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Introduction. One of the chief problems in differential geometry
in the large is the inquiry on relations between the Stiefel charac-
teristic classes of a compact orientable manifold and a Riemannian
metric defined on  it. The determination of the formulas which
express the characteristic classes in term s of differential forms has
been discussed in the paper of Allendoerfer [1],* as an argument
analogous to tip, proof of the Allendoerfer-Weil formula.

In the present paper w e shall deal w ith this subject from  a
different point of view which is more geometrical. It will be shown
tha t the consideration of a given frame function can be reduced
t o  the simplest case in v irtu e  of the homotopy theory of fibre
bundles, and that the formulas can be found naturally  from  the
well-known result due t o  Chern [4], making use of the induced
metric on a submanifold. Thus, we make clear the intrinsic pro-
perties of the differential forms appearing in the formulas.

1 .  Preliminaries and notations. Let ./ti be a compact connect-
ed orientable Riemannian manifold of dimension n  and class > 4,
and let 3 n - 1  denote the tangent sphere bundle over it. Then we
can get in a certain way the associated bundle 0 1 (0 q < n -1 )
of 0 '  having the Stiefel manifold /7 5 =  as fibre. Each
element of 0 9 m ay  b e  an (n —0 -frame in Ra,

bq—Pe5 + 1 C5+2 —  • en)

where P  is  a point of R "  and e,+1, eq +2,. • • , en are mutually orthogo-
n a l  unit vectors o f  / V  w ith  o rig in  P. I f  w e define  a  map
p :  v --).v+ i by

p b Q  Pe,+2. • •e,,,

*) Numbers in  square brackets refer to th e  bibliography.
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the elements of IV also constitute a sphere bundle over V+ I , and
the map p  fills the rôle of the projection of this bundle structure.
Furthermore through the map p  we obtain stepwise projections :

Q30_, •,,131_,

and any composition of them is the projection of a bundle structure.
L e t 7 1 (r ) denote the i-th homotopy group of the Stiefel

manifold r ;  and in particular we abbreviate 71- ( Y ') by  7r,. It is
well-known that 7 1(17 9 ) = 0  for i< q ,  and

_ (infinite cyclic if q even or q=n —1,
— 1 cyclic of order 2 if q is odd and q<n —1.

For an integer c, let us define the element tig • c  by

a • c= c if q is even or q=n —1,
0 or 1=---c (m od  2 ) if q is odd and q ‹n —1.

Then the operation a, may be regarded as the natural homomor-
phism from the additive group of integers onto

Decompose R n in to  a  cell complex K "  o f  class > 4, and
le t K g be its q-dimensional skeleton. Then  there  ex ists  an
(n—r+1)-frame function F  o f class > 2 on a neighborhood of
K' 1, s in c e  7r1 ( P - 1 ) = 0 fo r  i < r - 1 .  W e  w ill assume b y  a
tacit understanding that chains and maps which will be intro-
duced in our argument are of suitable class i f  necessary. The
justification of these assumptions may be easily proved from the
fact that R "  is of class > 4. Since R " is orientable, the associa-
ted bundle of coefficients V ( 7 0  is a product bundle ; thus, a cochain
o f  K "  w ith  coefficients in 0 9 (7 ,)  can be regarded as an
ordinary cochain with coefficients in 7r,• L e t  c (F ) be the obstruc-
tion cocycle of F .  The present purpose is to deduce an expression
of the cohomology class to which c ( F )  belongs and which is a
topological invariant of R ' . I n  order to achieve this, we first res-
trict attention only to an oriented r-cell d of K 4  (2 <r . n).
The boundary of 4, ,  ad, f r - 1 , is an oriented (r-1)-sphere. We
will use, for instance, the notation 8 i 1 which means the portion
of bundle 93' over The frame function F is then considered
to be a cross-section : 2.- - 1

— >/'1,- 1. The cross-section p F :
has a differentiable extension over because iç (r) =0 . W e
denote it by G, and set G d'--E " and F E ' —,S - 1 . Then E is a cell
contained in TV and :5 ' is a sphere contained in Their on-
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entation may be induced naturally from that of 1 ,  and clearly
3E'--pg- - 1 .  The statement on an expression for the element c(F) •
in 7Ç integrals over the domains and E ', will occupy the
main part of this paper.

We shall denote by / the interval of real numbers 0 t
In  general, let 0  be a bundle over S with the projection 0, and
let F(x), x E E, be a cross-section. A  map k: S  x /---+0 is said to
be a  homotopy of the cross-section F, if pie (x, t) =x  for all t and
k (x, 0) = F(x) . Define k, : X -8  by  k,(x) = k (x, t) , and then k, is a
cross-section. Two cross-sections ko and k, are said to be homotopic,
in symbols k, kl.

2 .  The auxiliary cross-section Fo. The first step of our consi-
deration is to construct a special cross-section Fo from the given
cross-section F.

LE M M A  1. There ex ists a  cross-section F o : -1 - 1 - 3"- '  which
satisfies the following conditions.

F „ and so c(F) • dr=c(F0 ).4 '.
(ii) For each fram e Pe , e,,,.•-en E F02 5  - 1 , the vectors e,,,•••,e.

are  norm al to 4 , and  so e. is tangent to 4.
(iii) The cross-section pFo : E - 1 -0,8'' has an extension over 4'

w ith the following property :  if  w e denote it by  G o , each  f ram e of
Go d ' is  norm al to

We are going to define a cross-section E, which satisfies the
above conditions. Since any bundle over a cell is a product bundle,
it is possible to define a cross-section G,: so that each ele-
ment of God  may be an  (n—r)-frame norm al to  4 ' .  Moreover,
since 7r,(Y ') = 0  for i <  r, any two cross-sections : are
homotopic ; of course PF  G ,  on X ' .  If k is a homotopy of the
cross-section p F  into Go o n  — 1 ,  the second covering homotopy
theorem concerning the bundle e ,7 1 over 0';,, the space the
map F, and the homotopy k, asserts the existence of a homotopy

: 2-- ,  x covering k (i.e. p ii= k ) and being stationary with
k  (see [8], § 11.7). It is easily seen from the constructions of k
and k that k is a homotopy of the cross-section F .  Hence k, is a
cross-section : We define F o by F 0 =1;,. Obviously Fo

satisfies the conditions of lemma 1. The maps Go , k  and 7z, which
have been introduced to define F0 , do not determine in a unique
way. For convenience, however, we take them fixed throughout
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this paper, and set  G(4 and Clearly

3. The tangent vector field v o. Let St' b e  the tangent sphere
bundle over 4  a n d  le t  2;̀ ) be its associated principal bundle.
A  map 7  : a - 1 —>On' is defined by z-br- 1 =- Pe, E 0 '  with
br  1  = P eE  - 1 .  According to lemma 1, 990 = 7 F , is a tangent
vector field, that is , a  cross-section :

We consider 4 ' to be a  Riemannian space induced by the Rie-
mannian metric of R ' . L e t  A  be a n  interior point of 4 .  We may
assume that 4 ' is included in  a  sufficiently small neighborhood of
A , and that the points of 4  are determined by the normal coordinate
with respect to the  induced metric. Let P  E  d ' be a  p o in t o n  a
geodesic line AP, joining A  to P0 E By parallel displacement
from P o ,  transport the vector 500 P„ along A P, to P and to A. Deno-
ting th e  resulting vectors by -00 P  a n d  by s o A P o  respectively, we
obtain an extension ii-00  of 900 over 4v— A and a map ço4 .
where is the tangent unit sphere of 4 ' at A .  T h e  p o in t A
is possibly a  singular point of the vector field 779„ : 4- -*72- 1 , and
the index of at A  equals to the degree of the map iO4 .

LEMMA 2. If D(900 )  denotes the index of  -45, at A , then

c (F0) • zr D (Soo)

PROOF. We can obtain an extension F o o f  F o over 4v—  A  by

4 10----(70 0 and p f" -= G ,. A  map FA : -̀ ;' - '-+PA
- 1  is given by 7F4  =VA

and PFA -----constant mat : E - 1 -- G0 A , where Y rA
- 1  is the fibre of 0 '

ovor A .  From the constructions of Po a n d  F A , it is clear that
c(Fo ) . 4" is equal to the homotopy class of the map FA in 7 r-1 ( r t - 1 ) •
Further, by the  well-known relation between the  generator of 7,-. 1

and the degree of (r-1)-sphere map, we can set c(F0 ) • .  D(ç90 );
for, 7F4 - - ço A ,  and p F A  is  a constant m ap. This proves our asser-
tion.

4. The integral formula for F o . When a Riemannian metric
o f  /in is given, we can define in  0 '  in  a  u n iq u e  way a  s e t
o f  n (n +1) /2 linearly independent linear differential forms
(0,k, o i „  (),1i=1, n) which satisfy the equations (cf. [6], § 5)

(1) dP=E w ,  CA,e , ,
A

(2) d(0),-= E t o ,  (0,„,;

a n d  th e  form Q 4 L , so-called th e  curvature form, is given by the
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equation

(3) d(ox,,-=11 ( 0 , „  ( ) -F S2
V = I

From what has been proved already, we see that an express-
ion of c(F) • zr may be obtained by calculating D(soo ) . In order to
express D( 990) in terms of differential forms, we may apply, making
use of the induced metric, a well-known result for tangent vector
field (cf. [4] and [5]). Then w e get the following.

L E M M A  3. The index D(990)  is given by the formula

(4) ( - 1)'"D ( )  = Ii r +  .S. E4.9r

w here It' and ! J r  are forms defined by

E „....i,S41 1 ,  • • • SP;,. ir if r is even,
(5) ‘P*-=, ("

2

0i f  r  is  odd,

(6) 11-_ (
-1), [1(,-01 (

2 '.7 r 1 ( '  - 1 3  k . . = ° \
1)

 k

1 

k! (1 -2 k +1 ))
2

with
7b

(7) -(2,i+N1 (00.1,
41=-7 . -F7

(8) a l . - . f lr a 1 a 2  '•  •  S
2

a 2 k - 1  a2k w a2k +1r" - ( o a r - i  r ,
(a)

: 1 = 1 ,  • • •  ,  r , r-1 ).
It seem s th a t w e  n eed  a  few explanations on the formula

(4) in which integrals of forms in .0" are defined over domains
in a n d  V . T hough it w ill be  show n genera lly  in the next
section that _wand S2' . are, in fact, forms in er -- ' and W respectively,
we can see here these integrals have intrinsic meanings, through the
following statement on the relation between the formula (4) written
in terms o f .13̀ ' and the formula for

Take a repère m o b ile  Pe,•••c„ such that, for P E J r ,  the vectors
ei ,.• •, e,. are tangent to Then, from (1 ) ,  (2 )  and (3 ), the equations
of induced Riemannian connection are written

(9) ciP-=1:201 e„ de1=>=;(01i  e i ( i ,  j = 1 , • • • ,  r ) ,
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and its equations of structure are
dW i = (0.f i ,

j

(11) d w = (ask (Okj

where
71

j = 911 ± (01 0

0 = /

It should be observed that forms (0,, wi j and SPii  remain invariant under
a change of repère mobile, if its tangent vectors e„.• • , e, are left
unchanged. We choose the normal vectors of the repère mobile
such that Pe, • •en  E  E ;. As to the term repère m obile due to Cartan,
see [2] and [3].

Let s,13— ' and 0 ) denote respectively the portion of and 93°
over E ; when we suppose them to be bundles over V. Then the
map 7 defined in the preceding section is a bundle homeomorphism
of ÇZ ' onto A  map -7-  given by p  =  7— P  is a homeomorphism
of E ; onto 2 .  Further, if we define a map p : V - -2 34 - '  by /21)°=--
Pe,•••e, E with V=Pe,•- • e, E V , p  is a bundle homeomorphism
of o n to  "

We regard w, ,  wo  and g i  a s  forms in  V  induced by the
inclusion map 8 "—, 3 . From these forms the homeomophism :
Z 0--* 0 induces the forms in , which we denote by ii5t , r6,.1 and El;i

respectively to avoid any confusion. Clearly "(-6, and (7),i  satisfy
the equations (9 )  and (10 ) which are fundamental for induced
Riemannian geometry ; and -(2';) is its curvature form. Let /P. and
.S2' denote the forms given by putting (-0„ äi and ..(4.1 into (5 )  and
(6 ). Then we may apply the result due to Chern.

It has been known that and are indeed forms in Z'
such that —di/' . = k ,  and especially l t  is  a form in 4". Let
be a geodesic hypersphere in zr of radius e with center A, and let
P ; be the closed ring-shaped domain in LI' bounded by f '.'and

I f  we set rz, and -ço„-ra•- ' then clearly
a r'';=  - 1

 —  f; - - '; and hence

B ' "-Pr=

(10)

By applying Stokes' theorem and by considering that Sir is a form
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in  z r, w e have

, lim I?'
orE rs E-3.0 r ,

On the other hand, we know by [5] that

/im i1 1 =  (— l) D(y9 ) ).

Consequently it follows that

/ / '+ = (-1) r D(çoo ) .

Lir

The formula (4 ) is nothing but an  interpretation of this equation
in  terms of and E  through m edium s of the homeomorphisms
r  and 7.

A s regards transformations o f  forms a n d  chains by a map,
see, for instance, [7], §§ 5-6.

5 . The forms / / '  and S2'. In  the above section the forms
a n d  SP. w ere  considered  only  in  V . N ow  w e consider them  in
whole 0 ° .  They have the following formal properties.

LEMMA 4.
(i) —2/P+1, i f  r  i s  e v e n  and  r <n.
(ii) I I '  i s  a f o r m  in  23 '.
(iii) S2%

(iv) D ' i s  a f o rm  in  W .
The proof of this lemma is quite mechanical, so we only sketch

its outline.
(i) F rom  (7), obviously

f4 .1
4-1„ , +,, 1 .

By substituting this into the expression for S2', we have 2' =
(ii) It is sufficient to  establish th e  resu lt f o r  a  coordinate

neighborhood V  o n  0 - 1 . Let f  and f *  b e  a rb itra ry  local cross-
sections : defined o n  V . F o r  a  frame b- 1 =Pe,..•-en  E  V,
if we write ft.) - 1  =Pe l • • e„ and f *b' - 1 — PeP••-d, we have the transfor-
mation of frames

(12) e  =  eA (A , B=r, r+1,•••, n),

= 0 o  eft , =1,• • , r — 1) ,c 
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w here Ocep are functions of the local param eters o f V and (0. ) i s
a proper orthogonal m atrix of order r - -1 .  F rom  a form  (o in 0°
the maps f  and f *  induce forms in V w hich w e denote by 0-1 and
w* respectively . T hen  w e have easily

—0),„ (0„,

r — 1

Pct3=.̀2i; 0 .-r 
°

rid  -Q T 6 1  Pt ----- N 1 0.3 P p ,  SI —0.

From  these, w e can easily  prove that SPii  has the same transforma-
tion  law  as th a t  of fli i  u n d e r  the transformation (12) ; and so,
noting  tha t l(),I =1, w e see (/)1 remain invariant under (12). Hence
P,  a fo rm  in 0 - 1 , and also  is //r•

(iii) F or r = n  the formula — d l/ '= Q " is known : s e e  [5].
Suppose th a t  r  < n . T hen  the equations

dl,P,— —'̀ Vf,?;, (0 + V (o,„ S2;,,/

also hold. Moreover dOrk  is  a form in 0 - 4 .  Hence, if we substitute
(13) into the expression for dC, the terms involving w„, will cancel
e a c h  o th e r . The conditions are en tire ly  sam e as the case r=n,
and they suffice to deduce —dIP=S2'.

(iv) It is w ell-know n that P " is  a scaler in 1Z"; and the as-
sertion is trivial for the case  tha t r  is  o d d . If r is even and r <n,
9 -  is  e q u a l to  — V P ' w h ic h  is  a form  in 0.

Our lem m a has been thus established. If er is  an r-chain. in
as an immediate consequence of the lem m a w e have by ap-

plying Stokes' theorem

(14) /r= — f Q.
JP&'

6 . The integral formula for F .  We prove now the following
result.

THEOREM. If  the  cross-section G: K ' —OF is an extension of pF
ov er K , the following formula holds:

(15) ( -1 ) (F ) • 4' =a,. // ' + P'} ,
s, -1 E,

w h e re  - F 4 ' E ' =G d '.

PROOF. From  lem m as 1-3, w e  have

(13) d(0„,.= N I  ( 0 „ ,  ( ) ,
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(16) (-1)'c(F) • Jr = a f
E1)

Let us recall k  and introduced in  § 2. Putting

=.(- 1) r - 1  D" C

x  =  ( - i ) - - - '
we have

, go'  — =

Thus, application of (14) gives

(17) //' =.S' ; -

It is easy to define a  cross-section * F :
s u c h  t h a t  p* F =

pF and c (* F)•4 r=0 . That is, since i s  a cell, there exists a cross-
section g : 13'. D E.--> 3Z 1 and we may define *F by  *F=gpF. In fact
*F is extendable over S . : one of its extension is provided by gG;
and so c ( * F ) •  4 ' =0 . Put a n d  *F2 - 1 = Then
clearly * -S-1----ak and Pg r=E r. Let us construct a covering homo-
topy *k from * F  and k  in the same way as we have done k from
F  and k ; namely p*k- i=pii =k . If we set *I-21 2-' 1 =* -go', the for-
mula (17) for *F is written

11' — II' —
D r

and moreover, according to (14), it is modified as follows :

(18) f
/ ' +1 Dr=

E r D r

From (17) and (18) it follows that

(19) f_ //''+1 12"—f H' +f f Pr.
E r * S oE 0 '

If we apply the operation a to both sides o f (19) and use the
formula (16) for F  and for *F, we obtain finally

(— I)'c(F) {1_ ,,,,f S2' 1+ ( -1 ) 'c (* F) .
5, -1 E r

Since c(*F) = 0, the theorem follows. It is noteworthy that this
result does not depend upon the choice of G.
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It has been known already that the  cochain defined by (15)
is a  cocycle whose cohomology class (R 4 ) , called th e  Stielfel
characteristic class, does not depend upon th e  choice o f  a  cross-
section F defined on K' - .̀ Let be an  arbitrary homology class
of R's whose coefficients may be integers or integers mod m, where
m  is a prim e number if  Y  is odd o r  r= n , a n d  m=2 if  r  is even
and r <n. Then we can easily find the formula which gives e, (R 3 ) .Z'
in  terms o f  differential forms, by employing a n  arbitrary cycle
chosen to represent Z . We abridge it.

I  express my sincere gratitude to Prof. J. Kanitani for his kind guidance during
my researches.
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