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§ 1. Introduction.

To explain simply let us consider the differential equation
g;’— =f(x,y) defined in a domain of two dimensions. To each point
(x,y)of the domain we adjoin the directionf(x,y); so we have a
manifoldness of points and directions. To solve the differential
equation is nothing but to find a locus of point and direction in
the manifoldness such that, for all (x,y), f(x,y) shall be equal to
gy<. Therefore we consider a curve y=¢(x) say in the domain;

%
then its (x,y) and ¢'(x) construct a locus, generally different from
a locus in the manifoldness. Then at each point on the curve
y=¢(x), the deviation of its direction ¢'(x) from that of the ma-
nifoldness is given by |¢'(x)—f(x,¢(x))|. Along the curve

y=¢(x) we sum up the deviations, i. e., the totaldeviation is
fl(p’(x) —f(x, ¢(x)) | dx. Such quantity is considered in statistics.

If it be zero, y=¢(x) is possibly a solution of the differential
equation. Thus we arrive at the idea given below (2). We
remark that naturally we may define many other measures of
deviations.

In this paper we shall perform integrating operations always
in the sense of Lebesgue.

Consider a system of ordinary differential equations
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(1) B f, (2,90, Yoo 9) (=1, 2,..., 1),
dx

where f;(x, ¥, Yo,-.-,¥.) are defined in a domain“’
"G 05 2Zaq, |y Zb (i=1,2,...,n),

having the properties as follows :

a) they are measurable with regard to x, and continuous
functions of (¥, 9, ---,¥a),

b) /(%55 Yo-9) | S Mi(x) (i=1,2,..., %), where M;(x) (i=
1,2,...,n) are summable, i.e. integrable in th= sense of Lebesgue,
for 0 < x<a. For this differential system we call such functions
¢vi(x) (1=1,2,...,n) the solution passing through the point P(x,,
Y y?m""ynp)GG that

c) they are defined in an interval I containing x,, ¢.(x,) =y,
and (x, ¢,(x), ¢2(2),----.., 9 (x) ) G (x€1),

d)  ¢:(x) =y,:,,+§;pﬁ(x, 0(x), ¢.(%),..., p.(x))dx (xel).
By d) the solutions of (1) are all absolutely continuous.
Moreover we represent the vectors in the space of # dimen-

sions by w: namely y=(3,¥,....%), |¥|=vyi+yi+..+y.
Therefore (1) may be represented by

Ay =f(x,¥y) [(x,¥)eG].
dx

Lot us now enunciate the Carathéodory’s existence theorem®
of solutions. of ordinary differential equations, which plays an
important part in this paper.

Lemma. [f ¢(x) is measurable in 0 < x<a ond | ¢.(x)| < b;
(i=1,2,...,n), f(x,9(x)) is summable in 0 < x < a.

The proof is omitted.

Theorem. When, in an interval I containing x,,

(¥t || M(D)dx)eG (eD),

then there exists a solution of (1), which is defined in I and

passing through the point P(x,, ¥,). Hence, if | y,,| <b; (i=1,2, R

there exists evidently a solution of (1), which is defined in a

certain small interval I containing x, and passing through the point P.
For the proof we refer to Carathéodory, loc. cit..
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§ 2. Definition of D(P, Q).

Consider two points P=(x,,¥,) and Q= (%, ¥,) in G, where
xp <%o. By 9., we represent the family of all such functions
that are absolutely continuous in x,=< x < x, and

Y(x.)=Yp, Y(xg) =Y (X, 4(2))eC(x,Z x < x,).

Therefore if ¥y (x)€%).q, its derivative #'(x) is summable in
1< x< 1%, And so we can define the function D(P, @) of P and
Q as follows; namely

(2) D(P, Q) =inf rzlu’(x)—f(x,y(x))ldx,“"
YR)eYro Jip

moreover if x,=%, D(P,Q)=|¥,—¥o|" and if x,>x, D(P,Q)
=D(Q, P).

Then we have the following fundamental theorem.

Theorem. In order that the two points P=(x,,¥,») and Q=
(%0, ¥o) in G should lie on a same solu.ion of (1), it is necessary
and sufficient that D(P, @)=0.

Proof. Evidently the condition is necessary. Now let D(P,
Q) =0, then there is a sequence of functions {¥,(x)} (¥ (x)€9),0
v=1,2,...) such as

lirgﬁf,l Y, (%) —f(x,9,(x)) | dx=0.
Hence, if w2 put
(0 =y~ [ @y, (@))dx=0,(x),

we have evidently
1133 o, (x)=0 (=1 2,...n, 2,Zx < 2x,).
Put .
Y, (x)=y,(x)—0,(x),
and then, for x,< x, < %, < %o,

Y, (%) — ¥, (x) j (x, v, (x))dx,
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and so we have
| Ve =¥ < {1 M) dx

Consequently the sequence of the functions Y,(x) is equally con-
tinuous. Hence we can select a uniformly convergent sequence
by Ascoli and Arzéla theorem, and we have in the limit

Y(xp)=¥p, Y(2,) =U,,
Y(x)=¥,+ {P f(x, Y (x))dx.

Therefore we have obtained a solution ¥= Y(x) of (1), passing
through P and Q. Q.E.D.

Remark. Let H, be a hyperplane by x=¢(0 <« < a) in G,
and S, an arbitrary closed sub-set in H,. Now let S. and S,/ be
two closed sub-sets in G such as x=¢ and x=¢ respectively.
Then define

D(S&, Sgl) =mil’l D(R Q).
PeS.
QGSE/

D(S., S./) has the same properties as D(P, Q) ; e.g., for that
a solution of (1) shall exist so as to pass through S; and S, it
is necessary and sufficient that D(S;, S.,)=0.

§ 3. Properties of D(P, Q).

In this paragraph we shall enumerate certain important pro-
perties of D(P, Q).

1) Consider two points P and @ in G such as x, <x,. For
Y (x) €)re,

g

S 1w @—rey@)a= " 1y @ ld—[" 1fay @) a

)

’ z? £Q -

2" v @ld=[" | M@ de
&£ «d

EY

> w@dx | - [ | M@ | dx

> (Y~ Yp I—J 1’ | M(x)| dx.
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Therefore evidently we have
@  DPQZ=ivev || 1M ax

Now consider the function #(x) which represents the segment PQ,
then clearly #(x) belongs to ). and

‘EQ ’ . .l:'() ’

LP | ¥ (x) | dx=| j, Y dx| = Yo—¥y, |

Hence we have

@ D(P,Q) < |¥o—y, |+ | M) | da;
for [0 10 —Fy@) <[ 19 @) [ || M@ 1da.

Therefore if x,=2x,, it is convenient to define D(P, Q)= | ¥,—¥, |.
2) For three points P, @ and R such as x, < 29 < a4,

) D(P,R) < D(P,Q)+D(Q,R).

This is clear when 2z, <x,<x,. Hence let us e.g. consider the
case. where x,<xp=x, Then by the definition of D(P, Q), it is
evidently possible to find a sequence of functions {¥,(x)} (¥, (x)
€D, v=1,2,...) such that

D(P, @) =tim| " | 90—z, 9.(x))| dx.

And so take a point Q,= (%o, ¥,(xp)) such as x,<xy <Xg==2Xp,
then

j‘:o | 9L (0) —F (5, 9, (5)) | dﬁﬁq' | 4y (%) —f (%, ¥,(2)) | dx

r P

+£" |9, (2) —f(x ¥.(0)) | dx = D(P,Q.) +D(Q.. @),

Q!
hence for x, <xy <x,
= DBR) — |y, | = [ | M) ldx+ | 4~V |

—j: | M(x)| dx
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> D(P,R) —| yu—tie =2 [ | B ()| dx
| By tending v to infinity, we have '
D(P,Q)=D(P,R)—|Yr—Yel,
namely
D(P,R)YSD(P,Q)+D(Q,R);

for x, may be arbitrarily nzar to x,.
3) For three points P, @ and R such. as x,< 2, 1., We
have

DP,R)ZD(P,Q) —|yu=to|~ .| M) dx
(6)

x,
&z

D(P,R)= D@, R) =1 Y=y |~ | M(»)| ax.

As in 2), for x, <x,<x., consider a sequence of functions {#,(x)}
such that

D(P, Ry=lim| ™ | y(0) (5, 1.(2)) | dx.
and points @,= (x,,%.,(x,)). Then

JL 1@~ ) L= [ 10 —Fx, 0. ) |
+Y” [y, (x) —f(x, ¥, (x)) | dx

‘Q
=D(P,Q.) +D(Q,, R)
=D(P,Q)—D(Q., Q) +D(Q,, R)
_2_ D(P, Q) - ! L'/Qy“”r) |+I ?/le—.l,l)y l"J:: | A"][(JC) | dx

> D(P, Q)| Y=o | — | M(®)dx.
Hence evidently, for x,< %< x., we find (6). Consequently, in
genaral; we have
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() |DPQ—DPR)| < Wyl +I|.f M(x)dx |,
where M(x)= | M(x)}=~ M+ Mj... + M-.

Then we can conclude that D(P, Q) is a non:n._gative conti-
nuous funtion of (P, Q).

-

§4. Lemma.

Now let P be a fixed point in G and put
o(x,¥)=D(P,Q) with Q= (x,v),

then, in G, ¢(x,%) is a non- negatlve continuous function of (x, Y)
and, for two points (x;,#;) and (%.¥.), we have

©®) e y)—¢(u) | < | ¥i—Y. i+|£ M(x)dx |.

If the points @ and-R are on the same solution of (1) and
%X x,< %, then since

D(P,R)<D(P,Q) +D(Q,R)=D(P,Q) (by D(Q,R)=0),

we have
fim - {pGer v+ [ AL p0)dD =0 )} <0,

¥=y(x) being a solution passing through the point (x,¥%). Mo-
reover, by (8),

‘%qu, y(x+t)]—elx+t, y+11(x, y)]}' ‘

=

L {;'7(x+t)—!/}—f(x,?/)}.

t ;

On the othgzr hahd, at almost every point in 2,< x < q,
lirr},it Wwa+t)—yy=fx,v) a e®.

Therefore we have, for almost every point in x,< x < a,
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)] lTr?})—lf'-{'so(xH, Y+i(2,9)) —¢(x¥)} <0 ae.

Conversely, if there exists ‘a function ¢(x, ¥) which satisfies the -
conditions (8) and (9), we sez that by (8) ¢(x,¥(x)) is absolutely
continuous, where ¥=w(x) is a solution of (1) passing through
the point (x,¥)e¢G (x, < x), and by (9), for almost every point in
< x<a, :

ling% e+t y(x+1))—9(x ¥ <0 ae..

Hence ¢ (x, 7/) does not increase with x on any solution of (1).

Remark.® If f(x,%) is a continuous function of (%, %) in G, .
the conditions (8) and (9) can be replaced respectively by the
next ones:

(8" le(x,y)—e (XU | < | ¥~V |,

@) lm Gy + (5, 9) —9(x, S0

(for all x in 2,< x < a).

§ 5. Applications to the uniqueness theorems.:

Thus we have succeeded to find D(P, ) which has the almost
same properties as those in the case where f(x,¥) is continuous®
in G, and so we can extend, without any great modifications, the
Okamura’s uniqueness theorems™ of solutions of Cauchy-problem
and our uniqueness theorems® of solutions of -boundary-problems.
For example,

Theorem. Consider the differential system (1), where f(x,
()):;;0 (0= (o0, 0,...0)) for almost:every x in 0 <x<a. Thenin
order that the solution of (1) passing through the origin O(o, O)
should be uniquz, it is necessary and sufficient that there exists a
cotinuous function ¢(x,%) in G, such that

¢(x,0)=0 for 0<1<a,
¢(x,¥)>0. for y=xO0,
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9 ) =2 IS LI y—9| + 1 [ Ndzl,

where L is a suitable constant and N(x) a non-negative summable
function in 0 <2 <a, and moreover that for almost every point
(x,%) in G, we have

oGt £, Y+ 1) — ¢ 1)} SO ace..
t>
Example. If in the equation

dy _

in (%, 9),

JS(x,y) satisfies the extended Lipschitz condition,” i.e., there exists
a non-negeative summable function’ N(x) such as

| /(x,3) | SNy 1,

with our theory it is enough to put

¢ (x,y) =€y,
where L(x) ———L N(x)dx.

Mathematical Institute,
Kyoto University.

Notes.

(1) G may be not necessary a bounded closed domain; for a domain such as,

e.g., alx<b, —00<y;<+o0(i=1,2,.., n) our discussion needs few rodifications..
(2) Carathéodory ; Vorlesungen tiber reelle Funktionen, 2t¢ Anf., pp. 665-672.
(3) Here “inf” means “lower limit”,

(4) As we shall see later, it is convenient to define like this.
z x

Q Q
(5) For S fy’(x)}dxgis v/ (x)dx|.
.51, Ep

(6) For convenience, we represent ‘“almost everywhere ” by “ a, e.”,

(7) Okamura; Mem. Coll. Sci. Kyoto Univ. A. 14 (1931), p85; A 23 (1941),
p.225; A.24 (1942), p.21 and Proc. of Phys-Math, Soc. of Japan. Series 3, Vol. 25
(1943), p.514.

~ (8) Yoshizawa and Hayashi ; Mem. Coll. Sci. Kyoto Univ. A.26 (1950), Mathema-
tics, pp. 19-29; “ Sugaku” (The Mathematics), Vol. 2, No. 4 (1950), pp. 315-318.
(9) Carathéodory; Loc. cit., p. 673.



