On a Theorem of Lueroth

By
Jun-ichi IGUSA

(Received March 30, 1951)
Let K be a field of degree of transcendency 1 over a field $\stackrel{k}{k}$, then the well-known theorem of Lüroth ${ }^{1)}$ asserts that K is a simple extension of k, when K is contained in such a field. Now we shall present three different proofs for a generalization of this theorem which are connected closely by the general theory of Picard varieties ${ }^{2}$. The present author interests more in the different methods of proof rather than the result itself, which can be stated as follows:

Let K be a field of degree of transcendency 1 over a field k, then K is a simple extension of k, whenever K is contained in a purely transcendental extension of k.
We assume thereby that k is a perfect field in order to assure the existence of a non-singular model for K over k; although the theorem is true for an arbitary field k, as we can see from another aspect.

Now let $(t)=\left(t_{1}, \ldots, t_{n}\right)$ be a set of independent variables over k, then since K is an intermediary field of $k(t)$ and k, it can be generated over k by a finite set of quantities. Since we have assumed k as a perfect field, there exists a complete non-singular Curve \boldsymbol{C} with a generic Point \boldsymbol{P} over k such that

$$
K=k(\boldsymbol{P})
$$

[^0]On the other hand there exists a generic Point \boldsymbol{M} over k of a projective space \boldsymbol{L}^{m} or a Product \boldsymbol{E}_{m} of m projective straight lines \boldsymbol{D} such that $k(t)=k(\boldsymbol{M})$. There exists then a function f on \boldsymbol{L}^{m} or on \boldsymbol{E}_{m} with values in \boldsymbol{C} defined over k by

$$
f(M)=P
$$

Lemma 1. The Curve \boldsymbol{C} is rational.

- Proof A. Since for eve:y inieger s the two fields $k(\boldsymbol{P})$ and $k^{p^{p}}\left(\boldsymbol{P}^{p^{s}}\right)$ are isomorphic over the prime field of characteristic p, in order to prove our assertion, we may assume that \boldsymbol{P} is not rational over $k\left(\boldsymbol{M}^{p}\right)$. Let θ be a differential form of the first kind on \boldsymbol{C}, then its inverse image $f^{-1}(H)$ by f is a similar form on $\boldsymbol{E}_{m}{ }^{33}$. Moreover as \boldsymbol{P}^{\prime} is not rational over $k\left(\boldsymbol{M}^{p}\right)$, we have $f^{-1}(\theta) \neq 0$ unless $\theta=0$. However $f^{-1}(\theta)$ can be written as a sum of the differential forms of the first kind on \boldsymbol{D}

$$
f^{-1}(\theta)=\theta_{1}+\ldots+\theta_{m},
$$

and wa have $\theta_{i}=0(1 \leq i \leq m)$ since \boldsymbol{D} is of genus 0 .
. in Therefore C has no othe: differential form of the first kind other than 0 ; hence is of guans 0 .

Proof. B. If \boldsymbol{C} has a positive genus g, \boldsymbol{C} is mapped birationally into its Jacobian Variety $\boldsymbol{J}^{\prime \prime}$ by the canonical function φ on $\boldsymbol{C} .^{4)}$ Then the function $\varphi \circ f$ on \boldsymbol{L}^{m} with values in \boldsymbol{J}

$$
\boldsymbol{L}^{m} \xrightarrow{f} \boldsymbol{C}^{\varphi} \boldsymbol{J}^{\prime}
$$

is not a constant, which is a contradiction.
Proof C. The graph Γ_{f} of f in the Product $\boldsymbol{L}^{\prime \prime \prime} \times \boldsymbol{C}$ is a correspondence with valence 0 between \boldsymbol{L}^{m} and \boldsymbol{C}, since every \boldsymbol{L}^{m}-divisor which is continuously equivalent to 0 is linearly equivalent to 0 . Therefore two Points of \boldsymbol{C} are linearly equivalent, hence \boldsymbol{C} is a rational Curve.

It does not follow from lemma 1 that $k(\boldsymbol{P})$ is a simple extension of k, even in the case of characteristic 0 .

[^1]Lemma 2. The Curve \boldsymbol{C} has at least one rational Point with reference to k.

Proof. If the field k is infinite, since the coordinates of a representative of the Point \boldsymbol{P} are rational expressions of the independent variables t_{1}, \ldots, t_{m} over k with coefficients in k, we can readily find a rational Point on \boldsymbol{C}. On the other hand if k is a finite field, there exists a rational \boldsymbol{C}-divisor of degree 1 over k^{n}. However since \boldsymbol{C} is a rational Curve, there exists then a positive rational \boldsymbol{C}-divisor of degree 1 over k, which is nothing but a rational Point of \boldsymbol{C} with reference to k.

Let \boldsymbol{Q} be a rational Point of \boldsymbol{C} with reference to k, then there exists a quantity x in $k(\boldsymbol{P})$ such that the function θ dofined over k by $x=\theta(\boldsymbol{P})$ satisfies $(\theta) \succ-\boldsymbol{Q}$. In such a case $k(\boldsymbol{P})$ is generated over k by x

$$
K=k(\boldsymbol{P})=k(x) .
$$

The above proof, it may be hoped, seoms to reveal the true content of the theorem of Lüroth.

[^2]
[^0]: I was asked in a certain occasion to generalize Lüroth's theorem from Prof. Akizuki; and the publication of this note has been advised also by him. In this note we shall stick in results and terminologies to Weil's book: Foundations of algebraic geometry, Am. Math. Soc. Colloq., vol. 29 (1946).

 1) Beweis eines Satzes über rationale Curven, Math. Ann. 9 (1876). See also B. L. v. d. Waerden, Moderne Algebra, § 63.
 2) The first two proofs A and B concern clearly with this theory; the same is true for the proof C . See my papers, On the Picard varieties attached to algebraic varieties, to appear in the Amer. J. of Math.; Algebraic correspondences between algebraic varieties, to appear in the Jap. J. ot Math.
[^1]: 3) See e. g. S. Koizumi, On the differential forms of the first kind on algebraic varieties, Jap. J. of Math. vol. 1 (1949).
 4) A. Weil, Variétẹ́; Abeliennes et cuurbes aigébriques, Act. Sc. et Ind. $n^{\circ} 1064$ (1948).
[^2]: 5) A. Weil, Courbes algébriques et les variétés qui s'en déduisent, Act. Sc. et Ind. $n^{\circ} 1041$ (1948).
