L∗ �= ∅, L1 ⊂ [−M,−1] + min L∗, L2 ⊂ maxL∗ + [1, M ] and
L∗ = [min L∗, max L∗] ∩ (min L∗ + dZ), where d = min Δ(H). Since
L(c)+1 ⊂ L(b) we in particular have L∗ +1 ⊂ L(b). But Δ(L∗) ⊂ {d},
where d is the minimal possible difference of consecutive elements in
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sets of lengths of H . Therefore the inequality

(6) min L∗ + 1 ≤ m ≤ maxL∗ + 1

already implies that m ∈ L∗ + 1. We first show the left inequality in
(6). From the decomposition L(c) = L1 ∪ L∗ ∪ L2 we get min L(c) ≥
min L∗ −M and Lemma 4.9 yields min L(c) + 1− T ≤ min L(b). These
two inequalities imply min L∗ + 1 ≤ min L(b) + L ≤ m. The second
inequality in (6) is proved the same way.

The following Proposition is the key ingredient for the proof of
Theorem 4.14(1). Its proof is now easy.

Proposition 4.11. Let H be a ring-like finitely primary monoid.
Then there exists some constant K ∈ N0 with the following property:
for all q ∈ A(H) and for all a ∈ H, z ∈ Z(a) with |z| ∈ L(a)〈K〉 there
exists some z′ ∈ Z(a) such that q |Z(H) z′, |z| = |z′| and d(z, z′) ≤ K.

Proof. Let γ ∈ N0 such that H has (Pγ) and let L ∈ N0 such that
condition (2) of Lemma 4.10 is satisfied. Put K = max{L+ γ, C(γ, L)}
and let a, z and q be as in the assumptions. Then there exists some
x ∈ Z(H) such that x |Z(H) z, |x| ≤ K and |x| ∈ L(π(x))〈L〉. Let
y ∈ Z(π(x)q−1) with |y| = |x| − 1. Then z′ = qyx−1z has the required
properties.

Lemma 4.12. Let H be a ring-like finitely primary monoid. Let
a ∈ H and z ∈ Z(a) with |z| ≥ 2s. Then there exists some z′ ∈ Z(a)
such that |z| = |z′|, d(z, z′) ≤ 2 and such that there exists some
q ∈ A(H) with q |Z(H) z′.

Proof. Define φ : H → {0, 1}s by setting φ(h)i = 1 if and only
if Vi(h) > 2α for h ∈ H , i ∈ [1, s]. Suppose without restriction
that q �∈ A(H) for all atoms q dividing z. Since |z| ≥ 2s there exist
v, w ∈ A(H) such that vw |Z(H) z and φ(v) = φ(w). By Proposition
4.4 we then can rearrange the prime elements dividing v and w to get
atoms v′ and w′ with πH(v′w′) = πH(vw) and {v′, w′} ∩ A(H) �= ∅.



FACTORIZATIONS WITH SUCCESSIVE LENGTHS 255

Lemma 4.13. Let H be a non half-factorial finitely primary
monoid. Then there exist κ ∈ Q>0 and λ ∈ Q≥0 such that the inequality

max L(a) − min L(a) ≥ κ max L(a) − λ

holds for all a ∈ H\H×.

Proof. If the rank of H is greater than one, then the set
{min L(a) | a ∈ H} is bounded, see [17], Proposition 4.1. Hence assume
that H has rank one.

Let μmin (resp. μmax) denote the minimum (resp. maximum) of the
set {V(q) | q ∈ A(H)}. Since ρ(H) > 1, we have μmax > μmin. We claim
that κ = (1 − μminμ

−1
max) and λ = 4α + 1 satisfy the inequality of the

Lemma. Let a ∈ H\H×. If V(a) < α, then the assertion is certainly
true. Hence assume V(a) ≥ α and let t ∈ N0 and r ∈ [0, μmin − 1] with
V(a) − α = tμmin + r. If qmin ∈ A(H) is an atom with V(qmin) = μmin,
then V(aq−t

min) ≥ α. Hence we see that max L(a) ≥ t, i.e. we have the
inequality max L(a) ≥ μ−1

min(V(a) − α − r) ≥ μ−1
min(V(a) − α) − 1. This

yields

(7) V(a) ≤ μmin(max L(a) + 1) + α.

Using (1) of Lemma 4.7 we obtain max L(a)−min L(a) ≥ max L(a)−
V(a)μ−1

max − 3α. An easy calculation using (7) now yields the result.

We are now ready to prove Theorem 4.14.

Theorem 4.14 Let H be a ring-like finitely primary monoid. Then
there exists some constant C ∈ N0 with the following properties:

(1) sup{ck(a) | a ∈ H, k ∈ N, min L(a)+C ≤ k ≤ max L(a)−C} < ∞.

(2) sup{δk(a) | a ∈ H, k ∈ N, min L(a)+C ≤ k ≤ max L(a)−C} < ∞.

Proof. (1) Without restriction we can assume that H is reduced and
not half-factorial. Let K ∈ N≥2s be a natural number for which the
assertion of Proposition 4.11 holds. Let a ∈ H , k ∈ L(a)〈K〉 and z, z̃ ∈
Zk(a). Let T denote the maximum of the set {t(H, q) | q ∈ A(H)} ⊂ N0
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(for the finiteness of this set see [13], Lemma 5.3) and let κ > 0 and
λ ≥ 0 be constants for which the assertion of Lemma 4.13 holds. Set
C = max{(2K + 2T + λ)κ−1, K + T + 2s}. We prove by induction on
k that there exists some C-chain in Zk(a) which concatenates z and z̃.

Case 1: L(a)〈K + T 〉 = ∅. Then max L(a) − min L(a) ≤ 2(K + T ).
Hence max L(a) ≤ C by Lemma 4.13 and there is nothing more to show.

Case 2: L(a)〈K + T 〉 �= ∅. Then either

(8) min L(a) + K + T ≤ k or k ≤ max L(a) − (K + T ).

Suppose first that the first inequality is satisfied. Then the assumption
k ∈ L(a)〈K〉 yields

(9) min L(a) + K + T ≤ k ≤ max L(a) − K.

Let w ∈ Z(a) be a factorization with |w| = max L(a). Then |w| ≥
K ≥ 2s and by Lemma 4.12 we can assume without restriction that
there exists some q ∈ A(H) with q |Z(H) w. If we apply Proposition
4.11 to z and z̃ respectively, we obtain factorizations z′ and z̃′ of a
such that |z′| = k, |z̃′| = k, q |Z(H) z′, q |Z(H) z̃′, d(z, z′) ≤ K and
d(z̃, z̃′) ≤ K. Set b = aq−1, x = z′q−1 and x̃ = z̃′q−1. Since q | w we
have max L(b) = max L(a) − 1. We also have |x| = |x̃| = k − 1. From
Lemma 4.9 we get min L(b) + 1− T ≤ min L(a). Therefore we see from
(9) that min L(b)+K ≤ (k− 1). Thus the induction hypothesis applies
to b, x and x̃ and there exists a C-chain x = x0, x1, . . . , xl = x̃ with
xi ∈ Zk−1(b). But then z, qx0, qx1, . . . , qxl, z̃ is a C-chain in Zk(a).

Suppose now that the first inequality in (8) is not satisfied. If
min L(a) < 2s, then k < K + T + 2s ≤ C and there is nothing more
to show. Hence we can assume that the second inequality in (8) holds
and that min L(a) ≥ 2s. Then we pick some factorization v ∈ Z(a)
with |v| = min L(a) and may assume that q |Z(H) v for some q ∈ A(H)
(again by Lemma 4.12). Now we can argue completely the same way
as before.

(2) Let γ ∈ N0 such that H has (Pγ) and let L ∈ N0 be as in
Lemma 4.10(1). Let b ∈ H , m ∈ L(b)〈L + γ〉 and z ∈ Zm(b). Then
the (Pγ) property of H yields some x ∈ Z(H) such that x |Z(H) z,
|x| ≤ C(γ, L) and |x| ∈ L(c)〈L〉, where c = π(x). Since L satisfies (1) of
Lemma 4.10 we infer that |x| ±min Δ(H) ∈ L(c). Let y+, y− ∈ Z(c) be
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factorizations with |y+| = |x| + min Δ(H) and |y−| = |x| − min Δ(H).
Set z± = y±zx−1 ∈ Z(b). Then |z−|, |z| (resp. |z|, |z+|) are successive
lengths of b. Furthermore, we have the estimate

d(z±, z) ≤ |x| + min Δ(H) ≤ C(γ, L) + min Δ(H).

Now set C = L + γ + min Δ(H) and let a ∈ H and k ∈ L(a)〈C〉. Set
l = k + min Δ(H). Then the above consideration applies to b = a and
m = k or m = l. Therefore we have

δk(a) = Dist(Zk(a), Zl(a)) ≤ C(γ, L) + min Δ(H).

The following technical Lemma is needed for the proof of Corollary
4.16.

Lemma 4.15. Let H be a finitely primary monoid which is not
half-factorial. Let C ∈ N. Then there exists some L = L(C) ∈ N
such that for all b ∈ H with max L(b) ≥ L and for all z ∈ Z(b) with
|z| ∈ {k ∈ L(b) | k < min L(b) + C or k > max L(b) − C} there exists
some y ∈ Z(b) such that min L(b) + C ≤ |y| ≤ max L(b) − C and
d(z, y) ≤ L.

Proof. Since H is not half-factorial there exists some a ∈ H
possessing factorizations w0, w1, w2 with |wi|− |wi−1| ≥ C for i ∈ [1, 2].
Set L = max{M(a), t(H, a)+max L(a)} (for the definition of M(a) see
the paragraph after Definition 2.3) and let b ∈ H with max L(b) ≥ L.
Then a is a divisor of b. Let z ∈ Z(b). Assume first that |z| <
min L(b) + C. By the definition of the tame degree there exists some
z̃ ∈ Z(b) such that w0|Z(H)z̃ and d(z, z̃) ≤ t(H, a). Set y = z̃w−1

0 w1 ∈
Z(b). Then d(z, y) ≤ d(z, z̃) + d(z̃, y) ≤ t(H, a) + max L(a) ≤ L and
|y| = |z̃| + |w1| − |w0| ≥ |z̃| + C ≥ min L(b) + C. On the other hand
we see that max L(b) − |y| ≥ |yw−1

1 w2| − |y| ≥ C. The case when
|z| > max L(b) − C is treated in a similar way.

Corollary 4.16 [cf. [8], Theorem 4.8] Let H be a ring-like finitely
primary monoid. Then there exists some constant K ∈ N0 having the
following properties:
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(1) For every a ∈ H and each two factorizations z1, z2 ∈ Z(a) there
exist factorizations y1, y2 ∈ Z(a) such that d(zi, yi) ≤ K for i ∈ [1, 2]
and such that there exists a monotone K-chain from y1 to y2 in Z(a).

(2) For every a ∈ H and each two factorizations z1, z2 ∈ Z(a)
with

∣∣|z1| − |z2|
∣∣ ≥ K there exists a monotone K-chain in Z(a) which

concatenates z1 and z2.

Proof. Assume first that H is half-factorial. Then (2) is trivially
satisfied for K ≥ 1. Since H is half-factorial, ck(a) coincides with the
ordinary catenary degree of a if k is the length of some (and hence
every) factorization of a. But H has finite ordinary catenary degree.
Thus we are done if we set yi = zi and K = c(H).

Suppose now that H is not half-factorial and let C be as in Theorem
4.14. Let L = L(C) be a constant which fulfills the assertion of Lemma
4.15. Set K = max{2L, C, B}, where B = max{δk(a), ck(a) | a ∈
H , k ∈ N , min L(a) + C ≤ k ≤ max L(a) − C}. Let a ∈ H ,
z1, z2 ∈ Z(a). If max L(a) ≤ K there is nothing to show. Hence
assume max L(a) > K. Now we define factorizations yi as follows:
if |zi| ∈ {k ∈ L(a) | k < min L(a) + C or k > max L(a) − C} we let
yi ∈ Z(a) with min L(a) + C ≤ |yi| ≤ max L(a) − C and d(yi, zi) ≤ L
by Lemma 4.15. Otherwise we set yi = zi. Then Theorem 4.14
immediately implies that y1 and y2 can be concatenated by a monotone
B-chain. To show (2) assume that |z2|−|z1| ≥ K. This implies that we
cannot have |z1| > max L(a) − C or |z2| < min L(a) + C. Therefore we
get |y1| ≥ |z1| and |y2| ≤ |z2| by the construction of the yi. We moreover
have |y2| − |y1| = |z2| − |z1|+ (|y2| − |z2|) + (|z1| − |y1|) ≥ K − 2L ≥ 0.
Now Theorem 4.14 implies (2).

5. The monotone catenary degree of local quadratic orders.
In this section we show the finiteness of the monotone catenary degree
for one-dimensional local domains (R, m) having the following proper-
ties:

• The integral closure R of R is a finitely generated R-module.

• R has two maximal ideals.

• The residue class field R/m is finite.

Clearly, the multiplicative monoid of a ring R with the above proper-
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ties is strongly ring-like by Theorem 4.3. Hence the assertion is a direct
consequence of Theorem 5.3. Note that (in view of Example 6.3) the
analogous assertion if R has more than two maximal ideals is not true.

Rings of the above type appear naturally as localizations of orders O
of quadratic number fields at singular places. Together with Theorem
3.9 in [8] this shows that every such order O has locally finite mono-
tone catenary degree. However, we do not know whether this result
globalizes, i.e. whether O itself has finite monotone catenary degree.

Assume that the following notation holds throughout the rest of
the section: H is a reduced strongly ring-like finitely primary monoid
with rank two and complete integral closure Ĥ = Ĥ× × [p1, p2]. The
prime elements p1, p2 and an exponent α of H are chosen in such a
way that they satisfy condition (1)(a) of Definition 4.2. We denote
by μ = (μ1, μ2) ∈ N2 the smallest element of V(H\{1}) and we set
A(H) = {q ∈ A(H) | Vi(q) ≤ 2α for i ∈ [1, 2]}.

In order to show the theorem we need two preliminary lemmas.

Lemma 5.1. The inequality min{Vi(a) − μi max L(a) | i ∈ [1, 2]} <
α holds for every a ∈ H.

Proof. Let a ∈ H and suppose that Vi(a) − μi max L(a) ≥ α
for all i ∈ [1, 2]. Let qmin ∈ H with V(qmin) = μ. Then we have
aq−L

min ∈ H\{1}, where L = max L(a). Clearly, qmin is irreducible.
Thus a possesses a factorization which is strictly longer than L, a
contradiction.

Lemma 5.2. There exist constants N, E ∈ N with the following
property: if q1, . . . , qN ∈ A(H), u ∈ A(H) with V1(q1) = · · · =
V1(qN ) = V1(u) and q ∈ A(H) with V2(q) ≥ E, then there exists some
w ∈ Z(π(qq1 · . . . · qN )) such that |w| = N + 1 and u |Z(H) w.

Proof. Let D ∈ N be the Davenport constant (cf. for example [5]) of
Ĥ×. Then for every sequence ε1, . . . , εD ∈ Ĥ× there exists some non-
empty subset J ⊂ [1,D] such that

∏
j∈J εj = 1. Set E = 2α(D + 1)

and N = D. Put vi = qiu
−1 = εip

ξi

2 , where εi ∈ Ĥ×, ξi ≥ −2α and
let ∅ �= J ⊂ [1, N ] such that

∏
j∈J εj = 1. Then

∏
j∈J vj = pt

2, where
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t =
∑

j∈J ξj . Since t ≥ −2αD, we see that V2(y) ≥ 2α, where y = qpt
2.

Hence y ∈ H and y is irreducible by Proposition 4.4. Now we set

w = u|J|y
∏
j

qj ,

where j varies over [1, N ]\J and we are done.

Theorem 5.3 Let H be a strongly ring-like finitely primary monoid
with rank two. Then the monotone catenary degree cmon(H) of H is
finite. In particular, sup{ck(a) | a ∈ H, k ∈ L(a)} is finite.

Proof. For M ∈ N set B(M) = sup{δk(a), ck(a) | a ∈ H , k ∈
N , k ≤ max L(a) − M} ∈ N0 ∪ {∞}. Note that by [17], Proposition
4.1 the set {min L(a) | a ∈ H} is bounded. Therefore Theorem 4.14
immediately implies that there exists some M ∈ N such that B(M)
is finite. Pick M ∈ N with this property and let K ∈ N such
that the assertions (1) and (2) of Corollary 4.16 are satisfied. Set
C̃ = 2 max{M, K}. Let N, E ∈ N be suitable constants in Lemma 5.2.
Put L = max{E, μ1(C̃ + 1) + α} and let B = {q ∈ A(H) | V1(q) ≤
L , V2(q) ≤ L}. Clearly, B is a finite (and possibly empty) set. Denote
by H(B) the submonoid of H which is generated by B. (Note that if
B = ∅ then H(B) = {1} and Case 1 below does not occur.) Then
H(B) is finitely generated and A(H(B)) = B. By Theorem 3.9 in [8],
the monotone catenary degree cmon(H(B)) of H(B) is finite. Define the
constant A ∈ N by A = max{B(M), (1 + μ1)C̃ + N + α, cmon(H(B))}.

Let a ∈ H , z = z1 · . . . · zn ∈ Z(a) and z′ = z′1 · . . . · z′n′ ∈ Z(a). We
show by induction on max L(a) that there exists a monotone A-chain
in Z(a) which concatenates z and z′.

If max L(a) ≤ A, then the trivial chain z, z′ is a monotone A-chain.
Hence assume for the rest of the proof that max L(a) > A. Assume first
that min{|z|, |z′|} < max L(a) − C̃. If

∣∣|z| − |z′|∣∣ ≤ C̃
2 , then we have

max{|z|, |z′|} ≤ min{|z|, |z′|}+ C̃
2 < C̃

2 +maxL(a)− C̃ ≤ max L(a)−M .
Hence there exists some monotone B(M)-chain from z to z′. If, on the
other hand,

∣∣|z| − |z′|∣∣ > C̃
2 , then there exists some monotone K-chain

concatenating z and z′ by Corollary 4.16. Hence we can assume in the
following that min{|z|, |z′|} ≥ max L(a) − C̃.
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By Lemma 5.1 we have Vi(a) − μi max L(a) ≤ α for some i ∈ [1, 2].
Without loss of generality we can assume that i = 1. We proceed
with the following consideration. Let w = w1 · . . . · wl ∈ Z(a) be an
arbitrary factorization with l ≥ max L(a) − C̃. Then V1(a) − μ1l =
V1(a)−μ1 max L(a)+μ1(max L(a)− l) ≤ α+μ1C̃. This estimate shows
that |{j ∈ [1, l] | V1(wj) �= μ1}| ≤ α + μ1C̃ since V1(d) ≥ μ1 for every
element d ∈ H\{1}. Moreover, we see that V1(q) ≤ α+μ1(C̃+1) for all
q ∈ A(H) such that q | w. In particular, these considerations apply to
z and z′. Since min{|z|, |z′|} ≥ max L(a)− C̃ > A− C̃ ≥ N + α + μ1C̃,
we see that

∣∣{j ∈ [1, n] | V1(zj) = μ1}
∣∣ > N and

∣∣{j ∈ [1, n′] | V1(z′j) =
μ1}

∣∣ > N .

Set U = max
({V2(zj) | j ∈ [1, n]} ∪ {V2(z′j) | j ∈ [1, n′]}). Now we

distinguish two cases.

Case 1. We have U < E. Then z, z′ ∈ F(B). Hence there exists some
monotone cmon(H(B))-chain from z to z′ in ZH(B)(a) ⊂ ZH(a).

Case 2. We have U ≥ E. We assume (without restriction) that
U = V2(z1). Since

∣∣{j ∈ [1, n′] | V1(z′j) = μ1}
∣∣ ≥ N + 1 ≥ 2,

an adjustment (if necessary) of the second valuation of two of the
z′j by Proposition 4.4 yields some factorization z̃′ ∈ Z(a) such that
d(z′, z̃′) ≤ 2 and such that u |Z(H) z̃′ for some u ∈ A with V1(u) = μ1.
Assume (by reordering the atoms zi if necessary) that V1(zj) = μ1

holds for all j ∈ [2, N +1]. Set b = π(z1 · . . . · zN+1) ∈ H . Then Lemma
5.2 (with q = z1) implies that there exists some w ∈ Z(b) such that
|w| = N + 1 and u |Z(H) w. Set z̃ = wzN+2 · . . . · zn. Then |z| = |z̃|
and d(z, z̃) ≤ N + 1 ≤ A. Set v = z̃u−1, v′ = z̃′u−1 and c = au−1.
Then by the induction hypothesis there exists some monotone A-chain
v = v0, v1, . . . , vk = v′ in Z(c). But then z, v0u, v1u, . . . , vku, z′ is a
monotone A-chain in Z(a).

6. Examples. For a commutative ring R we denote by z(R)
the set of zero divisors of R and we set R• = R\z(R). Furthermore,
Q(R) = (R•)−1R denotes the total quotient ring of R and R denotes
the integral closure of R in Q(R). Let R be a semi-local ring. We
denote by R̂ the completion of R with respect to the Jacobson radical-
adic topology. Note that we have R• ⊂ R̂• by flatness. Hence Q(R)
naturally embeds into Q(R̂).
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Let R be a one-dimensional local reduced ring with minimal prime
ideals p1, . . . , pn. Then Q(R) ∼= ∏n

i=1 Q(R/pi) and R ∼= ∏n
i=1 (R/pi),

where each (R/pi) is a semilocal principal ideal domain (cf. for
example [7]). Assume that mi,1, . . . , mi,ri are the maximal ideals of
(R/pi). Then (R/pi)mi,j

is a discrete valuation ring and we denote by
Vi,j : Q(R/pi) → Z ∪ {∞} the corresponding discrete valuation. If we
put them together in the obvious way we obtain a map

V : Q(R) −→ Zs
∞,

where s =
∑n

i=1 ri and Z∞ = Z ∪ {∞}. We call V the valuation map
of R. The submonoid V(R•) ⊂ Ns

0 is called the semigroup of values of
R. Note that we have V(R•) ⊂ Ns ∪ {0}. To see this, let x ∈ R• with
Vi,j(x + pi) = 0 for some i ∈ [1, n], j ∈ [1, ri]. Then x + pi is a unit
of (R/pi)mi,j

, whence it is a unit of R/pi. Hence x is a unit of R and
therefore V(x) = 0.

Proposition 6.1. Let R be a one-dimensional local ring.

(1) If R̂ is reduced, then R• is finitely primary with complete integral
closure R

•
.

(2) The natural map j : R•/R× → R̂•/R̂× is an isomorphism of
monoids.

(3) Suppose that R̂ is reduced. With the natural injection ι : Q(R) →
Q(R̂) we have a commutative diagram

Q(R) �

ι
�
�
�
��V

Q(R̂)
�
�
�
��

V̂

Zs
∞

where V and V̂ denote the valuation maps of R and R̂, respectively.
Furthermore, V(R•) = V̂(R̂•).

Proof. (1) We clearly have R• ⊂ R
•

and R
•

is factorial. Since
R̂ is reduced, R is a finitely generated R-module by [23], Theorem
10.2. Hence there exists some f ∈ R• with fR

• ⊂ R• and condition
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(1) of Definition 2.2 is satisfied. But condition (2) of Definition 2.2 is
equivalent to V(R•) ⊂ Ns ∪ {0} which we have already proved.

(2) Since R• ⊂ R̂•, the map j is well defined. By [24], 18.4 j is
injective. In order to show that j is surjective, let x̂ ∈ R̂•. Let xn ∈ R
be a sequence which converges to x̂. Since x̂ is a nonzero divisor of R̂
and since R̂ is one-dimensional, we have m̂k � x̂R̂ for some k ∈ N, where
m̂ denotes the maximal ideal of R̂. Let l ∈ N such that x̂ − xl ∈ m̂k.
Then x̂ − xl = ξ̂x̂, where ξ̂ ∈ R̂. If ξ̂ ∈ m̂, then xl = (1 − ξ̂)x̂ with
the unit 1− ξ̂ and we are done. But the assumption ξ̂ ∈ R̂× yields the
contradiction x̂R̂ = (x̂ − xl)R̂ ⊂ m̂k.

(3) Since R̂ is reduced, we can form the valuation maps V of R and V̂ of

R̂. From Q(R) ⊂ Q(R̂) we see that R ⊂ R̂. By [7], Proposition 1.1 we
know that R̂ is actually the completion of R, i.e. R̂ = R̂. In particular,
we have Q(R̂) = Q(R̂) = Q(R̂) and Q(R) = Q(R). Therefore it is
enough to show commutativity of the diagram if R = R, i.e. if R is a
finite product of semi-local principal ideal domains. But in this case
the assertion follows immediately from the fact that it is true for a
single semi-local principal ideal domain. Now V(R•) = V̂(R̂•) follows
directly from (2).

Proposition 6.2. (C. Lech) Let (R, m) be a complete local ring.
Then R is the completion of some local domain if and only if the
following conditions are fulfilled:

(1) The prime ring Prim(R) of R is a domain and R is a torsion free
Prim(R)-module.

(2) Either m = (0) or m is not an associated prime of R.

Proof. See [22].

In the following examples we show the existence of one-dimensional
local domains D having certain arithmetical properties. By Proposition
6.1 and Proposition 6.2 it is enough to show these properties for the
multiplicative monoid R• of a complete, reduced one-dimensional local
ring R (containing some field).
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Example 6.3. There exists a one-dimensional local domain (D, m)
having the following properties:

• D/m is finite.

• D is a finitely generated D-module and has three maximal ideals.

• sup{ck(a)|a ∈ D•, k∈L(a)} is infinite. In particular, cmon(D•)=∞.

Proof. Set K = Z/2Z and let x, y, u, v, w be indeterminates. Define
three ring homomorphisms ϕ1 : K[[x, y]] → K[[u2, u3]], ϕ2 : K[[x, y]] →
K[[v]] and ϕ3 : K[[x, y]] → K[[w2, w3]] by setting ϕ1(x) = u2,
ϕ1(y) = u3, ϕ2(x) = v, ϕ2(y) = v, ϕ3(x) = w3 and ϕ3(y) = w2.
Then the kernels of these homomorphisms are generated by x3 − y2,
x−y and x2−y3, respectively. Set I = ker(ϕ1)∩ker(ϕ2)∩ker(ϕ3) and
let R = K[[x, y]]/I. Then R is a one-dimensional, complete, reduced
local ring with minimal prime ideals p1 = (x3 − y2), p2 = (x − y)
and p3 = (x2 − y3), where bars denote residue classes modulo I. If
we identify x = (u2, v, w3) and y = (u3, v, w2), then R = K[[x, y]] ⊂
K[[u]] × K[[v]] × K[[w]], where the last product coincides with the
integral closure of R. Let V : Q(R) → (Z∞)3 denote the valuation
map. Our first aim is to establish some properties of the semigroup of
values of R.

Claim 1: {V(ξ) ∈ N3 | ξ ∈ R•, V2(ξ) = 1} = {(2, 1, 3), (3, 1, 2)}.
Let ξ ∈ R• with V2(ξ) = 1. Then ξ = ξ0,0 +ξ1,0x+ξ0,1y+S, where S

is a sum of terms ξi,jx
iyj with i + j ≥ 2. Since ξ is not a unit, we have

ξ0,0 = 0. If ξ1,0 = ξ0,1 = 1, then V2(ξ) ≥ 2, which is a contradiction.
Hence (ξ1,0, ξ0,1) ∈ {(0, 1), (1, 0)}. But since V2(S) ≥ 2 and Vi(S) ≥ 4
for i ∈ {1, 3}, the assertion follows.

Claim 2: {V(ξ) ∈ N3 | ξ ∈ R•, V2(ξ) = 2}
= {(2, 2, 2), (5, 2, 5), (4, 2, 4)}∪ {(4, 2, m), (m, 2, 4) | m ∈ N≥6}.

Let ξ ∈ R• with V2(ξ) = 2. As above we write ξ = ξ1,0x + ξ0,1y + S,
where S is a sum of terms of degree at least two. If ξ1,0 �= ξ0,1, then
V2(ξ) = 1 which is a contradiction.

Case 1: ξ1,0 = ξ0,1 = 1. Since Vi(S) ≥ 4 for i ∈ {1, 3}, we get
V(ξ) = (2, 2, 2).

Case 2: ξ1,0 = ξ0,1 = 0. Then ξ = ξ1,1xy + ξ2,0x
2 + ξ0,2y

2 + S′,
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where S′ is a sum of terms ξi,jx
iyj with i + j ≥ 3. We must have

ξ1,1 + ξ2,0 + ξ0,2 = 1 in order to get V2(ξ) = 2.

Case 2a: ξ1,1 = 1 and ξ2,0 = ξ0,2 = 0. Since V(xy) = (5, 2, 5) and
since Vi(S′) ≥ 6 for i ∈ {1, 3} we see that V(ξ) = (5, 2, 5) is the only
possibility.

Case 2b: ξ1,1 = ξ2,0 = ξ0,2 = 1. For the same reason as in Case 2a
we get V(ξ) = (4, 2, 4).

Case 2c: ξ2,0 = 1 and ξ1,1 = ξ0,2 = 0. Then ξ = (u4, v2, w6) + S′.
Hence V(ξ) has the form (4, 2, m) with some m ∈ N≥6. Set M = {m ∈
N≥6 | (4, 2, m) ∈ V(R•)}. We want to show that M = N≥6. Clearly,
6 ∈ M . Let ξ = (u4, v2, w6) + y3 + S′′ = (u4 + u9, v2 + v3, 0) + S′′,
where S′′ is a sum

(10) S′′ =
∑
i,j

ξi,jxy

such that the indices i and j satisfy the conditions i+j ≥ 3 and (i, j) �=
(0, 3). Since {3i + 2j | (i, j) ∈ N2

0, i + j ≥ 3, (i, j) �= (0, 3)} = N≥7, we
can choose suitable ξi,j in (10) for every given m ∈ N≥7 to obtain an
element with valuation (4, 2, m).

The remaining case ξ0,2 = 1 and ξ1,1 = ξ2,0 = 0 is symmetric to Case
2c. This completes the proof of Claim 2.

Since R is a finitely generated R-module, there exists some f ∈ N
such that (uf , vf , wf ) is contained in the conductor (R : R). Hence
(0, 0, wl) ∈ R for all l ≥ f + 1. Let k ≥ f be an integer. Then
qk = x2+y3+(0, 0, wk+4+wk+9) = (u4+u9, v2+v3, wk+4+wk+9) ∈ R.
By symmetry, we also have pk = (uk+4 + uk+9, v2 + v3, w4 + w9) ∈ R.
Set ak = xk−1pk−1 = yk−1qk−1 ∈ R. Claim 1 shows that x, y and
pk and qk are irreducible elements of R• if k is big enough. Hence
zk = xk−1pk−1 and z′k = yk−1qk−1 are both factorizations of ak with
length k.

Let V : Z(R•) → F(V(R•)) be the extension of V which sends each
qR× ∈ A(R•/R×) to V(q). We show that if k is large enough and z is
any factorization of ak with length k, then V(z) ∈ {V(zk), V(z′k)}. In
particular we have d(z, z′) = k if z, z′ ∈ Zk(ak) with V(z) = V(zk) and
V(z′) = V(z′k). This implies ck(ak) = k for the catenary degree of ak at
length k.
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Let z = x1 ·. . .·xk ∈ Zk(ak). Since V2(ak) = k+1, we can assume that
V2(xi) = 1 for i ∈ [1, k − 1] and V2(xk) = 2. For sufficiently large k we
cannot have V(xk) ∈ {(2, 2, 2), (5, 2, 5), (4, 2, 4)} because the distance
between V(ak) = (3k+1, k+1, 3k+1) and the plane (2, 1, 3)Q+(3, 1, 2)Q
is unbounded. Hence V(xk) ∈ {(4, 2, m), (m, 2, 4) | m ∈ N≥6} by the
second claim. Suppose that V(xk) = (4, 2, m) for some m. Then
there exist α, β, γ ∈ N0 such that α(2, 1, 3) + β(3, 1, 2) + (4, 2, γ) =
(3k + 1, k + 1, 3k + 1). This is a linear equation (in α, β and γ) with
regular matrix. Hence there exists only the solution α = 0, β = k − 1
and γ = k+3. Thus V(z) = V(z′k). The same argument applies if V(xk)
is of the form (m, 2, 4) for some m.

Lemma 6.4. Let H be a finitely primary monoid with rank
two. Let V : Q(H) → Z2 be the valuation map of H. Set νi =
min{Vi(h) | h ∈ H\H×} and Mi = {V(h) | h ∈ H\H×, Vi(h) = νi}
for i ∈ [1, 2] and assume that 1 < |Mi| < ∞ for some i ∈ [1, 2]. Then
sup{δk(a) | a ∈ H, k ∈ L(a)} is infinite.

Proof. Suppose without restriction that 1 < |M1| < ∞. Choose
p, q ∈ H such that their valuation is contained in M1 and such that
V(q) = maxM1 and V(p) < V(q) (note that M1 is totally ordered).
Clearly, p and q are irreducible elements of H . Let α ∈ N be an
exponent of H and set an = qn+α ∈ H for n ≥ 1. Suppose that
z = z1 · . . . · zn+α is an arbitrary factorization of an with length n + α.
Then V(zi) = V(q) holds for every i ∈ [1, n+α] because of the properties
of q. Clearly, ξn = anp−n is contained in H . Let ωn be an arbitrary
factorization of ξn. Then |ωn| ≤ α. Indeed, |ωn| < α for large n,
since V2(ξn) is unbounded and M1 is finite. Set vn = ωnpn ∈ Z(an).
Then n ≤ |vn| < n + α and Dist({vn}, Zn+α(an)) ≥ n. This proves the
lemma.

Example 6.5. There exists a one-dimensional local domain (D, m)
having the following properties:

(1) D/m is finite.

(2) D is a finitely generated D-module and has two maximal ideals.

(3) sup{δk(a) | a ∈ D•, k ∈ L(a)} is infinite.
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Proof. Let k be a field and set R = k[[(t2, u3), (t3, u2)]] ⊂ k[[t]] ×
k[[u]]. Then M = {(2, 2), (2, 3), (3, 2)} ⊂ V (R•) and V (R•)\M ⊂ N2

≥4.
Hence the assertion follows from Lemma 6.4.

Remark 6.6. We have not been able to clarify whether there
exists a one-dimensional analytically irreducible local domain D (i.e.
D is a discrete valuation ring and finitely generated as a D-module) for
which sup{δk(a) | a ∈ D•, k ∈ L(a)} or sup{ck(a) | a ∈ D•, k ∈ L(a)}
is infinite. Note that by [8], Theorem 3.9 such a ring D (if it exists)
necessarily has infinite residue class field.

REFERENCES

1. D.D. Anderson and D.F. Anderson, Elasticity of factorizations in integral
domains, J. Pure Appl. Algebra, 80 : 217 235, (1992).

2. D.D. Anderson, D.F. Anderson, and M. Zafrullah, Factorization in integral
domains, J. Pure Appl. Algebra, 69 : 1 19, (1990).

3. D.D. Anderson and J.L. Mott, Cohen-Kaplansky Domains: Integral Domains
with a finite Number of Irreducible Elements, J. Algebra, 148 : 17 41, (1992).

4. D.F. Anderson, Elasticity of Factorizations in Integral Domains: A Survey, In
D.D. Anderson, editor, Factorization in Integral Domains, volume 189, pages 1 29.
Marcel Dekker, (1997).

5. S. Chapman, On the Davenport constant, the Cross number, and their ap-
plication in factorization theory, In Zero-dimensional commutative rings, Lecture
Notes in Pure Appl. Math., volume 171, pages 167 190. Marcel Dekker, (1995).

6. S. Chapman and A. Geroldinger Krull Domains and Monoids, Their Sets
of Lengths, and Associated Combinatorial Problems, In D.D. Anderson, editor,
Factorization in Integral Domains, volume 189, pages 73 112. Marcel Dekker,
(1997).

7. M. D’Anna, The canonical module of a one-dimensional reduced local ring,
Comm. Algebra, 25 (9) : 2939 2965, (1997).

8. A. Foroutan, Monotone chains of factorizations, International Journal of
Commutative Rings.

9. A. Geroldinger, On the arithmetic of certain not integrally closed noetherian
integral domains, Comm. Algebra, 19 (2) : 685 698, (1991).

10. , On the structure and arithmetic of finitely primary monoids,
Czechoslovak Math. J., 46 (121) : 677 695, (1996).

11. , The Catenary Degree and Tameness of Factorizations in Weakly
Krull Domains, In D.D. Anderson, editor, Factorization in Integral Domains,
volume 189, pages 113 153, Marcel Dekker, (1997).



268 W. HASSLER

12. , Chains of Factorizations and Sets of Lengths, J. Algebra, 188 :
331 362, (1997).

13. , A structure theorem for sets of lengths, Colloq. Math., 78 : 225 259,
(1998).

14. A. Geroldinger and F. Halter-Koch, Congruence monoids, Preprint, (2002).

15. , Tamely generated ideals in finitary monoids, Preprint, (2002).

16. F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral
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