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In the theory of conformal mapping of simply connected do-
mains, we chiefly use the unit circle for canonical domain. On
the other hand, in the case of multiply-connected domains, we
utilize various types of domains for canonical one. For example,
we use the concentric circular ring-domain (circular disc or whole
plane) with slits of circular-arcs,” the concentric circular ring-
domain (circular disc or whole plane) with slits of radial segments,
the whole plane with parallel slits, the whole plane with slits of
arcs of finite lengths on the logarithmic spirals arg z—klog| z|
=C,? and so forth.

Hereafter we consider the domain of finite connectivity, and
first, by the potential-theoretic method, we research the problem
of conformal mapping of a given #-ply connected domain onto a
band-domain parallel to the imaginary axis with slits also parallel
to the imaginary axis.

1. Conformal mapping onto a parallel
band-domain with paralle! slits.

For simplicity we suppose that every boundary-component R,
(k=1,...,n) of a given n-ply connected domain B in the z-plane
be Jordan curve.

Performing a finite number of suitable auxiliary mappings of
simply connected domains, we can reduce the giyen domain B to
one whose boundary-components are regular analytic curves. Such
method has often been used in the mapping-theory of multiply
connected domains. Thus we assume that all the curves R,, R,,
...,R, are regular analytic. Let z, 2z, be arbitrary two points on R;,
and R;, R/ be two boundary-arcs of R, separated by them. More
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precisely described, R} is the part of R, from 2z, to z, when we
go around along R, in the positive sense with respect to B; R/’
is the remiining part of R,. Let U,(z) be the harmonic measure
of the boundary-arc R; with respect to B, i.e. U,(2) be harmonic
in B satisfying the boundary conditions: U,(z)=1 on R, U,(2) =0
on R and R,(k=2,...,n). Next, let U,(z) (k=2,...,n) be the
harmonic measure of the boundary-component R,(k=2,..., #) with
respect to B, i. e. U,(2) be harmanic in B and U,(2) =1 on R,,
UJ(2)=0 on R,(h=k). Furthermore, let Vi(z)(k=1,2,...,n) be
conjugate harmonic functions of U,(z)(k=1,2,...,#n). In general,
V.(2) (k=1, 2,...n) are not single-valued and increase by the perio-
dicity moduli w,,(k, v=1,2,...,n) after circling once along each
boundary-component R,(¥=1, 2,...,#) in the positive sense. These
moduli satisfy the relations

S, =0 (k=1,2,....n). (1)
v=1

Furthermore, it holds that for the determinant of (z—1)-th order
| Wy, |

| 0 |09 (k,v=2,...,n). (2)

By means of these facts, we shall now prove that there exists a
function
w=>P(2)=U(2) +iV(2), (3)

single-valued, regular analytic in B, and satisfying the following
three conditions:
(i) U(a) is single-valued and harmonic in B,
(i) U(x)=1on R, U(2)=0 on R/ and U(z)=const. on
R, (k=2,...n),
(iii) the periodicity-moduli of V(z) with respect to R, (v=1,
2,...,m) are zero, i. e.

fo, VD=0 (=12..,n). )
Proof. We consider the function
U@ +iV(@) = Ui(2) +iVi(d) + LalU@) +iVi(),  (5)

c.(k=2,...,n) being real constants. Then evidently (5) satisfies
(i) and (ii). These constants can be, by (2), uniquely determined
. so as to satisfy the simultaneous equations
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Newn=—wy  (V=2,.., 1). (6)
k=2

Therefore
§dV@=0 (=2..,n).

By (1) and (6), we have

n

Ny = —w.,
k=2
§, av(2)=0,
§” dV(2)=0 (v=1,2,..., ).

Thus we have proved that w=®@(z) =U(2) +iV(2) is single-valued,
and regular analytic in B, and also satisfies the above three condi-
tions. (Q.E.D.)
Next, as a cons.quence of these conditions, the following. pro-
perties of w=®(2) .are derived :
lim V(2) = —c0, lim V(2) = + 0. @)

3z (2¢ ) 2>z, (z€ )
Proof. Ih the function
w=U(@) +iV(2)=U.(2) +iV,(2) + 2 Us(d) +iVi(2),

U,(2) is the harmonic measure of the boundary-arc R; and V,(2)
its conjugate harmonic function. Now, we conformally transform
the simply connected domain enclosed only by the boundary-curve
R, and including the domain B, onto the upper half-plane in the
x-plane such that R, corresponds to the real axis Imx=0, 2=z, to
x=0 and z2=2,to x=1. Let such mapping function be x(z) and
its inverse 2(x). Then we obtain

Ui((0) +iVi (2(0) = Llog-L_+7,()

in the neighborhood of x=0, (8)
=—l.1?10g(x—1) + (%)
in the neighborhood of x=1, (&)

where ¥,(x) and ¥.(x) are regular analytic in the neighborhood
of x=0 .and x=1 respectively, and the logarithms are restricted
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to assume their principal values. By (8) and (8), we have

lim V,(2(x)) = — o0, lim V,(2(x)) = + <o,

£-»0(Ime>0) z»1(Imz2>0)
lim V,(2) =— co, lim Y](z)= + co.
:-)zl(z(T-‘) s>z (26 )

Since the real part of the function égk(Uk(z)+in(z)) is zero

everywhere on the boundary-curve R, which is supposed .to be
regular analytic, this function is regular analytic also on R, by the
theorem of analytic continuation. Hence its imaginary part has
a finite limit when 2z—z,, and also when z—z,. Thus we obtain
by (5)

lim V(2)=— 0, lim V(2) = + oo. Q.E.D.

2>z, (¢ n) z97,(2¢ B)

By means of the above properties of the function w=@(z),
we shall now prove that this function maps the domain B wuniva-
lently om0 the parallel band-domain 0 <Re w <1 with slits parallel to
the imaginary axis. _

Proof. By (ii) and (7), it follows that when the point z moves
from 2z, to 2z, along R, in the positive sense and further returns to
z, beyond 2z, the point w=®(z) moves from —iw to +ic along
the straight line Re w=1 and furthermore returns to —ic along
the straight line Rew=0. In other words, w goes once round
along the boundary of the parallel band-domain in the positive
sense. On the other hand, if the point z goes once round along
R, (v=2,...,n) in the positive sense, by (ii) and (iii), w moves
along certain slit parallel to the imaginary axis and returns to its
original position. ’

Let a bz an arbitrary interior point of the parallel band-domain
and not lying on any slit, i. e. 0<Rea <1 and @(z2)*= a on R, (k
=2,...n). Let B, be a sub-domain of B obtained by excluding
the common parts of B and circular discs of radius » with centers
at 2, and 2z, respectively. Then, by (7), we can choose 7 suf-
ficiently small such that the inequalities

Max V(z) <Ima, Min V(z)>Ima ©)

[z2=2y|=p, ze2i |z—22i=yr, 2¢8

hold. Thus we obtain
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1¢ _
g.f\{dargm(z)—a)q, (10)

the integration being taken along the boundary of B..
On the other hand, if @ is any exterior point of the parallel
band-domain, we have

2—1"§> darg(®¥(z) —a) =0. | (1)

The relations (10) and (11) hold, however small the radius 7
may be. Therefore, by means of principle of argument, we have
proved that w=?®(2) is univalent.in B and the image of ‘B is the
parallel band-domain 0 <Re w<1 with parallel slits. Q. E. D.

Finally, we shall prove that if two points z, and 2, are preas-
signed on R,, then such mapping function can be uniquely deter-
mined except a translation parallel to the imaginary axis.

Proof. Suppose that both ¢,(z) and @.(z) are such mapping
functions. Performing an auxiliary mapping onto the half-plane
in the x-plane, in the same way as (8) and (8) are derived, we

w,(z(x))-——%logjliﬂp,(x) in the neighborhood of x=0,
(7=1,2) (12)
:—.l;log (x—1)+¢,(x) in the neighborhood of x=1,
i

where the meanings of ¢; and ¢, are same with #,(x) in (8) and
7.(x) in (8) respectively. By (12), @,(2) —?,(2) =@, (2(x)) —
?,(2(x)) is regular at x=0 and x=1, and hence, as a function of
2, also at z=2, and z=2,. Further, we have

Re{?,(2) —9.(2) } =0 on R, and R/,
=const. on R.(k=2,...,n).

Accordingly @,(z)— @,(2) is single-valued and analytic in the domain
B of finite connectivity, possessing the bounded boundary-values
and its real part remains constant on each boundary-component.
Hence, by a well-known theorem,® @,(z2)—?.(z), is identically
constant in B and furthermore, since its real part is equal to zero
on R, it must be
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?,(2) — @,(2) =iC,

C being a real constant. This is just what is required. Q.E.D.

2. Example.

In this section, we shall, as an example, determine explicitly
the mapping function of the circular ring-domain. Let the cir-
cular ring-domain B be g<|2]| <1 and let 2,=—1, z,= +1.

By Viliat’s formula,” the regular analytic function £(z) whose
real part gives the solution of Dirichlet’s problem such as

Re{2(2)}—=M(p) (2—€7), Rei2(2)}—>N(p)  (2—¢ge™),

is given in terms of elliptic functions by the following expression :

@)= L M(y) {C( @ (tlog2+¢)) (7253—‘ ;,)logz}dsv

_ o (7 @ O ]

ey jo N(p) {C ( ¢ logz+<p)) <2103 ni )log zJ»dso+zC,
20, (real) and 2w, (pure imaginary) being the primitive - periods
of Weierstrass’s elliptic function §(z), C being an arbi-

_ mwa

trary real constant and g=e .

To find the function ?(z2) whose real part coincides with the
harmonic measure U, (z) of R;: | z|=1, 7 <arg z <27 with respect to
B, we put M(¢)=00<p<m), M(¢)=1(r<¢<27) and N(¢)=0
(0<¢ <27) in the above formula. Then we have

U, (z)+zV(z)——-Lj {C( L(Z logz+so)) (2“) —Z;T)log z}dqp

=_;?[log a(f;—’rl (ilog 2+ ¢) )Jx - ( o )log z

By fomulae of elliptic functions,

a(u+2(ul)=_e‘l'nl(n{»w)n.(u), 0‘(u+w,)=e"3‘"¢7((u,)171(u)

and P(u)—e,—(”‘(u)) we have
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U(2) +iV, (2) =_ —log —— l ,

N/@(w'log z)—r—e1 2mi o,

(C: real const.).

log z+iC’

Therefore the periodicity-modulus of Vi(2) with resbect to | z|=

PN ON
1S —.
tw,

be found:

Next, the harmonic measure U,(z) of | z|=¢ can easily

1
Uiy = ET2T__loglz|
1 1 loggqg ’

og ~q—

and hence

U,(2) +iV,(2) = lggz .

Hence the periodicity-modulus of V,(z) with respect to |z|=gq

L0 Thus
log ¢ fw,

w=d><z>=U,<z>+m<z)+%<ug<z>+m<z>>,

1

N/ K-’(%Iog z)—e,

is the required mapping function by the general argument discus-
sed in the preceding section.

In fact we can also directly verify that this is the required
function as the following shows. It can be decomposed into the
functions :

or w=>0(2) = %log
1

@ ¢=1%ogz (D) t=vPQ) =, D) w=-Llog-l.
T my t

By (I) the upper half of the ring-domain ¢ <| z | <1 is transformed

onto a rectangle —w, <Re ¢ <0, —| w,|Im ¢ <0, by (II) this rectangle

onto a right half of the lower half-plane Im ¢ <0, and by (HI)
1

this quadrant onto a parallel band-domain 0 <Re w_<7. Apply-



218 Tadao Kubo.

ing the inversion-principle to the composite function w=®(z) of
(I), (II) and (III), we see at once that the circular ring-domain
g<| z]<1 is conformally represented onto the parallel bond-domain
0<Rew<1 such that —iew and +{o correspond to z=—1 and
2,=1 respectively. Especially, to the inner circle | z|=q corres-

ponds a slit on the straight line Re w=—;— whose length is

Liog/a=8 where e,=p(w)) (1=1,2,3).

3. Conformal mapping of ring-domains.

In the present section, we deal with the position and the
" length of a slit in the conformal mapping of any ring-domain onto
a parallel band-domain. Using the same notation as in §1, we
suppose that the boundary-components R, and R, of a given
ring-domain B be both Jordan curves.

The ring-domain B whose modulus is Iog-l—(O <q<1), can be
q

conformally represented onto a circnlar ring-domain in the ¢
plane ¢<|t| <1 such that |¢|=1 and |t|=q correspond to R,
and R, respactively. Such mapping function is uniquely determi-
n2d except a rotation around the origin ¢t=0. Hence, we can
determine the function in such a way that {=¢€*(0<¢ <27) and
t=1 correspond to 2=z, and z=2z, respectivély. Let us denote the
circular-arcs |t|=1(¢p<argt<2m), |t|=1(0<argt<¢), and | 1|
=q(0<argt<2m) by I, Iy and I, respectively.

Using again the Villat’s formula, we now find the mapping
function w=®(¢#) of the ring-domain ¢<|t| <1 onto the parallel
bnad-domain 0<Re w <1 with a slit such that Re w=1 corresponds
to I and Rew=0 to I'Y. We have

U,(H) +iV,(t =ﬁ"-f"{c( (ilogt+so)>_—— 1 ——7]7;->log t}d¢+ic

7 Je T 2w,

w .
| 1 (ilog t+2m) )
1 "( 0 ol |
—](ﬁ,"}}‘)@"—sv)bg t+iC

T g Wy (2 , - ;T"Z
a(~n—(z log t+ ?))
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1 — ( “1ilog t)
=1 og _ ( L{)(Zn_;o) log {+iC’
m a(—(—' (ilog t+ 90)) 2wy T
1 w 1 1
—1 1 _1 e
- log + <2w¢ =i )ga log ¢ 10gt+zC’

m (.T'(zlogt+ sﬂ)) 7'

C and C being real constants. Hence the periodicity-modulus of :
iV, () with respect to |t|=q is

S A ]

The periodicity-modulus of {V,(f) with respect to |¢|=gq is
—2-% (c.f.§2). Accordingly, the required mapping function is
[ON

given by the general argument of §1, in the form

w=0() =U,() +iVi(®) +(1= L) U@ +iVin),  (13)

( “1 i log t)

( 1 (ilogt+ so))

w,

or w=w(t)=ﬂi + 2% plog t+iC.  (14)
1

If the point ¢ is situated on the inner circle | ¢|=gq, then, putting
t=qe"(0<0 <27) in (14), we have

w
—o( @, +—’0)
(p( P | 1 (wq T SO 0 Vs v
ge") =—log ” + ity ¢+iC
! a'(‘“:x +-—n_] 0—¢ T Ly

=L og o ( : 0> ) g

i - (”S”

gl0— 120 g+iC
T

=—log ———- +(1 - —2‘%) + i—’%{h¢0+ iC'
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- Lk (L i)
2 ‘ ’

+ i%¢0+i€’

1 (2)

=?il s — o tf(9),
4( o

~where f(¢) is a function of ¢ independent of 6.
By a formula of the elliptic function

15‘4( 0—) =i —q") il (1—2¢"""cos 0+¢*"%),
T a=1 n=1
we have

1 ;(1—24'3"" cosI—p+ ™)
i

T

m{®(ge") } =-——log

+ , (15
(l—zq?"_lcosﬂ+'q4n-—2) ﬁ(?) ( )

n

where f,(¢) is a function of ¢ independent of-6.: By (15), we get

]I(1+q“’" ")
Max Im{ @ (ge") } < ——lo i———— (), . (16
Max Im{ @ (ge") } = e (g +£1(9) (16)

1 Ia;(l+q‘1n—l )‘_’
i iy 1S, 1 _"‘ _
%\gﬂlm{(ﬁ(qe )l=——log ”(1 . 1)2+f1(91’)~ (17)

From (16) and (17), an inequality

II(1+q2n -1 )4

Max Im{ @(ge™®) } — Mm Im{®(ge’®) }|< 1

(18
0<0 <27 T /[( __q2n 1)4 )

is derived.
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By the formulae

ve—a=5 QQ, ve—e=-@

(l)l Wy

Q=11(1—¢"), Qz—//(1+q’"‘) Q—//(l ),

n=1

we have
Max | Im{ @ (g™ ) } — Im1 D(ge™ )< ~ 1 log ~/e1—eg_ ll—log 1
0<8y, B2<27 e,—e, T 4
(19)

k' denoting the compler.nentary modulus of sn-function. It is ob-
vious that the equality in (19) holds if and only if ¢==, 0,=0
(or ) and f#,== (or 0).

In the above described mapping, the ring-domain B is trans-
formed onto a circular ring-domain ¢<|?|<1 such that ¢=1
and t=¢" correspond to 2z, and z respectively. In such a case,
let the angle ¢ be called the “angular distance” measured from
2, to 2, with respect to B. Especially, let two points z, and z, be
called to be ‘ diametrically opposite” with respect to B, provided
that ¢=n. Then, we get the following theorem.

Tw3

Theorem. If any ring- domam B of a modulus logﬁ (q =gi1)
q

is conformally represented onto a parallel band-domin 0 <Re w <1 with
a shit in such a way that w=—ico and w= +ico correspond to
2=z, and 2=z, on R, respectively, and the slit corvesponds to another
boundary-component R, of B, then the slit is situated on a stmight

line Re w=1—"£_; and its length not greater than - log N/ e ~_/e

where ¢ is the angular distance measured from z, to z, with respect
to B and e¢;=8(w,))(j=1,2,3). The equality about the slit-length
holds if and only if z, and 2z, are diametrically opposite with respect
to B.

Proof. It is obvious by (13) and (19). - Q. E. D.

In the above argument, we have fixed the ring-domain B and
selected two points 2, and z, arbitrarily on the boundary-component
R, of B. But in the following, we deform the boundary-arc R}
(or R}) on R,, 2z, 2, being fixed and investigate the conformal
mapping of such deformed domain onto the band-domain 0 <Rew <.
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Then we obtain the following theorem.

Theorem. Let any given ving-domain B be extended to a
ring-domin B* by substituting any Jorvdan curve RY lying oulside B
Jor RY, while two points 2,, 2z, on R, and other boundary-arcs of B
are kept fixed. Furthermore, let w=f(z) be the mapping function of
B onto the band-domain 0 <Re w <1 such that Re w=1 and Re w=0
correspond to R; and R\ respectively and w= +icoto z,, 2, respectively
and w*=f*(z) be the similar mapping function of B* such that Re
w*=1 and Re w*=0 correspond to R, and R} respectively. Then an
inequality

Re f(z) <Ref*(2)
© holds good. The equality holds if and only if B=B*.
Proof. Let the moduli of B and B* log% and logr;;? res-

pectively. Then logi glogi* since BC B*, and hence g = ¢*.
q q

The equality holds if and only if B*®,

We now represent B* conformally onto the circular ring-
domain ¢* <| ¢* | <1, and let £*=G(2) be such mapping function,
whereby the boundary-arcs R; and RY¥ are transformed intn
circular-arcs ¥ and ¢ on |¢*|=1. At the same time, the
sub-domain B of B* are represented on a certain ring-subdomain
of the circular ring-domain. Next, we represent B conformally
onto the circular ring-domain ¢<|¢| <1, and let ¢=F(z) be such
mapping function,whereby the boundary-arcs R; and R; are trans-
formed into circular-arcs y and ¢ on | ¢ |=1 respzactively. There-
fore, by the composite function ¢*=G{F~'(¢)}, the circular ring-
domain ¢<| ¢ | <1 are represenied onto the ring-subdomain of the
domain ¢*<|¢*|<1 in such a way that the boundary-arc y on
|€1=1 is transformed into ;* on |¢*|=1 and the inner circle
| ¢ |=q into |¢* |=q*. Hence, by a theorem due to Prof. Y.
Komatu,® we obtain

7,
0>,
where the equality hold if and only if g=g*, therefore B = B*,

Since 7 ane ¢’ are the angular distances measured from 2z, to z
with respact to> B and B* respzctively, we obtain, by thz preceding
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theorem, the required inequality.
Similarly, if we extend the boundary-arc R, instead of Ry,
outside the domain B, we have an inequality

Re/(2)2 Re/*(2).

At the end I wish to express my hearty thanks to professors
T. Matsumot6d, A. Kobori of Kyoto University and Professor
Y. Komatu of Tokyo Institute of Technology for their kind gui-
dance during my researches.

May 1950 Kyoto University.
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