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Previously Prof. Akizuki” proved that if o is a Noatherian local
integrity domain® of dimension 1 and if b is its integral closure”,
then any ring 8 such that 0C€8C5 is Notherian®.

As for the case of higher dimension, there arise the following
problems :

Let o be a Noetherian local integrity domain of dimension #»
and let © be its integral closure. Then

Problem I. Does it holds in general that any ring 8 such that
0C8CH is Noetherian?

Problem II. Does it holds in general that § is Noetherian ?

In the present note, we show a counter example against the
problem I when #=2 in §2 and then a counter example against
the problem II when »=3 in §3".

§1. A preliminary.

Let £, be a perfect field of characteristic p (#0) and let #,---,
#,,--+ (infinitely many) be algebraically independent elements over
t,. Set f=f,(#,, -+, #4---). Further let x,---, x, be indeterminates
and denote by o, and r, the rings f"{x,,---, x.}[f] and t{x,---, x,}"
respectively.

1) Y. Akizuki, Einige Bemerkunge tber primire Integritidtsbereiche mit Teiler-
kettensatz, Proc. Phys.-Math. Soc. Japan, 3rd Ser., 17 (1935), pp. 327-336.

2) We say in the present note that a ring o is a local ring if it has only one
maximal ideal m and if the intersection of all powers of m is zero, where we con-
sider the m-adic topology for o.

3) This means the integral closure in its quotient field.

4) This result shows also the similar result for “ einartig ” Noetherian integrity
domains.

5) It was communicated to the writer that this problem II was proved affirma-
tively by Mr. Mori, when n=2.

6) t{x,,--, x,} denotes the ring of formal power series in x,,-- x, with coeffi-
cients in f.
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Then we have

Lemma. o, is a regular local ring and v, is the completion
of o,.

Proof. 'When we see that o, is Noetherian, our assertion follows
easily. Therefore we prove that o, is Noetherian. When n=1,
our assertion is evident. Therefore we prove our assertion by
induction on #. Since {*{x,---, x,} is a complete regular local ring,
¥{x, -, x.}[a), -, a,] i1s a complete regular local ring and therefore
it is an integrally closed integrity domain, provided that a;
¢ f. This shows that o, is integrally closed. Therefore if y is an
element of o, yr,No,=yo0,”. Now let q be an arbitrary prime
ideal of o,; we have only to show that q has a finite basis”. Let
p be a minimal prime ideal of o, contained in g and let p be the
prime ideal of v, such that pno,=p. Set o,=t*{x,--,2.} and p,=
pno, Then since o, is regular, we see that p, is a principal ideal :
p,=f0, Since o, is complete, we may assume that f=a,+a,x,+ -
a,_2" +x,° with a, € o' ={x,,---, 2._,} by Weierstrass preparation
theorem.

Case 1). When f is irreducible over o,-;, we see that fo, is
prime because o,_, is integrally closed. Hence p=fo..

Case 2). When f is not irreducible over o,.,, we take an
irreducible monic factor f’ of f in the polynomial ring v,-[x.].
Since o0,_; is a purely inseparable integral extension of o’ with
exponent p, f=f'". Therefore f'v, must be a prime ideal, because
1, is a purely inseparable integral extenson of v, with exponent p.
Hence f'o,=f't.No, is a prime ideal.

Thus, in either case, we see that p is principal and that o,/p
is a finite module over o,_, (and therefore that o./p is Noetherian).
This shows that q has a finite basis.

§2. A counter example against the problem I.
We denote, in this paragraph, by x and y instead of x, and x,

respectively. We take elements c=y 2 u &', c=(c—> yu, x°) /2"
i=1 i<n

(n=1, 2,---). We consider the ring o=0v,[¢;,**, Cay-**].
Proposition 1. o is a counter example against the problem I.

7) Observe that r, is integral over o,,.
8) Cf. I. S. Cohen, Commutative rings with restricted minimum condition,
Duke Math. J., 17 (1950), pp. 27-42.
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Proof. Since o, is Noetherian, o.[c] is Noetherian. It is evi-
dent that o contains v,[c] and is contained in the integral closure
of 0.[c]. Therefore we have only to show that o is not Noethrian.

We first show that this local ring v is a dense subspace of 1,.
Let b be an element of (x, y) r,Nv. Since b is in o, we can write
b as a polynomial in ¢, -, ¢, (by a suitable #) with coefficients in
0. Since ¢;=u;+xc;.;, we can write b as a polynomial in 1" c,..
with coefficients in v,: b=b,+b,(x" Cus,) + -+ +b,(X €ayr)® (b; € 0y).
Since be (x, ¥)'t,, we have b, € (x, )1, N 0,= (%, ¥)'0.C (x, ¥) 0.
Therefore b € (x, )" v, which shows that (x, ¥)"r,Nno=(x, ¥)"0. Now
that o is dense in r, is evident. We see that the completion of o
is regular. Therefore, if v is Noetherian, v must be regular and
therefore v must be integrally closed. But o cannot be integrally
ciosed because c¢,/y is not in v.

§3. A counter example against the problem II.

We denote, in this paragraph, by x, ¥ and 2z instead of x,, x.
and x, respectively. Further we denote by u,, v,, u,, v,--- instead of

o0

"y, Uy Uy Uy, respectively. Take an element c=y X u, ¥’ +23 v, &
i=1

i=1
of t; and let o be the integral closure of v,[c]. For the simplicity
of our calculus, we treat the case p=2".
Proposition 2. o;[c] is a counter example against the pro-
blem II.

Proof. That v;[c] is Noetherian 1s evident. Therefore we
have only to show that o is not Noetherian. Since v is integrally
closed, x x;Nno=x0 and therefore xo is a prime ideal. We consider
valuation rings n'=n,q,(m) and 0”=p0w@o). Then since ¢ is in the

completion of o', we see that o’ is a dense subspace of o’ and
therefore o’/x o’=0"/x0"”". On the other hand, since v./x v, is regular,
0./x0, is integrally closed. Therefore v,/x0,=0/20. Therefore the
maximal ideal of v can be generated bv x, y and 2. Therefore,
if o is Noetherian, 0 must be regular. Now we have only to
show that o is not regular.

Assume for a moment that o is regular. Then o must contain

9) We need not for our calculus that p==2. Whenever p is not equal to zero,
the same construction yields a counter example against ouriproblem II. Our calculus
for the case is similar, but it is somewhat more complicated, because there must
appear some more terms in the formulars below,
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an element Elu,x‘+zf with a suitable f € r; because o/zo is regular.
: -

Therefore we can write

2 ux' +2f=(a,+ac)/d, (a, a, d, <o),

=1

where we choose a,, @,, d, so that they have no common factor.
Now we have

dXusx+d z=a+a,ySux+az23 v x.
=1 =1

£=1

Since 1, 3} u, x* are linearly independent over v,(=v,/20,), we have
a, € z2v,, d,—a,y € z0,, Therefore we can write a,=za,, d;=a,y+dz
(a), d €v,). Then

(ay+d2) (D ux'+f2)=za) +a,y > ux'+a,2> v.x',
and therefore

ayzf+dz > ux'+dfZ=z2a/+a.z 3 v

we write a,=‘§j0a.,'z‘, a)=> a2, d= ;‘nd,z‘. f=‘§_‘:’f;z‘ (ay, d; € 0,
1= 1= =

i=0

fi€r.). Then comparing the coefficients of 2, we have
@o¥fo+dy S5 ux' =ay+a, 3 vix'.

Since 1, 37 ux' and 3] va' are linearly independent over o, (=0./y0,),
we have d,, a, and a, are in yv.. We show next that d,, a, and
a, are in yv, for any 7, by induction on ». Comparing the coeffi-
cients of 2’*', we have

” n—1
y(2 aljf;'—i) +d, T ux'+>] djf;—l— =t a0 v,x"
Jj=v j=0

Since d,, d,,-, d,—, are in yu,, by our induction assumption, we
have that d., a,- and @, are in yo..

Thus we see that d,, a, and @, are in yv;, which is a contra-
diction to that d;, @, and @, have no common factor. Thus our
proof is completed. '



