MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVII, Mathematics No. 3, 1953.

On the integral closure of an integral domain

By

Yoshiro Mori

(Received August 8, 1952)

Introduction. By an integral domain we mean a commutative ring \Re which satisfies the following condition: \Re satisfies the ascending chain condition and possesses no zero-divisor ± 0 . A local ring is a commutative ring \Re with an unit element in which:

(1) The set \mathfrak{p}_0 of all non-units is an ideal in \mathfrak{R} ;

(2) Every ideal in \Re has a finite basis.

A local ring \Re is called a local domain if the ring \Re possesses no zero-divisor.

Let \Re be an integral domain and K be the field of quotients of \Re . It is conjectured by Krull [2, p. 108] that the integral closure $\overline{\Re}$ of \Re in K is an "Endliche diskrete Hauptordnung". If $\Re: \overline{\Re} \neq (0), \overline{\Re}$ is a Noetherian ring and also Krull's conjecture is valid [2, p. 105]. Therefore it only remains that his conjecture should be proved in the case where $\Re: \overline{\Re} = (0)$. When \Re is a 1-dimensional local domain, it was already proved by Krull [1]. Hence it is clear that Krull's conjecture is valid provided that an integral domain \Re is "einartig" [2, p. 109]. The purpose of this paper is to prove that Krull's conjecture is valid in the case where $\Re: \overline{\Re} = (0)$ and \Re is not "einartig".

In the first part of this paper we shall prove that Krull's conjecture is valid if the completion \Re^* of a local domain \Re possesses no nilpotent element. The second part is devoted to the proof of Krull's conjecture in the case in which \Re^* has nilpotent elements, and we shall prove that Krull's conjecture is generally valid in an integral domain. In the third part we discuss the sufficient condition that $\Re: \overline{\Re} \neq (0)$ holds for a local domain.

In this paper we denote the completion of a local ring \Re by \Re^* and the integral closure of an integral domain \mathfrak{S} in the field of quotients of \mathfrak{S} by $\overline{\mathfrak{S}}$.

Numbers in brackets refer to the Bibliography at the end of the paper.

Part I

Let \Re^* be the completion of a local domain \Re , then we have the following two possibilities:

(1) \Re^* has no nilpotent element;

(2) \Re^* has nilpotent elements.

First we shall prove, in the case (1), that Krull's conjecture is valid. If \Re^* has no nilpotent element,

 $(0)\Re^* = \mathfrak{M}_1^* \cap \mathfrak{M}_2^* \cap \ldots \cap \mathfrak{M}_i^* \cap \ldots \cap \mathfrak{M}_h^* [5, p. 254].$

where \mathfrak{M}_i is the prime ideal which is not imbedded in any other prime ideal of the zero ideal in \Re^* . Let \Re^* be the ring of quotients of \Re^* , then we have the following Lemmas.

Lemma 1. $\mathfrak{M}_i^* \mathfrak{R}^*$ is a prime ideal in \mathfrak{R}^* and $\mathfrak{M}_i^* \mathfrak{R}^* \cap \mathfrak{R}^* = \mathfrak{M}_i^*$ (i=1, 2, 3, ..., h).

Lemma 2. $\cap \mathfrak{M}_{*} \mathfrak{R}^{*} = (0) \mathfrak{R}^{*}$

Lemma 3. $\mathfrak{M}_{i}^{i=1}$ \mathfrak{R}^{*} is a maximal ideal in \mathfrak{R}^{*} (i=1, 2, ..., h).

Lemma 4. $\Re^* = \Re_1^* + \Re_2^* + \dots + \Re_k^* + \dots + \Re_k^*$ (direct sum)

 $\Re_i^* \cong \Re^* / \mathfrak{M}_i^* \Re^* \ (i=1, 2, ..., h) \ [6, p. 43].$ where

If we denote the unit element of \Re_i^* by ε_i^* , it is well known that $\varepsilon_i^* \varepsilon_j^* = \begin{cases} 0 & i \neq j \\ \varepsilon_i^* & i = j \\ \text{Lemma 5.} & \Re^* \varepsilon_i^* \cong \Re^* / \mathfrak{M}_i^* & (i=1, 2, ..., h). \end{cases}$

Proof. Let a^* any element of \Re^* . Then, by Lemma 4, $a^* = \sum_{i=1}^{h} a_i^*$ where $a_i^* \in \Re_i^*$ and $a_i^* = a^* \varepsilon_i^*$. Hence the correspondence $a^* \rightarrow a^* \varepsilon_i^*$ gives the ring homomorphism of \Re^* onto $\Re^* \varepsilon_i^*$. But since $\Re^* \varepsilon_i^* \cong \Re^* / \mathfrak{M}_i \mathfrak{R}^*$ by Lemma 4, $u^* \equiv 0 \pmod{\mathfrak{M}_i^*}$ by Lemma 1 provided that $u^* \varepsilon_i^* = 0$. Hence by the well-known theorem, we have $\Re^* \epsilon_i^* \cong \Re^* / \mathfrak{M}_i^*$. This completes the proof.

Lemma 6. If we denote the integral closure of \Re^* in the ring of quotients \Re^* of \Re^* by $\overline{\Re}^*$.

> $\overline{\mathfrak{R}}^* = \overline{\mathfrak{R}}_1^* + \overline{\mathfrak{R}}_2^* + \dots + \overline{\mathfrak{R}}_4^* + \dots + \overline{\mathfrak{R}}_k$ (direct sum) $\overline{\mathfrak{R}}_i^* = \overline{\mathfrak{R}}^* \, \varepsilon_i^* \ (i = 1, 2, \dots, h).$

where

Proposition 1. If we put $\Re^*/\Re_i^* = \mathcal{Q}_i^*$ and denote the integral closure of \mathcal{Q}_i^* in the field of quotients of \mathcal{Q}_i^* by $\overline{\mathcal{Q}}_i^*$, then $\overline{\mathcal{Q}}_i^* \cong \overline{\mathfrak{R}}_i^*$ (i=1, 2, ..., h).

Proof. If we put $\mathfrak{M}_i^* \mathfrak{R}^* \cap \overline{\mathfrak{R}}^* = \overline{M}_i^*$, it follows that \overline{M}_i^* is the

prime ideal of $\overline{\mathfrak{R}}^*$. Similarly to the proof of Lemma 5, we have $\overline{\mathfrak{R}}^* \varepsilon_i^* \cong \overline{\mathfrak{R}}^* / \overline{M}_i^*$. Hence $\overline{\mathfrak{R}}_i^* \cong \overline{\mathfrak{R}}^* / \overline{M}_i^*$.

We shall now prove that $\overline{\Re}^*/\overline{M}_i^* = \overline{\mathcal{Q}}_i^*$. First we prove that $\overline{\Re}^*/\overline{M}_i^* \subseteq \overline{\mathcal{Q}}_i^*$. For, let $W = a/\pi$ be an element of $\overline{\Re}^*$ where a and $\pi \in \Re^*$ and π is a non-zero-divisor, then

 $W^n + c_1 W^{n-1} + \ldots + c_i W^{n-i} + \ldots + c_{n-1} W + c_n = 0$, where $c_i \in \Re^*$.

Let \widetilde{W} , c_i be the residue classes of W, c_i modulo \overline{M}_i^* , then

 $\widetilde{W}^n + \widetilde{c}_1 \widetilde{W}^{n-1} + \ldots + \widetilde{c}_i \widetilde{W}^{n-i} + \ldots + \widetilde{c}_{n-1} \widetilde{W} + \widetilde{c}_n = 0$, where $\widetilde{c}_i \in \mathcal{Q}_i^*$. On the other hand, $\pi W = a$ in $\overline{\mathfrak{R}}^*$. Hence $\widetilde{\pi} \widetilde{W} = \widetilde{a}$, where $\widetilde{\pi}, \ \widetilde{a} \in \mathcal{Q}_i^*$. Therefore $\widetilde{W} \in \overline{\mathcal{Q}}_i^*$. This implies that $\overline{\mathfrak{R}}^* / \overline{M}_i \subseteq \overline{\mathcal{Q}}_i^*$.

We now prove that $\overline{\Re}^*/\overline{M}_i^* \supseteq \overline{\mathcal{Q}}_i^*$. In fact, let \tilde{b}/\tilde{a} be an element of $\overline{\mathcal{Q}}_i^*$, where $\tilde{a}, \tilde{b} \in \mathcal{Q}_i^*$, then $\tilde{n}(\tilde{b}/\tilde{a})^e \in \mathcal{Q}_i^*$ (e=1, 2, 3, ...)where \tilde{n} is a certain element ± 0 of \mathcal{Q}_i^* . The above argument implies that $\tilde{n}(\tilde{b})^e = (\tilde{a})^e \tilde{r}_e$, where $\tilde{r}_e \in \mathcal{Q}_i^*$. Let n_i , a_i , b_i and r_{ie} be elements of \Re^* whose residue classes modulo \mathfrak{M}_i^* are $\tilde{n}, \tilde{a}, \tilde{b}$ and \tilde{r}_{e} respectively, then $n_{i}b_{i}^{e} \equiv a_{i}^{e}r_{ie} \pmod{\mathfrak{M}_{i}^{*}}$. Let $\lambda_{i} \equiv 0 \pmod{\mathfrak{M}_{i}}$ and $\lambda_{i} \equiv 0 \quad (\mathfrak{M}_{1}^{*} \cap \mathfrak{M}_{2}^{*} \cap \ldots \cap \mathfrak{M}_{i-1}^{*} \cap \mathfrak{M}_{i+1}^{*} \cap \ldots \cap \mathfrak{M}_{h}^{*}) \quad (i=1, 2, \ldots, h). \quad \text{Put-ting} \quad n = \sum_{i=1}^{h} \lambda_{i} n_{i}, \quad a = \sum_{i=1}^{h} \lambda_{i} a_{i}, \quad b = \sum_{i=1}^{h} \lambda_{i} b_{i} \text{ and } r_{e} = \sum_{i=1}^{h} \lambda_{i} r_{ie}, \quad \text{then} \quad nb^{e} - a^{e} r^{e}$ For $nb^e - a^e r_e \equiv \lambda_j n_j (\lambda_j b_j)^e - (\lambda_j a_i)^e \lambda_j r_{je}$ (\mathfrak{M}_j^*), hence $nb^e - a^e r_e$ =0. $\equiv \lambda_j^{e+1}$ $(n_j b_j^e - a_j^e \gamma_{je})$ (\mathfrak{M}_j^*) (j=1, 2, ..., h). This implies that nb^e $-a^{e}r_{e} \equiv 0 \quad (\mathfrak{M}_{j}^{*}) \quad (j=1, 2, ..., h).$ Hence $nb^{e} - a^{e}r_{e} = 0.$ But since ais a non-zero-divisor in \Re^* , we have $n(b/a)^e = r_e$. Hence $b/a \in \overline{\Re}^*$. If we put b/a = W, we have Wa = b. Hence $\widetilde{Wa} = \widetilde{b}$, where \widetilde{W} is This implies that $\overline{\mathcal{Q}}_{*} \subseteq \overline{\Re}^* / \overline{M}_i^*$. the residue class modulo \overline{M}_{t}^{*} . Thus the proof is completed.

Colollary. $\overline{\mathfrak{R}}^* \cong \overline{\mathcal{Q}}_1^* + \overline{\mathcal{Q}}_2^* + \ldots + \overline{\mathcal{Q}}_i^* + \ldots + \overline{\mathcal{Q}}_h^*.$

Proposition 2. $\bar{\mathcal{Q}}_i^*$ is an "Endliche diskrete Hauptordnung". Proof. Since \mathcal{Q}_i^* is a complete local domain, if x_1, x_2, \dots, x_m be the system of parameters for \mathcal{Q}_i^* [3] and R be the coefficient ring in \mathcal{Q}_i^* , then $\mathcal{Q}_0 = R\{x_1, x_2, \dots, x_m\}$ is a *p*-adic ring and \mathcal{Q}_i^* is a finite \mathcal{Q}_0 -module [4, Lemma 15, 16]. Hence $\bar{\mathcal{Q}}_i^*$ is an "Endliche diskrete Hauptordnung" 2, p. 133]. This completes the proof.

Proposition 3. Let \Re be a local domain and $\overline{\Re}$ be the integral closure of \Re in the field of quotients of \Re . If no nilpotent element exists in the completion \Re^* of \Re , then $\overline{\Re}$ is an "Endliche diskrete Hauptordnung".

Proof. Let $u \in \overline{\mathfrak{R}}$, then, since $\overline{\mathfrak{R}}^* \varepsilon_i^* \simeq \overline{\mathcal{Q}}_i^*$ by prop. 1, $u \overline{\mathfrak{R}}^* \varepsilon_i^*$ is an intersection of symbolic powers of associated minimal prime ideals in $\overline{\mathfrak{R}}^* \varepsilon_i^*$ by prop. 2. Now, let $u \overline{\mathfrak{R}}^* \varepsilon_i = \bigcap_{j=1}^{l_i} \overline{\mathfrak{q}}_{ij}^*$ be an irredundant primary decomposition of $u \overline{\mathfrak{R}}^* \varepsilon_i^*$ in $\overline{\mathfrak{R}}^* \varepsilon_i^*$. If we put

$$\overline{Q}_{ij}^* = \overline{\mathfrak{R}}_1^* + \mathfrak{R}_2^* + \ldots + \overline{\mathfrak{R}}_{i-1}^* + \overline{\mathfrak{q}}_{ij}^* + \overline{\mathfrak{R}}_{i+1}^* + \ldots + \overline{\mathfrak{R}}_h^*,$$

then \overline{Q}_{ij}^* is a primary ideal in $\overline{\Re}^*$ by the well-known theorem. Hence $\alpha \,\overline{\mathfrak{R}}^* = \bigcap_{i,j} \overline{Q}_{ij}^*$. In fact, $\bigcap_{i,j} \overline{Q}_{ij}^* = \bigcap_i \left(\bigcap_i \overline{Q}_{ij}^* \right) = \bigcap_i \left(\overline{\mathfrak{R}}_i^* + \overline{\mathfrak{R}}_2^* + \dots \right)$ $+\overline{\mathfrak{R}}_{i-1}^{*}+\alpha\overline{\mathfrak{R}}_{i}^{*}+\overline{\mathfrak{R}}_{i+1}^{*}+\ldots+\overline{\mathfrak{R}}_{h}^{*})=\alpha\overline{\mathfrak{R}}_{1}^{*}+\alpha\overline{\mathfrak{R}}_{2}^{*}+\ldots+\alpha\overline{\mathfrak{R}}_{i}^{*}+\ldots+\alpha\overline{\mathfrak{R}}_{h}^{*}$ $=u\overline{\mathfrak{R}}^*$. But we see that \overline{Q}_{ij}^* is a symbolic power of prime ideal of $\overline{\mathfrak{R}}^*$. For since it is clear that \overline{Q}_{ij}^* is a primary ideal in $\overline{\mathfrak{R}}^*$, if the associated prime ideal of \overline{Q}_{ij}^* is denoted by \overline{P}_{ij}^* , then \overline{P}_{ij}^* is a set of nilpotent elements of $\overline{\mathfrak{R}}^*$ with respect to \overline{Q}_{ij}^* . Hence $\overline{P}_{ij}^* =$ $\overline{\mathfrak{R}}_1^* + \overline{\mathfrak{R}}_2^* + \ldots + \overline{\mathfrak{p}}_{ij}^* + \ldots + \overline{\mathfrak{R}}_h^*$, where $\overline{\mathfrak{p}}_{ij}^*$ is a prime ideal of $\overline{\mathfrak{R}}_i^*$ belonging to the primary ideal $\bar{\mathfrak{q}}_{ij}^*$. Since $\bar{\mathfrak{q}}_{ij}^* = \bar{\mathfrak{p}}_{ij}^{*(e)}$ by Prop. 2, $\overline{Q}_{ij}^* = \overline{P}_{ij}^{\star(e)}$. If we put $\overline{Q}_{ij}^* \cap \overline{\Re} = \overline{\mathfrak{q}}_{ij}$, then $\overline{\mathfrak{q}}_{ij}$ is a primary ideal of $\overline{\mathfrak{R}}$ and the prime ideal $\overline{\mathfrak{p}}_{ij}$ belonging to $\overline{\mathfrak{q}}_{ij}$ is a minimal prime ideal in $\overline{\mathfrak{R}}$, and $\alpha \overline{\mathfrak{R}} = \cap \overline{\mathfrak{q}}_{ij}$. For, putting $\alpha A = \beta$, where $A \in \overline{\mathfrak{R}}^*$ and $\beta \in \overline{\mathfrak{R}}$, then $A \in K$ (field of quotients of \Re). But since $\overline{\Re}^* \cap K = \overline{\Re}$, $A \in \overline{\Re}$. Hence $u \overline{\mathfrak{R}}^* \cap \overline{\mathfrak{R}} = u \overline{\mathfrak{R}}$ and also $u \overline{\mathfrak{R}} = \cap \overline{\mathfrak{q}}_{ij}$. It is clear that $\overline{\mathfrak{q}}_{ij}$ is a primary ideal belonging to the prime ideal $\overline{P_{ij}^*} \cap \overline{\Re} = \overline{\mathfrak{p}}_{ij}$. Hence $\overline{\mathfrak{p}}_{ij}$ is a prime ideal belonging to $u \overline{\mathfrak{R}}$. If we assume that $u \overline{\mathfrak{R}} = \cap \overline{\mathfrak{q}}_{ij}$ is an irredundant intersection of ideals $\overline{\mathfrak{q}}_{ij}$, we have $(\overline{\mathfrak{p}}_{ij})^{-1} \supset \Re$. Hence $\overline{\mathfrak{p}}_{ij}$ is a minimal prime ideal in $\overline{\mathfrak{R}}$. For, if we assume that $\overline{\mathfrak{p}}_{ij}$ is not a minimal prime ideal of $\overline{\mathfrak{R}}$, then $(\overline{\mathfrak{p}}_{ij})^{-1}(\overline{\mathfrak{p}}_{ij}) = \overline{\mathfrak{p}}_{ij}$. Hence, if $x \in (\bar{\mathfrak{p}}_{ij})^{-1}$ and $x \notin \overline{\mathfrak{R}}$, we obtain $x \bar{\mathfrak{p}}_{ij} \equiv 0$ $(\bar{\mathfrak{p}}_{ij})$ and also $x^{N} \bar{\mathfrak{p}}_{ij} \equiv 0$ $(\bar{\mathfrak{p}}_{ij})$ (N=1, 2, ...). Hence there is an element $\overline{\rho}(\epsilon \overline{\Re})$ such that $\rho x^{N} \equiv 0$ $(\overline{\Re})_{k}$ (N=1, 2, 3,...). But since $x \in \Re^{*}$, it follows that $x = \sum_{i=1}^{n} x_{i}$ and $\bar{\rho} = \sum_{i=1}^{h} \bar{\rho}_i$ by Lemma 4 and Lemma 6, where $x_i \in \Re_i^*$, $\bar{\rho}_i \in \overline{\Re}_i^{*-1}$ Hence $(\sum_{i=1}^{h} \overline{\rho_i}) (\sum_{i=1}^{h} x_i^N) \equiv 0(\overline{\mathfrak{R}}^*). \quad \text{Therefore } \overline{\rho_i} x_i^N \equiv 0(\overline{\mathfrak{R}}^*) (N=1, 2, 3, \ldots).$ But since $\overline{\mathfrak{R}}_i^*$ is an "Endliche diskrete Hauptordnung" by Prop. 1, we have $x_i \in \overline{\mathfrak{N}}_i^*$ (i=1, 2, ..., h). Therefore $x \in \overline{\mathfrak{R}}^*$ and whence $x \in \overline{\Re}$. This is a contradiction. Therefor $\overline{\mathfrak{p}}_{ij}$ is a minimal prime ideal of $\overline{\mathfrak{R}}$. But since $\overline{\mathfrak{q}}_{ij}$ is a primary component belonging to $\overline{\mathfrak{p}}_{ij}$.

 $\bar{\mathfrak{q}}_{ij}$ is a symbolic power of $\bar{\mathfrak{p}}_{ij}$. Hence $\overline{\mathfrak{R}}$ is an "Endliche diskrete Hauptordnung" [2, p. 104]. This completes the proof.

Part II

We shall prove the validity of Krull's conjecture in the case where \Re^* has nilpotent elements. If the radical of \Re^* is denoted by l^* , it is clear that $l^* \Re^*$ is the radical of \Re^* and the radical of $\overline{\Re}^*$ too. For, let \overline{l}^* be the radical of $\overline{\Re}^*$, then $l^* \Re^* \subseteq \overline{l}^*$, since any element of $l^* \Re^*$ is integrally dependent on \Re^* . But being $\overline{l}^* \Re^*$ $\subseteq l^* \Re^*$, it follows that $l^* \Re^* = \overline{l}^*$. Now, let \overline{l} be any nilpotent of $\overline{\Re}^*$ and let *a* be a non-zero-divisor of $\overline{\Re}^*$, \overline{l}/a is a nilpotent element of $\overline{\mathfrak{R}}^*$. Hence $\overline{l} \in \mathfrak{A} \overline{\mathfrak{R}}^*$. Therefore, if an ideal $\overline{\mathfrak{A}}^*$ of $\overline{\mathfrak{R}}^*$ has a non-zero-divisor, we have $\overline{\mathfrak{A}}^* \supseteq \overline{l}^*$. Therefore there is a 1-1 correspondence such that $\overline{\mathfrak{A}}^*/l^* \simeq \overline{\mathfrak{A}}^*$ between the ideal $\overline{\mathfrak{A}}^*$ of $\overline{\mathfrak{R}}^*/l^*$ and the ideal $\overline{\mathfrak{A}}^* \supset \overline{l}^*$ of $\overline{\mathfrak{R}}^*$. Putting $\overline{\mathfrak{R}}^*/\overline{l}^* = \overline{\tilde{\mathfrak{o}}}^*$, the ring of quotients of $\tilde{\overline{\mathfrak{o}}}^*$ is $\mathfrak{R}^*/\ell^*\mathfrak{R}^*$. For, $\overline{\mathfrak{R}}_s/\overline{\ell^*\mathfrak{R}}_s \cong (\overline{\mathfrak{R}}^*/\overline{\ell^*})_{Sl\bar{\ell}^*}$, where S is the set of all non-zero-divisors in $\overline{\Re}^*$ [2, p. 20]. If we set $\Re^*/l^* = \mathfrak{o}^*$, since $\overline{\Re}^*/\overline{l}^* \supset \Re^*/l^*$, we have that $\overline{\tilde{\mathfrak{o}}}^* \supset \mathfrak{o}^*$. But since $(\Re^*/l^*)_{s/l^*}$ $\cong \Re_s^*/l^*\Re_s^* = \Re^*/l^*\Re^*$, where S is the set of all non-zero-divisors in \Re^* [2, p. 20], $v^* \subset \overline{\tilde{v}}^* \subset \Re^* / \ell^* \Re$. Now, let \overline{v}^* be the integral closure of v^* in the ring of quotients of v^* , then any element \widetilde{A} of $\bar{\mathfrak{o}}^*$ is expressible as $\tilde{l}/\tilde{\pi}$ where $\tilde{l}, \ \tilde{\pi}$ are elements of \mathfrak{o}^* and $\tilde{\pi}$ is a non-zero-divisor of v*. Hence

 $(\tilde{l}/\tilde{\pi})^m + \tilde{c}_1(\tilde{l}/\tilde{\pi})^{m-1} + \dots + \tilde{c}_{m-1}(\tilde{l}/\tilde{\pi}) + \tilde{c}_m = 0$ where $\tilde{c}_i \in \mathfrak{o}^*$.

Let c_i , l, π be respectively representatives in \Re^* of the residue classes \tilde{c}_i , \tilde{l} , $\tilde{\pi}$, then $l^m + c_1 \ l^{m-1}\pi + c_2 l^{m-2}\pi^2 + \ldots + c_{m-1} l\pi^{m-1} + c_m \pi^m \equiv 0$ (l^*) . Hence $(l/\pi)^m + c_1(l/\pi) + \ldots + c_{m-1}(l/\pi) + c_m \equiv 0(l^*\Re^*)$. But $l^*\Re^*$ being the radical of $\overline{\Re}^*$, it follows that l/π is integrally dependent on \Re^* . If we put $l/\pi = A$, we have $l = \pi A$. Hence we obtain $\tilde{l} = \tilde{\pi} \widetilde{A}$ in $\overline{\Re}^*/\bar{l}^*$. Therefore $\bar{\mathfrak{o}}^* \subseteq \bar{\mathfrak{o}}^*$. Since $\bar{\tilde{\mathfrak{o}}}^* \subseteq \bar{\mathfrak{o}}^*$, it follows that $\bar{\mathfrak{o}}^* = \bar{\tilde{\mathfrak{o}}}^*$.

If $\dot{\alpha}$ is an element $\overline{\mathfrak{R}}$, α is a non-zero-divisor in $\overline{\mathfrak{R}}^*$. Hence $\alpha \overline{\mathfrak{R}}^*$ can be expressed as an intersection of finite primary ideals containing the radical $\overline{\ell}^*$ of $\overline{\mathfrak{R}}^*$ by Prop. 3. If $\alpha \overline{\mathfrak{R}}^* = \bigcap_{ij} \overline{Q}_{ij}$ is an irredundant intersection of primary ideals \overline{Q}_{ij}^* , we put $\overline{Q}_{ij}^* \cap \overline{\mathfrak{R}} = \overline{\mathfrak{q}}_{ij}$.

Then $a\overline{\Re} = \bigcap q_{ij}$. If we assume that $a\overline{\Re} = \bigcap \overline{q}_{ij}$ is an irredundant representation, the prime ideal $\overline{\mathfrak{p}}_{ij}$ belonging to the primary ideal \overline{q}_{ij} is a minimal prime ideal in $\overline{\mathfrak{R}}$. For, if we assume that $\overline{\mathfrak{p}}_{ij}$ is not minimal in $\overline{\mathfrak{R}}$, similarly to the proof of Prop. 3, $(\overline{\mathfrak{p}}_{ij})^{-1} \supset \overline{\mathfrak{R}}$, and $(\overline{\mathfrak{p}}_{ij})^{-1}(\overline{\mathfrak{p}}_{ij}) = \overline{\mathfrak{p}}_{ij}$. Hence if $x \notin \overline{\mathfrak{R}}$, and $x \in (\overline{\mathfrak{p}}_{ij})^{-1}$, then $x \overline{\mathfrak{p}}_{ij} \equiv 0(\overline{\mathfrak{p}}_{ij})$ and also $x^N \overline{\mathfrak{p}}_{ij} \equiv 0(\overline{\mathfrak{p}}_{ij}) (N=1, 2, 3, ...)$. Therefore there is an element $\overline{\rho}(\text{in } \overline{\mathfrak{R}})$ such that $\rho x^N \equiv 0(\overline{\mathfrak{R}}) (N=1, 2, 3, ...)$. As $x \in \mathfrak{R}^*$, if \tilde{x}, ρ are the residue classes of x, ρ mod. $l^*\mathfrak{R}^*, \rho \tilde{x}^N \equiv 0(\overline{\mathfrak{R}}^*/\overline{l^*})$: Hence by Prop. 3, $\tilde{x} \in \overline{\mathfrak{R}}^*/\overline{l^*}$. Therefore $x \in \overline{\mathfrak{R}}^*$. This implies that $x \in \overline{\mathfrak{R}}$. This is a contradiction. Hence $\overline{\mathfrak{p}}_{ij}$ is a minimal prime ideal. Similarly to the proof of Prop. 3, we have that $\overline{\mathfrak{R}}$ is an "Endliche diskrete Hauptordnung". Therefore we have the following theorem from the above argument and Prop. 3.

Theorem 1. Let $\overline{\Re}$ be the integral closure of a local domain \Re in the field of quotients of \Re , then $\overline{\Re}$ is an "Endliche diskrete Hauptordnung".

Let \mathfrak{S} be an integral domain, then $\cap \mathfrak{S}_{\mathfrak{p}_0} = \mathfrak{S}$ (where \mathfrak{p}_0 runs over all maximal ideals of \mathfrak{S}). But since $\mathfrak{S}_{\mathfrak{p}_0}$ is a local domain, $(\overline{\mathfrak{S}}_{\mathfrak{p}_0}) =$ $\cap (\overline{\mathfrak{S}}_{\mathfrak{p}})$ (where \mathfrak{p} runs over any minimal prime ideal of $\mathfrak{S}_{\mathfrak{p}_0}$) by theorem 1, provided that $(\overline{\mathfrak{S}}_{\mathfrak{p}_0})$ is the integral closure of $\mathfrak{S}_{\mathfrak{p}_0}$ and $(\overline{\mathfrak{S}}_{\mathfrak{p}})$ is the integral closure of $\mathfrak{S}_{\mathfrak{p}}$. Hence, since $\overline{\mathfrak{S}} = \cap (\overline{\mathfrak{S}}_{\mathfrak{p}_0})$, we have $\overline{\mathfrak{S}} = \cap (\overline{\mathfrak{S}}_{\mathfrak{p}})$ (where \mathfrak{p} runs over any minimal prime ideal). This implies that $\overline{\mathfrak{S}}$ is an "Endliche diskrete Hauptordnung" [2, p. 109]. Thus we have the following

Theorem 2. Let \mathfrak{S} be an integral domain and \mathfrak{S} be the integral closure of \mathfrak{S} in the field of quotients of \mathfrak{S} , then \mathfrak{S} is an "Endliche diskrete Hauptordnung".

Part III

In a local domain \Re , we shall discuss the sufficient condition that $\Re: \overline{\Re} \neq (0)$. If a local domain is 1-dimensional, namely "einartig", $\Re: \overline{\Re} \neq (0)$ if and only if the completion \Re^* of \Re has no nilpotent element [1]. But, if \Re is not "einartig", that is, *n*-

If π is a prime ideal in \mathfrak{S} , we denote the quotient ring of \mathfrak{S} with respect to π by \mathfrak{S}_{π} .

dimensional $(n \ge 2)$, we do not know whether the above argument be valid. Therefore, when \Re is *n*-dimensional $(n \ge 2)$ and the completion \Re^* of \Re has no nilpotent element, we discuss whether $\Re: \widetilde{\Re} \ne (0)$ be valid.

If \Re^* has no nilpotent element, $(0)\Re^* = \bigcap_{i=1}^{h} \mathfrak{M}_i^*$, where \mathfrak{M}_i^* is the prime ideal which is not imbedded in any other prime ideal of the zero ideal in \Re^* . The $\overline{\Re}^* = \overline{\mathcal{Q}}_1^* + \overline{\mathcal{Q}}_2^* + \ldots + \overline{\mathcal{Q}}_i^* + \ldots + \overline{\mathcal{Q}}_h^*$ by Corollary of Prop. 1, where $\overline{\mathcal{Q}}_i^*$ is the integral closure of $\Re^*/\mathfrak{M}_i^* = \mathcal{Q}_i^*$.

Now we shall prove that \Re : $\Re \neq (0)$ if a local domain \Re satisfies one of the following conditions:

(1) \Re and its residue field $\Re/\mathfrak{p}_0 = I'$ have different characteristics,

(2) \Re and its residue field $\Re/\mathfrak{p}_0 = \Gamma$ have same characteristic p (including p=0) and $[\Gamma: \Gamma^{(p)}]$ is finite,

(3) \Re and its residue field $\Re/\mathfrak{p}_0 = l^2$ have same characteristic p > 0 and \overline{W}_i^* (integral closure of W_i^*) is a finite module over W_i^* where the complete local domain W_i^* is a ring finite extension of \mathcal{Q}_i^* by *p*-th roots of finite elements of l^2 (*i*=1, 2, 3, ..., *h*).

Since $\bar{\mathcal{Q}}_i^*$ is a finite module extension over \mathcal{Q}_i^* in the above cases (1), (2), (3) respectively, we have $\mathcal{Q}_i^*: \bar{\mathcal{Q}}_i^* \neq (0)$ (i=1, 2, ..., h). Now if $r^*/\pi^* \in \bar{\mathfrak{R}}^*$, where $r^*, \pi^* \in \mathfrak{R}$, and π^* is a non-zerodivisor in $\mathfrak{R}^*, \tilde{r}_i^*/\tilde{\pi}_i^* \in \bar{\mathcal{Q}}_i^*$ by Prop. 1, where $\tilde{\pi}_i^*, \tilde{r}_i$ are residue classes of π^* and r^* modulo \mathfrak{M}_i^* . Therefore $\tilde{f}_i^*. \tilde{r}_i^*/\tilde{\pi}_i^* = \tilde{\lambda}_i^* \in \mathcal{Q}_i^*$ (i=1,2,...,h) where $\tilde{f}_i^* \in \mathcal{Q}_i^*: \bar{\mathcal{Q}}_i^*$. Now let representatives in \mathfrak{R}^* of $\tilde{f}_i^*, \tilde{\lambda}_i^*$ be f_i^*, λ_i^* , and $\tau_i^* \equiv 0(\mathfrak{M}_i^*)$ but $\tau_i^* \equiv 0(\mathfrak{M}_1^* \cap \mathfrak{M}_2^* \cap \ldots \cap \mathfrak{M}_{i-1}^*)$ $\cap \mathfrak{M}_{i+1}^* \cap \ldots \cap \mathfrak{M}_h^*)$ (i=1, 2, ..., h). If we set $F^* = \sum_{i=1}^h \tau_i^* f_i^*$ and $\lambda^* = \sum_{i=1}^h \tau_i^* \lambda_i^*$, then $F^* r^* - \pi^* \lambda^* \equiv 0$. For, $F^* r^* - \pi^* \lambda^* \equiv \tau_i^* f_i^* r_i^* - \pi_i^* \tau_i^* \tilde{\lambda}_i^* \equiv \tau_i^* (f_i^* r_i^* - \pi_i^* \lambda_i^*) \equiv 0 \pmod{\mathfrak{M}_i^*}$ (i=1, 2, ..., h). Thus $F^* r^* - \pi^* \lambda^* = 0$. Namely $F^* (r^*/\pi^*) = \lambda^* \in \mathfrak{R}^*$ as π^* is a non-zerodivisor in \mathfrak{R}^* . Since r^*/π^* is any element of \mathfrak{R}^* and F^* is a fixed element in \mathfrak{R}^* , we can conclude that $\mathfrak{R}^*: \mathfrak{R}^* \neq (0)$.

Now assume that $\Re : \overline{\Re} = (0)$, namely $\Re \subset \Re_1 = \Re[A_1] \subset \Re_2 = \Re_1$ $[A_2] \subset ... \subset \Re_i = \Re_{i-1}[A_i] \subset ... \subset \Re$, then $A_1 \notin \Re^*$. In fact, if we assume that $A_1 = b_1/a_1$ (where $a_1, b_1 \in \Re$) $\in \Re^*$, then $a_1r^* = b_1$, where $r^* \in \Re^*$.

Hence $a_1 r = b_1$ and $r \in \mathfrak{R}$. This is a contradiction. Namely $\mathfrak{R}^* \subset \mathfrak{R}^*$ $[A_1]$. Next, assume that $A_2 = b_2/a_2$ (where $a_2, b_2 \in \mathfrak{R}$) $\in \mathfrak{R}^*[A_1]$, then $b_2/a_2 = \sum_{i=1}^{G_1} c_i^* (b_1/a_1)^i$, namely $b_2 a_1^{G_1} = a_2 (\sum_{i=1}^{G_1} c_i^* b_1^* a_1^{G_1-i})$, where $c_i^* \in \mathfrak{R}^*$ $(i=1, 2, ..., G_1)$. Hence $b_2 a_1^{G_1} = a_2 (\sum_{i=1}^{G_1} c_i^* b_1^* a_1^{G_1-i})$, where $c_i \in \mathfrak{R}$. This implies that $A_2 = b_2/a_2 = \sum_{i=1}^{G_1} c_i (b_1/a_1)^i$. This contradicts the assumption $\mathfrak{R}_2 \supset \mathfrak{R}_1$. Therefore $A_2 \notin \mathfrak{R}^*[A_1]$. Continuing in this way, $\mathfrak{R}^* \subset \mathfrak{R}^*[A_1] \subset \mathfrak{R}^*[A_1, A_2] \subset ... \subset \mathfrak{R}^*[A_1, A_2, ..., A_{i-1}] \subset \mathfrak{R}^*[A_1, A_2, ..., A_{i-1}], A_i] \subset ...,$ which contradicts the above proposition $\mathfrak{R}^* : \overline{\mathfrak{R}}^* \neq (0)$. Namely $\mathfrak{R} : \overline{\mathfrak{R}} = (0)$. Thus we have the following

Proposition 4. If a local domain \Re satisfies one of above conditions (1), (2), (3) and the completion \Re^* of \Re has no nilpotent element, then $\Re: \overline{\Re} \neq (0)$.

Bibliography

1) W. Krull, Ein Satz über primäre integritätbereich, Math. Ann. Vol. 103 (1930) pp. 540-565.

2) W. Krull Idealtheorie. Ergebnisse der Math. und ihrer Grenz, $\mathrm{IV}_3,$ Berlin (1935).

3) C. Chevalley, on the theory of local rings, Ann. of Math. Vol. 44 (1943), pp. 690-708.

4) I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., Vol. 59 (1946) pp. 54–106.

5) Y. Akizuki, Bemerkungen über den Aufbau des Nullideals, proc. of phy.--Math. Soc. of Jap., III₅. Vol. 14 (1932) pp. 253-262.

6) Van der Waerden, Moderne Algebra. springer (Berlin), 1940.