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In this short note we shall remark that the analytic structure
o f th e  domain o f  regularity is completely characterized by the
algebraic structure of the ring of analytic functions on  it. It would
be hardly necessary to notice that the assumption of analytic com-
pleteness is indispensable. Although the proof is simple in the
case of one variable, we can not treat the general case without a
relatively recent result in function theory.

Let D  be a (univalent) domain of regularity in  th e  complex
n-space C", w here C means the field of complex numbers. We
shall denote by

(z) (z 1 ,z 2 , z )

the complex coordinates in C ". Let 0  be the ring of all analytic
functions in  D , which we shall not topologize h e re . I f  13 is any
maximal ideal in  0 , we can identify C as a subfield of the resi-
llue-class field 0/13 in an obvious manner. T h e  se t o f analytic
functions in D, which vanish at a given point (a)  of D, i s  a ma-
ximal ideal in 0 .  We say that such a maximal ideal 43 corres-
ponds to the point (a)  in D .  Now not every maximal ideal is of
this type as the following simple example shows.

E x a m p le . Let D  be the whole C" and put

Fi (z)—  ( j - 1 ,  2,...),

then these functions generate an ideal other than 0  which has no
common zero point. Therefore, by Z orn's lem m a, this ideal is
contained in some maximal ideal which has no common zero point.

Thus the problem arizes how to characterize algebraically the
maximal ideal in  0  which corresponds to the point of D .  Here
we notice that the residue-class field of the maximal id ea l is  C,
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when this corresponds to the point of D .  We take the set

:6 = IT }
of all maximal ideals in which have this property. We shall
then show that the maximal ideal in h corresponds to the point
of D.

Let a, be the residue-classes of z,(1 i n )  modulo 43, then
the n  linear polynomials z,—a,, z , —a2,. • • 7  zn -  a. belong to V. We
shall now ask whether the equation

F (z )— F (a )=  E A.1(z)(z1—a,),=1

can be solved by n analytic functions A,(2) (1 < i _.< n )  in D  for
any F  in T h is  q u e s t io n  was known as W ell's condition' ) and
is proved affirmatively by Cartan-Oka's ideal theory.2 ) Therefore
( a )  must b e  a point of D  and the n linear polynomials z --a 1

(1 .5 i < n ) form an ideal base of s4;.
On the other hand let F1 (1 n )  be another ideal base of

,43 composed of just n functions, then we can find n2 analytic func-
tions A, ; (z) (1 j  n )  in D  such that

1 A 11 ( z )F ( z )  (1 S  i <n)
i=  I

hold identically in D .  If we differentiate them by zk and then if
we substitute (a)  for (2 ), we get

Olk = A i; (0)(  F   )() (a) (1 i, n) .
j =1 3.2k

Therefore the n  functions F i ( z )  form the local analytic coordi-
nates" at ( a ) .  We have thus proved the following theorem, which
is largely analogous to Tannaka's duality ') in the theory of com-
pact groups.

Theorem . Let be the ring of  analytic functions on a domain
o f  regularity  D  in  Cn and let h b e  the  se t of  m ax im al ideals 43
in  ,0 such that Z)/4.--C, then each 3  has an  ideal base composed
of  n elem ents. I f  w e attach the analy tic structure to  h  by  tak ing
them  as the local analytic coordinates i n  a n  obv ious m anner, the
analytic manifold so obtained has the sam e analy tic structure as D.

A direct consequence of this theorem is the following
Corollary. L et D  and  D ' be two dom ains o f  regularity  in  C"
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and let .0 and '0' be the rings of analytic functions in  D  and D '
respectively, then every  algebraic isomorphism  çP f ro m  0  onto 0 '
induces an analytic homeomorphism Q  f rom  D ' onto D  such that

io0F= Fo

holds fo r every F  in  C . I n  particular an  algebraic automorphism
of  0  induces an analytic automorphism of D.

It must be rem arked that a  similar characterization of the
compact complex manifold is impossible except the special case of
one variable, even for the algebraic manifold.
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