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This paper contains some applications of the theory of Hen-
se lian  rings to  th e  theory o f loca l r in gs. M ain  purpose of the
present paper is to prove the following two assertions :

I) If an integrally closed local integrity domain o  is of finitely
generated type over a  valuation ring of characteristic 0  or over a
field of arbitrary characteristic'', then th e  completion o f  o  is an
integrally closed integrity domain.

II) If an integrally closed local integrity domain o  is of finite
type over a  regular local ring lc" then the completion of o is an
integrity domain, provided that r  contains a  complete Noetherian
local ring such that r  is a quotient ring of with respect to
a prim e ideal.

These results generalize and supplement a  result (Theorem
5 )  in  my previous p a p e r" . By the  w ay, we add a  proof of the
following :

L et C  be the  complex number field and let o„ and  6„ be the
rings of convergent and formal power series respectively in n vari-
ables z„ •••, z„ over C .  Then if II is a  prime ideal o f  o„ then 1.)6„
is also a  prime ideal.

As for terminology, see my other papers on Henselian rings".

§ 1. Henselian regular local rings.

THEOREM 1. Let r be a Henselian regular local ring and let m be

1) As for definition, see § 3 below.
2) Some remarks on local rings, to appear in Nagoya Math. J., 6, which will

be referred as [L.R.] in the present paper.
3 )  On the theory of Henselian rings, Nagoya Math. J., 5, pp. 45-57: On the

theory of Henselian rings II, to appear in Nagoya Math. J., They will be referred
as [H.R. I] and  [H.R. II] respectively in the present paper,
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its maximal ideal. A ssume that r satisfies the following two conditions:
1) If  i s  a m inim al prim e ideal of  r ,  then any f inite integral

extension of r/p is algebraically closed in  its completion.
2) A ny almost finite integral extension of  r  is a finite r-module.
T hen r  is algebraically closed in  its completion t.
L E M M A  A . If an  element b of t  is purely inseparable over r,

then b E r.
Pro o f . Let p  be the characteristic of r .  We may assume that

bv E nt and that bv has no p-hold divisor in r .  Let c be a prime
divisor o f bv in r. Then the valuation determined by a prime
divisor of ct ramifies in R (b) with respect to R , where R  is the
quotient field of r .  This contradicts to our assumption that C t is
a prime ideal.

Now let o be the totality of separably algebraic elements over
o  among elements of t .  Then by Lemma A  we have only to show
th at -=1:. Let L  be the quotient field of o. Then it is evident
that o = L n t.

L E M M A  B . If y  is an element of o, then yt n o =yo.
Proof is easy since o=L  n t.
Corollary . If y E in and y tt in' then yo is a prime ideal.
We take an element z  of n i which is not in ni".
LEMMA C .  Every element b  o f o  can be expressed in the

following form :

b=17,+ b,z+ • • • + b z * - 1 + b' ke, 17 0 , • • • , b k _, E r , b' k  E o.

Proo f . Let f ( x )  be the irreducible primitive polynomial over
r  satisfied by b. Then b  mod z t  satisfies f ( x )  mod z a x ] .  Since
1(x ) is primitive, f ( x )  zr [x]. Therefore b mod z t  is algebraic over
r /z r , whence b (mod z t) (b„ E r). Therefore we can write b
b„+ b',z E  t). Since b, b„, z E o, we have b', E L. hence b', E O.
When we apply this for b',, we have our assertion when k = 2 and
repeating the similar method we have our assertion.

Corollary . o/zk  o=r/zkr for every k =1, 2, • • • .
LEMMA D .  o  is a dense subspace of t.
P ro o f  We denote by q the m axial ideal of o .  We have only

to prove that mkt n o ç  Li' and it follows easily from Lemma C.
LEMMA E. If q  is a proper prime ideal of o, then q n (0).
Pro o f . q contains a non-zero element a .  Let ao ct + a, + • • •

+a, = 0  (a, Er, 0 ) .  Then a,. E q n r.
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Now we assume that or and let a, be an element of o such
that a, r and a , is integral over r. Let 5 be the integral closure
of r [a0]  in R ( a „) .  Then ii is a  finite r-module : 5=r [a,, a,, • • • , a,].
Let g ( x )  be the irreducible monic polynomial over r  satisfied by
a, and let do be its discriminant. We set r=[R (a„):R ].

For the convenience, we denote by a ', ,• • • ,a ',  elements a,,,•••,
a , if they are considered as elements of the local ring

LEMMA F .  o"=o  [a',, a',, • • • , a',] contains 5 as a dense subspace.
P ro o f  It is evident that d„o" ço[a' o]  and that cl,,Oç  r [a'0].

Since d ,  is not a zero divisor in the completion 5 of -6, {nik5 : do 5
(k=1, 2, •••)} forms a  system o f neighbourhoods of zero in 5".
That is, there exists a natural number n ( k )  for each k  such that
nt" (k) 5 : do & c  le 5. If b is in TS n o " ,  bd, is in p"'''y [a'„] n  in " (k) 5.
Therefore b E ink5. This show that 5 is a subspace of o " .  That
Ci is dense in o" follows easily.

LEMMA G. If q" is a prime divisor of zero in o ", then there
exists only one prime divisor j of zero in o such that q q "5 ,  where
O denotes the completion of o".

P ro o f  Let be the completion of r [a',]. Then it is evident
that o is a subring of the total quotient ring of a. Therefore we
have only to prove the following.

LEMMA H. I f  q' is a prime divisor of zero in o[a',], then there
exists only one prime divisor 4' of zero in ,;.'s such that 4' n o [a'd

P ro o f  Let g(x ) = f ( x )  •  f 7, ( x )  with irreducible monic poly-
nomials f ( x )  over o. Then since o is separably algebraically closed
in r, we see that f ( x )  are irreducible also over i .  T h is  proves
our assertion.

LEMMA I. Let the prime divisors of zo" be p,, •••, pg . Let S  be
the complementary set of zr  with respect to r. Then o"8  is  a
principal ideal ring and whose maximal ideals are plo",s, •••, #1,0".s.

P ro o f  Let p* be a maximal ideal of o " , .  Set p' ----p * n o , p " -=
p* n o" and 4- 5— p* n i l  By the condition 1 ) in  our theorem and
since ou/p, is a finite integral extension of r/zr, we see that
is a prime ideal. Further every prime divisor of zero in is con-

4 )  C. Chevalley, On the theory o f local rings, Ann. o f Math., 44 (1943), § II,
Lemma 9,
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tam ed in  on e  o f p ». Now if p '= (0 ), then we see that p" is a
prime divisor of zero. Therefore p" is contained in one of p",--=

n o", which is a contradiction to our assumption that p* is maximal.
Therefore p" is one of p",. This shows o",, has no maximal ideal
other than p",0",,. Let S "  be the intersection of complementary
sets of p",, •••, p", with respect to o". Then Let w, be
an element of p, which is not in  0 ) and not in every pi  other than
p, and take an element b, of woo: p, which is in none of pi . Then
since w ; o" 2bi pi o" and b, E S, we see that p,0",--w,0",,. Therefore
we have only to show that pio"-=p", but this follows easily from
that p i ii= p",6= p i an d  from that o"/zo" is Noetherian by the
corollary to Lemma C.

Now by Lemma I, we see that o",, is a direct sum of principal
ideal rings o„ o , „  where y is the number of prime divisors of
zero in o". Let e, be the identity o f o ,. Then we can write e,—
a,/d, (a, E o", d, E r). Set d—C11,:..,d, and letIT) be the integral
closure of o in its total quotient ring. Then

L E M M A  J. c/6ç.i [a'a].
Proo f . By Lemma G , we see that de„ •-•.be„ are integrity

domains. Therefore dooe,g_i[a' a] ei .  Thei efore do'do3e,g_ r [a'0], which
proves our assertion.

Now, since d is in r, by condition 2) in our theorem and by
Lemma 6 in [L.R.]", we see that o is an integrity domain, which
contradicts to that o" is not a  integrity domain. Thus o must
coincides with r.

§ 2. Weierstrassean rings.
Definition. A Henselian regular local ring r is called a Wei-

erstrassean ring if there exists a set of classes of Henselian regular
local rings G„G„--,G„,•-•, satisfying the following conditions :

1) r is contained in one of G„.
2) Every member of G„ is of dimension n.
3 )  If p is a minimal prime ideal of a member r„ of G„, then

there exists a member r„_, of G„_, such that r„/p is isomorphic to
a finite integral extension of r„ , provided that n 1.

5) See the proof of Lemma 5 in [L.R.] or the same in Zariski's paper "Analy-

tical irreducibility of normal varieties ", Ann. of Math., 49 (1948).
6) Cf. O. Zariski, Sur la normalité analytique des variété normales, Ann. Inst.

Fourier, 2 (1950).
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4 )  If r>, is a  member of G„, then every almost finite integral
extension of r„ is a  finite r„-module.

THEOREM 2. I f  r is  a  Weierstrassean ring, then r is algebraic-
ally closed in its completion i. Further if  o  i s  a  prim e ideal of  r
then or is a prim e ideal.

P ro o f  This is an immediate consequence of Theorem 1 if  we
observe that r/p is a finite integral extension of a Weierstrassean
rine.

Corollary 1 .  Let a local integrity domain o be a finite integral
extension of a Weierstrassean ring r. Then the  completion ô of o
is an  integrity domain. If moreover o is integrally closed, then -0
is integrally closed, providéd that o is separable over r.

P ro o f  The first half is evident. T he last half can be proved
by the same way as  in  th e  proof of Theorem 5 in  [L_R.].

Corollary 2 .  L et o be a local ring such that 1) o  contains a
Weierstrassean ring r and is a finite r-module and 2) the zero ideal
of o is a  primary ideal. Then the zero ideal of the completion
is a  primary ideal.

Proo f . L e t  p be the  p rim e  divisor o f  z e ro  in  o. Then by
Theorem 2 we see that ô is a  prime ideal. Therefore pi) is the
radial of O. Now since r has no zero divisor in  o, we see that the
completion Y of r has no zero divisor in ô and ô is a  finite i-module.
Therefore the zero ideal of Jo has no imbedded prime divisor. This
proves our assertion.

§ 3. E x a m p le s  (1).
Definition. A  loca l ring  o is said to be of finitely generated

type over a local ring r if  1) there exists a  finitely generated ring
over r, 2) o  is a quotient ring of Zs' with respect to a maximal

ideal ni of ".,-1 and 3) rÇ o and in contains every non-unit of r. This
is called the  generating ring of o over T.

Definition. A local ring o is said to be of finite type  over a
local ring r if  1) o is of finitely generated type over r and 2) its
generating ring a over r can be chosen so that a is integral over X.

THEOREM 3. L et r be a  regular local ring of finitely generated

7) Cf. Corollary 4 to Lemma 3 in  [H.R. II].
8) Th e  proof was not correct because we did not prove that the completion

o f o  is an integrity domain. But here we proved this last fact, therefore we can use
its proof. In the following sections we see that the theorem is true.

A.s for the method of the proof, cf, Zariski, 1.c, note 6).
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type over a  f ield an d  le t  r*  be its H enseliz ation. T hen r*  i s  a
W eierstrassean ring.

P ro o f  For condition 3 ) in the definition of Weierstrassean
ring, observe that if p* is a proper ideal of r* then p*n r (0).
Condition 4) follows easily from the well known theorem of F. K.
Schmidt".

Corollary  1. Assume that an integrally closed local integrity
domain o is of finitely generated type over a field K , then the
completion o of o is an integrally closed integrity domain.

Proo f . It is evident that o is  of finite type over a regular
local ring r which is of finitely generated type over K .  Then the
Henselization o* of o is an integrally closed finite integral extension
of the Henselization r* of r. Therefore the completion of o* is an
integrally closed integrity domain, by Theorem 5 in [L.R.]. Since
o* contains o as a dense subspace'", we see our statement.

Corollary  2. Let a local integrity domain o  b e  o f finitely
generated type over a field K  and let 5 be the integral closure of
o in its quotient field. Then the completion of 5 is the integral
closure of the completion i. of o in its total quotient ring. There-
fore the number of maximal ideals of 5 is equal to the number of
prime divisors of zero in O.

4 .  E x a m p les  (II).
THEOREM 4. L et r be a  regular local ring which satisfies the

following conditions:
1) r contains a complete Noetherian local integrity  domain o.
2) r is of  f inite type over a  quotient ring op o f  o  w ith  respect

to its prim e ideal p.
T hen the Henselization r* of  r is  a W eierstrassen ring.
Pro o f . For the condition 4) in the definition of Weierstrassean

ring, see Theorem 7 in Appendix. We prove the condition 3) :
W e set q= p*n o, where p* is a minimal prime ideal of r*. Then
q is a prime ideal of o  contained in  p . Then we can find a com-
plete regular local ring o' such that o/q is a finite o'-module (o'
0/0 . For the unequal characteristic case we choose o' so that it is

9) F. K. Schmidt, Über die Erhaltung der Kettensatze der Idealtheorie bei be-
liebigen endlichen Kiirpererweiterungen, M ath Zeit., 41 (1936).

10) See Theorem 3 in  [H.R. II].
1 1 )  Cf. I. S. Cohen, On the structure and ideal theory o f complete local rings,

Trans. Amer. Math. Soc., 59 (1946).
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unramified''. Now we set p'= (p/q) n o'. Then o'1), is a regular local
ring"' and evidently r/en r is of finite type over o' v . Therefore
r*/p* is a finite module over the Henselization of

Corollary 1 .  If an integrally closed local integrity domain o
is a quotient ring of a complete Noetherian local ring r with respect
to a prime ideal of r, then the completion o f o  is  an integrity
domain.

Corollary 2 .  If an integrally closed local integrity domain o
is a geometric local ring (in generalized sense as was defined in
[L.R.]), th en  the completion of o is an integrity domain. For
geometric local integrity domain, similar assertion as in the last of
Corollary 2 to Theorem 3 holds also (see [L.R.]).

Corollary 3 .  L e t o  be an integrally closed geometric local
integrity domain and let o* be its Henselization. If p* is a prime
ideal of 0*, then p* is a prime ideal, where 15 denotes the comple-
tion of o.

R em ark . This Corollary 3 shows in particular the following :
Let V be an algebraic variety which is normal at a point P

and let W be a subvariety of V which goes through P .  Then the
sheets of W  at P  can be defined already in the Henselization of
the local ring Q 1 ( P )  of P  on V.

§ 5. Examples (III).
Let z,, --,z„ be n  variables and let C be the complex number

field. Let o„ be the ring of convergent power series in z„--,z„
with coefficients in C  (i.e., the ring of analytic functions at the
origin 0 of complex n-space) and let O„ be the ring of formal power
series in z,,•••,z„ with coefficients in  C . Then as is well known,
o„ is a regular local ring and Li is its completion.

THEOREM 5. o„ is a  Weiersirassean ring.
Pro o f . A s is well known, in o„ the Weierstrass preparation

theorem holds.") Therefore we have only to show that o,, is Hen-
selian. Though it may be easy to see this fact by virtue of
Theorem 4 in [H.R. I], we prove this in the following form :

o„ is algebraically closed in  5 ' "
making no use of Theorem I.

12) Cf. 1.e. note 11).
13) See § 5 in  [H .R .II].
1 4 ) We can prove the same even when C is an arbitrary field with an Archi-

median or non-Archimedian Valuation.
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That o, is Henselian is easy by virtue of Theorem 4 in  [H.R. I].
Assume that a is a n  almost finite integrally closed integral ex-
tension of L.), which is contained in ti 1. Then since X is a  valuation
ring , it is a  dense  subspace of 61. Since o, is of characteristic 0,

is a  finite oc module. Therefore oi is  a  dense  and  closed sub-
space of a, which shows that Therefore o, is algebraically
closed in Now, we prove our assertion by induction on the
dimension n  o f  on : Assume that o„_, is algebraically closed in  its
completion.

Assume that an  element y  of 15„ satisfies a n  irreducible monic
polynomial f (x )  =x '+c , x— ' +  •  + G  (e, e o„) over o „ .  Since y E 6,„
we can write y =E •-• z,,». O n  th e  other hand, since c,

E C „ •  • • ,  C.,  are  bounded in  a  sphere Sp of radius p with the orgin
() a s  th e  center, we can find a positive value M  such that Ici (z)
< M -1  if Z  S ,  (for any j=1 , • • • , r). We consider a n  algebraic
function Y: Y ''+  c, Y '  + • • • + c,.= 0. Then we see that I Y(z) I < M
for any Z E Si,. Now we consider a new system of local coordinates
z„ z, •••, Z I„=  Z „  —  (2 1 z 1 + • • • ± 24 -1 Zn - 7 )  with a  general. system of
complex numbers )1, with conditions • • •, < 1.
We denote by S ' the  sphere of radius ,o /n  with center 0 in  this
new coordinate system. Then evidently if  z ' E  S ' then I Y (z ')I <M .
L et Y ' be the  function on the hyperplane z'n =0, reduced from Y.
Then we have I Y'(z') I < M  if  i  E S ' and z',-=0.

O n the other hand, we represent y  a s  a  p o w e r  series in  z„
z'„. Then we have y=y, +2'„ P ', where

Yo= E ( • •. ) z n

in - l + i7 1
=

j9 2 -1

and P ' is a power series.
Since Oa /2'„o„= o„_, and since y  is integral over o„, we have y,

is integral over B y  o u r  induction assumption, y,, is an  analytic
function. Therefore yo m u st be a branch o f  Y '.  Therefore 1Y0(2 ')
< M  for any z ' E  S ' .  This shows, by Cauchy's evaluation formular,

E • • -2 -1 1» <  
 M

ik ± il,=.1 .4( ' / n )  ' s
and therefore

< M/(p.'77) . Thus we see that y  is convergent, i.e.,
0..
R em ark . T he last half of Theorem 2, when it is applied for
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o„, speaks that the notion of algebroid varieties (in Chevalley's
sense) covers that of analytic varieties.

§ 6. Examples (IV).
Let b be a discrete special valuation ring with prime element

p .  Assume that b  is of characteristic O. Throughout this section
p  and b  maintain these meanings.

Definition. Let u  be a local integrity domain with maximal
ideal m. Assume that o  is o f finitely generated type over the
valuation ring b. Then we call a system x „ •••,x „ of elements of
o a system of parameters of o if 1) (p , x „  • • , lo o  is a primary ideal
belonging to ni and 2) dim u.

Remark. Existence of system of parameters is evident. Further,
i f  (x„ •••, x,i) is a system of parameters of Li, then 1) o  is algebraic
over r=u [x„ ••-, and 2 ) r  is a subspace of o.

Definition. Such a ring as r  in above remark is called a nu-
cleous o.

L E M M A  1. Let o  be a local integrity domain which is of
finitely generated type over b. Let r  be a nucleous of o. Assume
that the Henselization r* of r  is algebraically closed in its com-
pletion t , then there exists a  local integrity domain o' such that
o ' is of finite type over both u and r, further, the completion of o
contains no nilpotent element and the integral closure 5 of o in its
quotient field K  is a finite o-module.

Pro o f  Let R  be the quotient field of lc and let L  be a finite
normal extension of R  containing K .  Let a be the totality of r-
integers in L  and set a ,  0  [a]. L e t  p be the maximal ideal of o
and let nt' be an arbitrary maximal ideal of ra ,  and set m=m' n .

Let be the decomposition ring of ni and set 0=0'. n 
b '

 fi
is a  regular local r in g  with maximal ideal (p, x„ •••, xn)t) E r)
therefore fi ; s  a  subspace o f X.,• Now we prove that X n i ,  is
integral over 0. Let a be an element of a/T., and let f ( x )  be an
irreducible primitive polynomial over 0  which is satisfied by a.
Since L  is normal over the quotient field of 0, f ( x )  is irreducible
over the Henselization r* of t). Since r* is algebraically closed in
its completion t, f ( x )  is irreducible over Y. On the other hand,
the completion of 'X., is a finite t-module. Therefore a is integral
over it Assume that g ( x )  is a monic polynomial over t  satisfied
by a .  Then since f ( x )  is irreducible, f ( x ) i [x ] is a prime ideal and
therefore f ( x )  is a factor of g ( x ) .  This is impossible unless f ( x )  is
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m onic . Therefore a  must be integral over h. This shows the first
half of our lemma. Now let S  be the totality of elements of
which is unit in a- .  Then above proof shows that a, contains
a'. Therefore the completion of contains no nilpotent element.
Since is a finite o-module, o is a subspace of 1-'' and therefore
the completion of o  contains no nilpotent element, therefore 5 is
a finite o-module'".

LEMMA 2. Let a regular local ring r  be of finitely generated
type over the valuation ring b. Then the Henselization r* of 17 is
algebraically closed in its completion.

Pro o f . When r is of dimension 1, we can prove by the same
way as in the previous section. Therefore we can prove our as-
sertion easily by induction on the dimension n  of r ,  by virtue of
Lemma 1  and Theorem 1.

THEOREM 6. L et a  regular local ring 1: be of finitely generated
type over the valuation ring b. Then the Henselization r* of  r  is  a
W eierstrassean ring.

P ro o f  W e have only to show that if p* is a minimal prime
ideal of r * then r*/p* is a finite integral extension of a Henselian
regular local ring r/* which is either a Henselization of a regular
local ring of finitely generated type over b  or a Henselization of
a geometric regular local ring. I f  p *  p , then it is evident that
the latter case holds. Therefore we assume that p *  p .  We set
p=p" n r. Let x„ • ••, x„_, be a system o f parameters o f r/ p . Let
r '  be the regular local ring b [x„ •-•, Then by
Lemma 1, we see that r*/p* is a finite r'*-module, where r'* is the
Henselization of r'.

Corollary . If an  integrally closed integrity domain o  is  of
finitely generated type over the valuation ring b , then the comple-
tion of o is an integrally closed integrity domain. When we do not
assume that o  is integrally closed, the similar assertion as in
Corollary 2  to Theorem 3  holds also.

Appendix :  Complete lo c a l  integrity domains.
TH E O R E M  T " .  L e t o  be a N oetherian complete local integrity

d o m ain . T hen the integral closure 6 of  o in  its quotient f ield is a

15) See Appendix below.
16) It was communicated to the writer that this was also proved independently

by Mr. Y. Mori.
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f inite o-module.
For the proof, since it is known that o  contains a complete

regular local ring r  such that o is a finite r-module, our assertion
is equivalent to the following

LEMMA 3. Let r  be a  complete regular local ring and let a
field L  be a finite extension of the quotient field K  of r. Then the
totality o of r-integers in L  is a finite r-module.

Proo f . If r is of characteristic 0, then our assertion is evident
since L  is separable over K  Therefore we assume that r is a formal
power series ring k{x„•••,x„} over a field k of characteristic p( o).
We can take a purely inseparable extension L ' of K  so that LL'
is separable over L ' .  Therefore we may treat only the case L
is purely inseparable over K .  Set e = [L :K ]  and set yi=xi"e
( i= 1 ,• - ,  n ) and t =f {y 1, • • y„} . We may consider that contains
o as a subring. An element a  of o  can be expressed in Y as a
power series in y„ •-•, y„ with coefficients in L  W e  use the term
"leading form" o f a  in the sense of an element a  of if.

LEMMA K . Let f,•••,f,„ be leading forms of elements a,, ..•,
of o respectively. If 1,f, • f„  are linearly independent over r then
1, a„•••, a , „  are linearly independent over r,

P ro o f  We consider linear combination E a ,b 1 (b (  E  r). Let
g, be the leading form of b, for each i. Then it is evident that
f i g , is the leading form of a ib ,.  We may assume that deg ( f g , )
—... —deg (f, g , )= d ,  deg ( f - i .+,) >  d  ( j ? 1 ) .  Then the leading
form of a,b, is which is not in r because 1 ,f, - - , f ,  are
linearly independent over T. Therefore E a s t), is not in r  unless
every b, is zero, which proves our assertion.

Now we proceed the proof of Lemma 3. Since L  is finite over
K , there exists a set f„ •-•,f, of leading forms of elements a„ ••,a,
of o such that 1, f , ,  - , f ,  are linearly independent over r and every
leading form f  of an arbitrary element a  of o is linearly dependent
on 1 ,f ,• • • ,f  over r. Let c„•-•,c,, be the coefficients of f ,  ' f .
Then we see that if f  is a leading form of an element a  of o then
the coefficients of f  are in k (c„ • • •, c„). Now let do =1, d„ d , ,  be
a linear basis for k (c„ c„) over k  and let m,,-=1, rn„ •-•, m„, be
the totality of monomials of degree less than ne in y„ • ••, y„. Then
it is easy to see that if f  is the leading form of an element a  of
o then f  is contained in the module generated by d0nt0,---,dom,,,
•-,d,,m„, over the form ring of r. Therefore there exists a finite
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set of leading forms k„ • - - , k s of elements a,, •••, a, o f o such that
every such f  as above is contained in the module generated by
k„ • - •, k s over the form ring of r. Then we have o=r La„ • • •, ad  as
follows

LEMMA L. r La„ •••, ad is  a subspace of r.
P ro o f  Let in and ffi be the maximal ideals of T [a„ • - •, ad and

t  respectively. Then since  in  i i i ,  w e  have ink ç ink n r La„• - •, ad
for every k =1 , 2  • .  On other hand, since r [a„-- , as] is complete,
there exists n (k ) for each k  such that iTt n t  [a1, . . .  a d c  in k 17) ,

which proves our assertion.
The above Lemma L shows that I: [a„•••, a ,] contains o. Since

a„ •••, a, are in o, we see that o=r [a„ •••,a,].
Corollary 1 .  Assume th at a local integrity domain o  i s  a

quotient ring of a Noetherian complete local integrity domain r
with respect to its prime ideal p. Then any almost finite integral
extension o' of o is  a finite o-module.

Corollary 2 .  Let o be a Noetherian local integrity domain. If
the completion o *  o f o  contains no nilpotent element, then the
integral closure 15 of o in its quotient field is  a finite o-module.

1 7 ) Cf. Chevalley, I.e. note 4), Lemma 7 in §1.


