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We want to group up some basic theorems in the general
theory of commutative rings in the present note. Though most
of results contained in the present note are not new, many of
them will be sharpened, some of them will have simpler proofs
and some of them will have more elementary proofs, than those
which are already known. _

Though the notions of local rings and of valuation rings are
also basic for the theory of commutative rings, we will not ob-
serve them. Further, the normalization theorem (for finitely
generated rings) is a basic theorem. But we will not discuss it.
We concern mainly with the notion of rings of quotients, proper-
ties of integral dependence and the notion of rank of ideals.

In §1, we observe the notion of prime ideals. In §2, we study
the notion of rings of quofients. In §3, we define the notion of
prime divisors of ideals. In §§4-5, we study some properties of
integral dependence. In §6 we observe some properties of J-radicals
of rings. In §8, we study the notion of rank of ideals. In §9,
we observe some properties of normal Noetherian rings.

Terminology. If o is a ring without identity, then we can
imbed o in a ring o’ which has identity so that every ideal of o
is an ideal of o’. Therefore the existence of the identity does not
play essential role in general theory of rings, except for some
extreme cases. Therefore we will assume the existence of the
identity in any ring of consideration, unless the contrary is ex-
plicitly stated. Since we want to treat commutative rings, we
assume also commutativity. A subring of a ring is assumed to
have the same identity.

Results assumed to be well known. Besides some elementary
notions and results on rings and fields, we need to know elemen-
tary properties of ideals and of Noetherian rings, which are con-
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tained in Waerden [11] Chapter 12.

§1. Prime ideals. (Cf. Krull [6], §1, No. 3)

We opserve first that the following conditions for ideals p of
a ring o are equivalent to each other:

1) p is a prime ideal of o. 2) If ab is in p (g, beo), then
either aep or bep. 3) If a and b are ideals of o such that abCp,
then either aCp or bCp. 4) If two ideals a and b contains p
properly, then ab is not contained in p.

Let o be a ring and let S be a multiplicatively closed subset
of o which does not contain zero. An ideal p of o is called a
maximal ideal with respect to S if p does not meet S and if every
ideal of o properly containing p meets S.

Proposition 1. Let o be a ring and let S be a multiplicatively
closed subset of o. If an ideal a of o does not meet S, then there
exisls a maximal ideal p of o with respect to S which contains a.
Such p is necessarily prime.

Proof. Existence follows from Zorn’s lemma. Primeness of p
follows from 4) above.

If a is an ideal of a ring o, then the intersection of all prime
ideals of o containing a is called the radical of a; the radical of
o is the radical of the zero ideal of o.

Proposition 2. The radical o' of an ideal a of a ring o is the
set of all elements of v which are nilpofent modulo a.

Proof. Assume that an element & is nilpotent modulo a. Then
a power of b is in every prime ideal containing a, whence b is
in every prime ideal containing a. Conversely, assume that an
element b is not nilpotent modulo a. Then the multiplicatively
closed set {b";n=1, -, m, ---} does not meet a, whence there exists
a prime ideal p containing a which does not contain b by Pro-
position 1.

Corollary. An ideal a of a ring o is semi-prime if and only
if o/a has no nilpotent element. (We call an ideal a semi-prime
ideal if it is an intersection of prime ideals.)

When a is an ideal of a ring o, a prime ideal p of o is called
a minimal prime divisor of a if it is minimal among prime ideals
containing a.

Proposition 3. If an ideal a of a ring o is contained in a
prime ideal p, then p contains a minimal prime divisor of a.

The proof is easy by virtue of Zorn’s lemma.
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Corollary. The radical of an ideal a is the intersection of all
minimal prime divisors of a. ‘

Proposition 4. If p,,---, p, are prime ideals of a ring o and if
a is an ideal of o which is not contained in any of ,, -+, pn, then
there exists an element a of a which is not contained in any of
p], S p"_

Proof. If one of p, say p,, is contained in some other ;,
then we may omit p, without loss of generality. Therefore we
may assume that there is no inclusion relation among p, -, b,.
Then there exists an element a@; of P piPisi--paa Which is not
in p, for each i (see 3) above). Then a=a,+---+a, is in a and
is in none of p,.

Remark. 1f q is a primary ideal of a ring o and if o is a
subring of o, then qNo’ is a primary ideal of o’. If q is a prime
ideal, then qno’ is prime.

§2. Rings of quotients. (Cf. Krull [6], Chevalley [3], Uzkov
[10])

Let o be a ring and let U be the set of non-zero-divisors in
o. In the set P={(a,u); aco,ucU} we introduce a equivalent
relation, namely, (e, #) is equivalent to (b,v) if and only if av=
bu. We denote the class of (a,#) by a/u. The set @ of the
equivalent classes becomes a ring under operations (a/x)+ (b/v)
= (av+bu) /uv, (a/u) (b/v),=ab/uv. Q is called the total quotient
ring of o; here a/1 is identified with ¢ in 0. @ contains o as a
subring by this identification and @ is generated by o and inverses
of elements of U (every element of U has inverse in Q).

Now let S be a multiplicatively closed subset of o which does
not contain zero. When S contains no zero-divisor, then the
subring of @ generated by o and inverses of elements of S is
called the ring of quotients of o with respect to S. In general case,
set n={a;aeo,as=0 for some seS}. Then n is an ideal of o.
Let ¢ be the natural homomorphism from o onto o/i. Then ¢(S)
is multiplicatively closed ; this set does not contain any zero-
divisors. For, if ¢(s)é(a) =0 (s€S,aco), then saen and therefore
there exists an s’ of S such that ass’=0. Since ss’ is in S, we
see that @ is in n and therefore ¢(a)=0, which proves that no
element of ¢(S) is a zero-divisor.®> Therefore we can construct

* QObserve that if a ¢ U then ¢(a) is not a zero-divisor, as is easily seen by the
same proof as here.
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the ring of quotients of ¢(v) with respect to ¢(S); this ring will
be called the 7ing of quotients of v with respect to S and will be
denoted by os. (Observe that if S contains no zero-divisor, then
n=0, whence ¢ is the identity mapping. Therefore the previous
definition is contained in this case.)

When S is the complementary set of a prime ideal p of o,
then oy is called the ring of quotients of v with respect to p and is
denoted by op.

A ring o is called a ring of quotients of the ring o if there
exists a multiplicatively closed subset S of o which does not con-
tain zero such that o’=o,.

We use the following notations :

1) When a is a subset of the ring o, we denote by ao; the
ideal ¢(a)os.

2) When o is an ideal of o5, we denote by a’no the ideal
5 @ns@).

Remark. If o’ and bV are ideals of os, then (a’nY’) nNo=
(a’no) Nn (b No).

Assume that there exists a ring o’ as follows: 1) There
exists a homomorphism 7 from o into o’ and 2) every element of
7(S) has inverse in o’. Then from 7 (s) (@) =0 (s€S, aeo) it follows
that 7(a) =0. Therefore the kernel of ¢ is contained in that of =.
Therefore there exists a homomorphism from os onto the subring
of o' generated by 7(o) and the inverses of elements of 7(S).
Thus we see that og is the most “ universal” ring in which every
element of S is mapped (under homomorphism) to unit. There-
fore

Proposition 1. Let a be an ideal of o which does not meet S.
Let 0 be the natural homomorphism from o onto o/a. Then 6(os)
=05/a0s. .

Next we observe correspondence between ideals of o and
those of oy

Proposition 2. If o is an ideal of vs, then (a’No)os=a’.

Proof. We have (a’' no)os=¢(¢""'(a’ N (0))os=(a’ Ng(0))0sC a’.
Assume that @(a)/d(s) ea’ (acvo,seS). Then d(a) =¢(s) (d(a)/d(s))
is in a’nd(v). Since 1/¢(s) is in os, we have ¢(a)/g¢(s) is in
(@No)os. ‘

Corollary. If o is Noetherian, then os is Noetherian.

Proposition 3. Assume that q is a primary ideal of o belong-
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ing to a prime ideal p. Then: 1) if p meels S, then pog=qos=0s;
2) if b does not meet S, then q contains n, pos is a prime ideal, qus
is a primary ideal belonging to pog posNo=yp and qogNo=q.

* Proof. 1If p meets S, then q meets S because any power of
an element of S is in S. Therefore in this case we have pos=
qos=0s. Assume that p does not meet S. If a is in n, then
there exists an s in S such that as=0. Since s is not in p, we
have a is in q, which proves that q contains n. Let bbe an element
of qogsno. Then ¢(b) =¢(q) /d(s) with geq, seS. Therefore ¢(bs) is
in 4(q). Since q contains u,bs is in q. Since s is not in p,b is
in q, which shows that q2qousno. Since the converse inclusion
is evident, we have q=qosno. Since p is also a primary ideal,
we see also that p=posno. Next we assume that ¢(a)/d(s) is not
in qos and that ¢(ab)/g(st) is in qos, where a,beo and s, teS.
Then by above observation, a is not in q and ab is in q. There-
fore there exists a natural number 7 such that & is in q, whence
(@) /()" is in qos. Therefore qos is a primary ideal; for p
the same holds with =1 and therefore pos is a prime ideal.
Since every element of p is nilpotent modulo q, every element of
pos- is nilpotent modulo qos, whence qos is a primary ideal belong-
ing to pos. Thus the proof is completed.

Corollary 1. Let vy be a prime ideal of o. Then yos is a
maximal ideal of v, if and only if v is a maximal ideal with respect to S.

Corollary 2. If an ideal v of o does not meet S, then vo#os.

Proposition 4. Let q,, -, q. be primary ideals of o. Then
(N NG 0s=q0sN N0y If QP na and if qos# o then
0052 N 05 -

Proof. Set a=q,n---Nq,. We renumber g, so that qnS is
empty if and only if {<7». Since q,05 contains aog, aog is contained
in 05N - N@os (=q0sN--NG0y. Letd(a)/d(s) (aeo,seS) be an
element of q,0,N - Nq,0s Since qosno=q;fori<7,aisin q,N---N
g~ Take elements s,,,, ---,s, of Sso that s,.,is in q,.;. Then a'=
@Sy -8, is in a. Therefore ¢(a)/d(s) =¢(a’)/(ss,..---sx) is in aos,
which proves the converse inclusion. Thus we see that aos=gq,0s

--N@0s. Now we assume that g, N4 and that »>1. Take
an element a of nq, which is not in q, Then since q,05No0=q,,
#(a) is not in qlos, “which shows that q,0sP nq Ds.

Corollary. ~ Assume that the zero ideal o/ 0o can be expressed
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as the intersection of primary ideals q,, ---,q. of o, where q;NS is
empty if and only if i<r. Then the ideal n (=¢7'(0)) coincides
with q,N-NQ,. ,

Proof. n=¢"'(0) and therefore n=(0)osno. By our assump-
tion, (0)os=q,0sN - Nq,05 and therefore n=q,N--- Ngq,.

Proposition 5. Let o be a ring and let S be a multiplicatively
closed subset of v which does not contain zero. Let S’ be a multi-
plicatively closed subset of os which does not contain zero. Let S”
be the multiplicatively closed subset of o generated by S and all
elements s of v such that with a suitable element s of S, ¢(s"’) /9(s)
is in S, where ¢ is the natural homomorphism from o into vs. Then
050 = (D) s- .

Proof. Let 6 and 7 be the natural homomorphisms from o
into og, and from og into (os)s respectively. Then every element
of m¢(S”’) has inverse in (vs)s and (os)s is generated by 74 (o)
and inverses of elements of 7g4(S”’). Therefore there exists a
homomorphism from ps,» onto (os)s. Let n” be the kernel of 7d.
Then for every element @ of n”, there exists an element ¢(s”) /8 (s)
(seS,s"€S"”) of S’ such that #(a)d(s”)/é(s)=0. Then as” is in
the kernel of ¢, whence there exists an element s’ of S such that
as’s’=0. Since s”’s’ is in S”, a is in the kernel of 6. Therefore
f=ng, whence vgr= (0s) 5.

Proposition 6. Let S be a mulliplicatively closed subset of a
ring o which does not contain zero. Let {p,;le A} be the set of
maximal ideals of o wih respect to S and let S' be the intersection
of the complementary sets of ideals p, with respect to o (for all
Ae N). Then vs=og.

Proof. Let ¢ be the natural homomorphism from o ‘into os.
Then every element of ¢(S’) is a unit in os by Corollary 1 to
Proposition 3. Therefore our assertion follows from Proposition 1.

Proposition 7. Let o be a ring and let S be a multiplicatively
closed subset of o which contains no zero-divisor. If a ring o
contains o and is contained in os, then vs=0's.

The proof is easy by the definition of rings of quotients.

§ 3. Prime divisors. '

Let a be an ideal of a ring o and let S be the set of elements
of o which are not zero-divisors modulo a. Then S is multiplica-
tively closed and does not meet a. A prime ideal p is called a
maximal prime divisor of a if it is maximal with respect to S and
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if it contains a. A prime ideal q of o is called a prime divisor of
a if there exists a multiplicatively closed subset S’ of o which
does not meet a such that qos is a maximal prime divisor of aos,.
(By Proposition 3 in §2, such g contains a.)

The followings can be proved easily :

(1) Any maximal prime divisor is a prime divisor. Further
any prime divisor. is contained in a maximal prime divisor.

(2) A minimal prime divisor is a prime divisor ; it is minimal
among prime divisors. Further, if p is a minimal prime divisor
of an ideal a of a ring o, then aop is a primary ideal belonging
to pop. And therefore avy No is a primary ideal belonging to p;
this ideal is called the primary component of a belonging to p.

(3) An ideal is primary if and only if it has only one
prime divisor.

(4) Assume that an ideal a of a ring o is the intersection
of primary ideals q,, ---,q. of 0. If the intersection q,n---Ngq, is
irredundant (that is, each ¢, does not contain the intersection of
other q,), then the set of prime divisors of a is the set of prime
divisors of q,, -+, qa.

A prime divisor which is not minimal is called an imbedded
prime divisor.

§4. Integral dependence.

We say that an element a of a ring o/ is integral over its
subring o if there exist elements c,, ---, ¢, of o such that ¢"+ca"’
+-+a,=0, i. e, a is a root of a monic polynomial over 0. We
say that o’ is integral over o if every element of o’ is integral over o.

Lemma 1. If a ring o’ is integral over its subring o and if
¢ is a homomorphism (from o’ into some ring), then ¢(o’) is
integral over ¢(o).

' This follows immediately from the definition of integral
dependence.

Lemma 2. Assume that a ring o’ is integral over its subring
o. If S is a multiplicatively closed subset of o which does not
contain zero, then o’s is integral over os.

Proof. Let ¢ be the natural homomorphism from o’ into os.
Then since S is a subset of o, ¢ is the natural homomorphism from
o into og if it is restricted to o. Let d(a)/d(s) (aev’,seS) be an
element of o’s. Then ¢(a) is integral over ¢(v) and ¢(s) is unit
in os. Therefore ¢(a)/é(s) is integral over os.
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Lemma 3. If a field K is integral over its subring I, then I
is a field. (Krull [7]; cf. [4])

Proof. Let a be an element of I which is not zero. Since
a' is in K,a! is integral over I, whence there exist elements
¢, -, ¢n of I such that (@) +c¢,(@)"*"'+--+¢,=0. Then a'=
— (e, +ca+ - +c,a*), which is in I. Therefore I is a field.

Lemma 4. If an integrity domain o is integral over its subfield
K, then o is a field.

Proof. Let a be an element of o which is not zero. Then

there exist elements ¢, -+, ¢, of K such that a"+c¢a"* '+ +¢,=0.
Since o is an integrity domain, we may assume that ¢,7#0. Then
a'=—c ' (@ '+ca+-+c.,), which is in 0. Therefore o is a
field.

Proposition 1. Assume that a ring o is integral over its
subring o. Let p be a prime ideal of o and let S be the compl-
ementary set of p with respect to o. Then a prime ideal Y of o
lies over p (that is, y' no=p) if and only if Y is a maximal ideal
with respect to S. (Krull [7] and Cohen-Seidenberg [4])

Proof. Assume first that a prime ideal p’ of o’ lies over p.
Then since »’ Nno=p, p’ does not meet S. Therefore p'o’s is diffe-
rent from o’s and p'o’sNos=pos. By Lemmas 1 and 2, o’s/p'0’s is
integral over ogs/pos (which is a field). Therefore o's/p'0’s is a
field by Lemma 4, which shows that p’o’s is maximal. Therefore
p’ is a maximal ideal with respect to S by Corollary 1 to Pro-
position 3 in §2. Conversely, assume that p is a maximal ideal
with respect to S. Then p'o’s is maximal. Therefore by Lemma
3, v'o’sNos is maximal, whence it is pos. Thus we see that p’no

Corollary 1. For any prime ideal p of o, there exist prime
ideals of o' which lie over p; there is no inclusion velation among
prime ideals of o which lie over the same prime ideal of o.

Corollary 2. If p,C---Cyp, is an ascending chain of prime
ideals p; of v, then there exist prime ideals V', ---, v, of o' such
that 1) y'.no=yp, for each 1 and 2) y C---CYy.; here, if there is
no- prime ideal p such that p;CPC Py, then theve is no prime ideal
Y of o' such that v,Cp Cpi..

Proof. Existence is easy by induction on #, while the latter
follows from Corollary 1.

Proposition 2. If a ring o’ is a finite module over its subring
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o, then o' is integral over o. (Nagata [9])

Proof. Take elements u,=1, u,, ---, u, of o’ such that o’'=3],0u;.
Then for every element a of o/, we can write that au,=3)a,u,
(a;€0). Then we see that the determinant |(dya—a,)|=0 (where
d,; denotes Kronecker’s ) because u,=1. Therefore a is integral
over o. '

Remark. Observe, conversely, that if an element a is integral
over o, then o[a] is a finite p-module, because a satisfies a monic
equation.

- Corollary 1. Let o be a subring of a ring o'. Then the set o
of elements of o' which are integral over o form a subring of o'.

This o” is called the integral closure of v in o’. If p=0", then
we say that o is integrally closed in v'.

Proof. Let a and b be elements of v”. Then o[a,b] is a
finite o-module and is a ring. Therefore o[a, b] is integral over
o; in particular, a—b and ab are in o”. Therefore o” is a ring. -

Corollary 2. If an element a is integral over a ring o and if
o’ is integral over its subring o, then a is integral over o.

Corollary 3. Let o be a Noetherian ring which is a subring of
a ring o and let b be an element of o'. If there exists an element
a of o which is not a zero-divisor in o' such that ab" is in o for
any natural number n, then b is integral over o.

Proof. The ring o[b] is contained in a finite o-module o+oa™".
Since o is Noetherian, o[b] is a finite o-module, whence b is
integral over o.

§ 5. Integral extensions.

Let o be an integrity domain. An over-ring o” of o is called
an integral extension of o if o' is an integrity domain and if o is
integral over o. Here, if the field of quotients of o’ is finite over
that of o, then we say that o’ is almost finite over o.

An integrity domain which is integrally closed in its field of
quotients is called a normal ring. When o is a normal ring, an
integral extension o’ of o is called a normal extension of o if o' is
the integral closure of o in a normal extension of the field of
quotients of o (in the sense of Galois theory (need not to be
separable)).

Proposition 1. Let o be a normal ring and let o' be a normal
extension of o. Then for any prime ideal p of o, the prime ideals
of o' which lie over p are conjugate to each other (that is, if prime
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ideals Y, and Vv, lie over p, then there exists an automorphism of
o’ over o which mapps y', to p',). (Cf. [4] or [7])

Proof. We first assume that o is almost finite over 0. Assume
that prime ideals p’, and p’, lie over p and that p’, is not con-
jugate to p’s. Let ps, -+, p'n be the set of all prime ideals of o’
which are conjugate to §’,. Then ', lies over p for each i.
Therefore there is no inclusion relation among ¥, -, 9. by
Corollary 1 to Proposition 1 in §4. Therefore there exists an
element @ of p’;, which is in none of y, -+, p’» by Proposition 4
in §1. Then every conjugate of @ is not in )’,, whence the norm
of @ in o is not in y’, and therefore it is not in p. This is a
contradiction because y’;no=p. Thus we have proved our asser-
tion in this case. Now the general case can be proved easily by
Zorn’s lemma.

Corollary. Let o be a normal ving and let o' be an integral
extension of o. Let p,Dp,D:--Dp, be a descending chain of prime
ideals v, of o and let ', be a prime ideal of o' which lies over p,.
Then there exists a descending chain of prime ideals p',Dp,D - DY's
of o' such that each y' lies over p. (Krull [7], cf. [4])

Proof. Let o” be a normal extension of o containing o’ and
let p”, be a prime ideal of o” which lies over p’;. On the other
hand let ¢”,2¢"”,2--2q”, be a descending chain of prime ideals
of o” such that ¢”;no=p; for each i; existence follows from
Corollary 2 to Proposition 1 in §4. Take an automorphism o of
0" over o which mapps ¢”; to p”, and set p”,=q"¢, ps=p";no’ for
each i. Then each y'; lies over p, and p',Dp,D - DY

Proposition 2. Let v be a normal ring and lel f(x) be a monic
polynomial over o in an indeterminate x. Set d=o[x]/(f(x)) and
let d be the discriminant of f(x). If V' is the integral closure of b
in its total quotient ring, then dd' is contained in d. (Zariski [12])

Proof. 1If d=0, our assertion is trivial. Therefore we assume
that d#0. Let a be the residue class of x in d. Let % be the
field of quotients of o and let L be a field containing 2 and all
roots of f(x). For each root a; of f(x), there exists a-homomorp-
hism ¢; from » into L which mapps a to a. Now let b be an
arbitrary element of . Then b=>12u,a’ (u;¢k, n=degree of
f(x)). Then ¢;(b)=33,u;a) and we consider these equalities as
linear equations in the unknown #;’s. The determinant D of
these equations is +//;¢;(a;—a;). Therefore D*=d. Sincé ¢,(b)
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and @, are integral.over o,duys are integral over o. Since du;'s
are in k and since o is normal, we have du,s are in o. There-
fore db is in b, whence db’ is contained in b.

Corollary 1. Let o, f(x) and d be the same as in above
proposition. Assume that a is an ideal of o[x] which contains f(x)
and whose prime divisors meet o only with zevro. Set 83=o/a and
let 8 be the integral closure of 8 in its total quotient ring. Then
ds’ is contained in 8.*)

Proof. If d=0, our assertion is trivial. Therefore we assume
that d#0. Then the ideal f(x)o[x] is semi-prime, hence the same
is true of a by our assumption. Therefore 8 is a direct summand
of b in the proposition. Therefore we have d8’ is contained in 3.

Corollary 2. An almost finite separable integral extension of
a Noetherian normal ving is a finile extension.

§6. The J-radical of a ring.

The intersection of all maximal ideals of a ring o is called
the' J-radical of o. If an element a of o is congruent 1 modulo
its J-radical, then @ is a unit in o.

Proposition 1. Let M be a finite module over a ring o.
Assume that an ideal a of o has the jollowing properties: 1)
aM=M and 2) if am=0 (aco,meM) and if a—1 is in a, then
m=0. Then we have M=0.

Proof. Let u,,---,u, be elements of M such that M= 0u,.
Since aM= M, there exist elements a,; of a such that u,=3}a,;u;
Let d be the determinant |(d,;—a;)| (where d;; are Kronecker's
0). Then du;=0 for all i. Since d—1 is in a, we have u,=0 for
all 7, which shows that M=0.

Corollary 1. Let M be a finite module over a ring o and let
m be the J-radical of v. If mM=M, then M=0.

Corollary 2. Let M be a finite module over a ring o and let
m be the J-radical of o. If N is a submodule of M such that
M=mM+N, then M=N. (Azumaya’s lemma ; see [8])

Proof. Set M'=M/N. Then M’ is a finite o-module and
mM'=M'. Therefore M'=0, whence M=N.

Proposition 2. Let o be a Noetherian rving and let a be ils
ideal. Then TTGH:O if and only if every element a of o such that

* It will be easy to see that a is generated by a monic polynomial which is a
factor of f(x). -
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a—1 is in a is not a zero-divisor. (Chevalley [3], Krull [5], [7])
Proof. Assume that an element ¢ of o such that ¢—1 isin a
is a zero-divisor. Let & be an element of o such that ab=0 (b#0).
Then b=0b(a—1)" for any #, whence b is in na*. Therefore
Nna*# 0. Conversely, assume that there is no such a. Set n= na".

’I?hen by Prorposition 1, we have only to show that an2n. T;ke
primary ideals q,, ---,q. of o such that an=q,n---Ngq. and let p,,
-+, p. be prime divisors of q,,- -, q. respectively. For p, such that
ad p;, since anCqs and since q; is a primary ideal belonging to p;,
we have nCgq;; for p, such that aCp,, since g, is a strongly
primary ideal belonging to p;, a power of p; is in q,, whence ngq..
Therefore every q; contains n, which shows that nCan.

Corollary. If m is the J-radical of a Noetherian ring, then
Nnm"=0. ‘

i Proposition 3. Let a be a non-unit of a Noetherian ring v. If
éither a is in the J-radical of o or v is an integrity domain, then ao
caiinot contain properly any prime ideal other than zero.

Proof. Assume that ao contains a prime ideal p properly.
Then for any element ¢ of p, there exists an element ¢’ of o such
that c=ac. Since a is not in p, we have ¢ is in p. Therefore
p=ap. Then we see our assertion by Proposition 1.

§ 7. The minimum condition.

Proposition 1. Let a be an ideal of a ring o. Assume that
1) a is contained in the radical of v and 2) the minimum condition
holds for ideals contained in a. Then a is nilpotent. (Asano [2])

Proof. Tt is sufficient to show that a’s%2a if a#0. Assume
that a’=a (a#0). Let b be an ideal of o contained in a which
is minimal among ideals whose product with a are different from
0. Let p be the set of elements x of o such that bxa=0. Then p
is a prime ideal; for if cdep,c¢p, then by the minimality of b,
we have bc=0, whence bda=0 and therefore d is in p. Since a
is in the radical of o, p contains a, whence ba’=ba=0, which is a
contradiction.

Lemma 1. Let o, -, 0, be rings and let o be the direct sum
of them. Then the minimum condition for ideals holds in o if
and only if it holds in every o,.

The proof is easy.

Lamma 2. Let £ be a field and let M be a k-module. Then
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the minimum condition for submodulei holds in M if and only
if M is a finite k-module; in this case, M has a decomposition
series.

The proof. is easy. - :

Proposition 2. Let o be a ring. . Then the minimum condition
Jor ideals holds in o if and only if 1) o is Noetherian and 2) every
prime ideal of o is maximal. (Akizuki [1])

Proof. We first assume that o is Noetherian and that every
prime ideal is maximal. Then every prime ideal of o is a prime
divisor of zero ideal. Therefore o has only a finite number of
prime ideals, say p,, ---,p.. Then p,n---nyp, is the radical of o.
Since o is Noetherian, there exists a natural number 7 such that
(p,n---Np,)"=0. Since each p, is maximal, p;+pj=o if i#j.
Therefore o is isomorphic to the direct sum of rings o/p; (i=1, ---, 7).
Therefore, by Lemma 1, we may assume that p, is the unique
maximal ideal of o. Then each p//p?*' is a finite o/p,-module
and p"=0. Since o/p, is a field, each p/p,’*' has a decomposition
series, whence o has a decomposition series. Therefore the
minimum condition for ideals holds in o. by virtue of the Jordan-
Holder-Schreier theorem. Conversely, assume that the minimum
condition holds in o. Let p be a prime ideal of o. Then the
minimum condition holds in o/p. Since o/p is an integrity domain,
p must be a maximal ideal. If p, ---, b, are maximal ideals, each
of which is different from another, then p,N---Np,#p, N NP,
Therefore o has only a finite number of maximal ideals, say
p, -, p. Then by Proposition 1, (p,n---np,)"=0 for some .
Therefore o is isomorphic to the direct sum of 1ings o/p; (i=1,
-, 7). Therefore we may assume that p=p, is the unique
maximal ideal of o. Set a,=0:p* (=a.,:p if i22). Then q, is
an o/p-module and every submodule of q, is an ideal of o, whence
the minimum condition for submodulei holds in a,. Therefore q,
is a finite o/p-module. Similarly, each a:/a;_, is a finite o/p-module
Therefore o has a decomposition series, whence o is Noetherian.

Remark. When we consider rings without identity, the same
holds under the assumption that for any ideal there exists a
maximal prime ideal which contains the given ideal. (The proof
is the same.) This assumption is essential; for if we omit this
assumption, there exists a ring which satisfies the minimum con-
dition and which does not satisfy the maximum condition. Observe
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further that when the identity is added to a ring Without identity,
the new ring may not satisfy the minimum condition.

§ 8. Rank of ideals.

We say that a ring o is of rank r if there exists a chain
PO P, D+ Dp, of prithe ideals p, of o and if there exists no such
chain with more terms.*) If there exists no such 7, then we say
that o is of rank infinite.

For a prime ideal p of a ring o, the rank of op is called the
rank of p; for an arbitrary ideal a of o, the minimum of rank of
prime divisors of a is called the rank of a. Further the rank of
o/a is called the co-rank of a.*)

Proposition 1. If a ring o' is inlegral over its subring o, then
rank o' =rank v. (Krull [7]; cf. [4])

This follows immediately from Corollary 2 to Proposition 1
in §4. -
Proposition 2. Assume that o' is an integral extension of a
normal ring o, If o' is an ideal of o, then rank o’ =rank (a’No).

Proof. When o is a prime ideal, our assertion follows from
the corollary to Proposition 1 in §5. Now let p’ be a minimal
prime divisor of o’ such that rank o’=rank . Then.p’'no con-
tains o’ No, whence rank (a’np) <rank o. Conversely, let p be
a minimal prime divisor of a’no such that rank p=rank (a’No).
Since o'/a’ is integral over o/(a’nNop), there exists a prime ideal
p’ of o’ which lies over p and contains a’. Then rank (a’No)=
rank p=rand P >rank o/. Therefore we have rank a’=rank
(a’no).

Lemma 1. Let o be a Noetherian integrity domain and let a
be a non-unit in o which is not zero. If p is a minimal prime
divisor of ao, then p is of rank 1. (Krull [5])

Proof. Considering op instead of o, we may assume that p is
the unique maximal ideal of o. Let q be a prime ideal of o
different from p. Set qP=q'oqno (whichis called the i-th formal
power of q). Since N.q'vq=0 by Proposition 2 in §6, n,q”=0.
Set a;=q“+ao. Then there exists a number » such that a,=aq,
for any {=>n, because in o/ao the minimum condition for ideals

* In usual, these notions are called “dimension”. But in connection with the
notion of dimension in algebraic geometry, it seems tQ the writer that we had better
to avoid the term * dimension” for these concepts.
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holds by Proposition 2 in §7. We have q™@Cq®+ao. Set o=
q®/q?, 0’=0/q® and a’=residue class of @ in o’. Then since a is
not in q and since ¢ is a primary ideal belonging to q/q“, q'Ca’v’
shows that q'=a’q’, whence q'=0 because a4’ is in the J-radical of
o’. Therefore we have q¥=q™ and n,q"=q™ =0, which shows

that q=0, because o is an integrity domain.

Proposition 3. Let a be an ideal of a Noetherian ring o.
Assume that a is generated by r elements. Then for any minimal
prime divisor p of a, rank v is not greater than r. (Krull [5])

Proof. Let p=p,Dp,;D--Dp, be a chain of prime ideals p,
such that p,/p, is of rank 1. Then we have only to show that
s<r. Then considering o/p, instead of o, we may assume that o
is an integrity domain. Therefore, if =1, our assertion follows
from Lemma 1. Therefore we prove our assertion by induction
on 7. Considering oy instead of o, we may assume that p is the
unique maximal ideal of o; in this case, a is a primary ideal
belonging to p. Let a,, ---, a. be elements of a which generate a.
We may assume that g, is not in p,.. Then p,+a,0 is a primary
ideal belonging to p, whence there exists a natural number ¢ such
that af is in p,+ap for every i; we write af=ab,+c, with
elements b, of o and ¢; of p,. Set a’=>%_.co. Then since @/ is
in a’+apo, o’ +a,0 is a primary ideal belonging to p. Let p’ be a
minimal prime divisor of o’ which is contained in p,. Then since
p’+a0 is a primary ideal belonging to p, p/y’ is of rank 1, whence
p’=p,. Since o’ is generated by »—1 elements, we have rank p,
is not greater than »—1 by our induction assumption. Therefore
s<7 and our proof is completed.

Corollary. Rank of an ideal in a Noetherian ring is finite.

Proposition 4. [f a is an ideal of a Noetherian ring o and if
a is of rank v, then there exist elements a,, ---,a. of a such that
St_ao is of rank s for any s<r. (We regard that the ideal
generated by the emply set is zero.)

Proof. When s=0, our assertion is evident. Therefore we
prove our assertion by induction on s; we assume that there are
s—1 elements «,, ---, a,_, of a such that rank (3%..a.0) =t for any
t<s—1. Let p,--,p. be prime divisors of S%-ia,0 whose rank
are s—1. If s—1<7, then a is not contained in any of p,’s,
whence there exists an element @, of a which is not contained in
any of p’s by Proposition 4 in §1. Then the rank of 3%_,a,0 is
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at least s, whence it is s by Proposition 3.

§9. Normal Noetherian rings.

A ring o is called a Dedekind domain if it is Noetherian
normal ring of rank 1. Noetherian local ring is a Noetherian
ring which has only one maximal ideal; Noetherian semi-local
ving is a Noetherian ring which has only a finite number of
maximal ideals. According to these notions, we use terminology
such that local Dedekind domain and semi-local Dedekind domain.

Lemma 1. Tet o be a Noetherian local integrity domain with
maximal ideal p. Let a (#0) be an element of p and let b be
an element of ao:p. When o is of rank 1, we assume that a is
irreducible (that is, @ cannot be expressed as the product of two
elements of p) and that ao:p7%o. Then b/a is integral over o.

Proof. Let h be an element of p and set ¢=(b/a)h. Since b
is in ao:p, bh is in ao, whence ¢ is in o. Assume that ¢ is not
in p. Then ao=bho. Therefore, when o is of rank 1, this is a
contradiction to our assumption that a is irreducible and & is in
p. When v is not of rank 1, let  be a minimal prime divisor
of ho. Then a is in ) because av=bhv. Let ¢’ be the primary
component of ao belonging to p’. Since p'#p, q': p=q’, whence b
is in ¢’. Then ao=bho shows that ¢'op’ Cq'p’opr and therefore
q'op’=q'p’vy’, which is a contradiction by Corollary 1 to Proposition
1 in §6 because p'vy is the J-radical of op. Thus we see that ¢
is in p in either case. Therefore (b/a)"h is in p for every n.
Therefore b/a-is integral over o by Corollary 3 to Proposition 2
in §4.

Proposition 1. A semi-local Dedekind domain is a principal
ideal ring. (Cf. [6])

Proof. Let first o be a local Dedekind domain and let @ be
an irreducible element of 0. Then by Lemma 1, ao: p=p, whence
ao=Yp. Now let d be a semi-local Dedekind domain with maximal
ideals p,, ---, p.. Let m be the J-radical of d(m=p,Nn---Np,). Then
b/m® is isomorphic to the direct sum of d/pS ---,d/p,". Since
o/p=D0yp,/pidp, and since bdp, is a local Dedekind domain, we see
that p,/m* is generated by an element @/. Let a, be an element
of p; whose residue class is a/. Then p,=a:0+m’, whence p;=
ap+pm. Therefore by Corollary 2 Proposition 1 in §6, we have
p;=a,0. Since every maximal ideal of d is principal, every ideal
of b is principal (it is generated by an element of the form a*
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-an, except for 0). ,

Corollary. A local Dedekind domain. is a discrete valuation
ring (and conversely).

Proposition 2. Let o be a Noetherian integrity domain and let
a (#0) be a non-unit in o. If ao has imbedded prime divisors,
then there exists an element b of o such that b/a is integral over o
and b/a is not in o. Conversely, if there exists such an element b
as above, then either there exists a minimal prime divisor p of ao
such that oy is not normal or ao has imbedded prime divisors.

Proof. Assume that ao has an imbedded prime divisor q. Let
b’ be an element of aoq : qvq Wwhich is not in aoq; existence of such
b follows from the expression of aoq as the intersection of primary
ideals. Then by Lemma 1, ¥'/a is integral over oq. Let ¢/s,, ",
/S, (Ciy S:€0, 5;4q) be elements of oq such that (¥'/a)*+ (¢/s)
W'/a)"" + -+ (ca/sx) =0. Set b=b'ss,---s,, where s is an element
of o which is not in q such that #'s is in 0. Then b/« is integral
over o. Since ¥'/a is not in oq, b/a is not in o, and therefore b/a
is not in 0. Conversely, we assume that there exists an element
b of o such that b/a is integral over o and b/a is not in o.
Assume further that for every minimal prime divisor p of ao, op
is normal and that ao has no imbedded prime divisor. Let p,, -,
p, be the set of (minimal) prime divisors of ao and let q,, -,
be the primary components of ao belonging to p,, -+, p, respec-
tively. Then since ao has no imbedded prime divisor, q,n---Ngq.
=ao. Since b/a is integral over o, b/a is integral over op,, whence
b/a is in op; (for each i). Therefore bop;Caop,=q:0p, and there-
fore beq,0p; No=gq; for each 7, which shows that & is in ao. This
is a contradiction to our assumption that b/a is not in o. Thus
the proof is completed.

. Corollary 1. A Noetherian infegrity domain o is normal if

and only .if the following two conditions are satisfied :

(1) For every prime ideal p of rank 1, vp is normal.

(2) Every principal ideal of v has no imbedded prime divisor.
(Krull [6])

This follows from Proposition 2 and the following

Lemma 2. Any ring of quotients of a normal ring is also
normal.

The proof is easy.
Corollary 2. A Noetherian integrily domain o is normal if
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and only if every principal ideal of o is an intersection of formal
powers of prime ideals of rank 1 (except for the zero ideal). (Krull
(6D

This follows from Corollary 1 and the following

Lemma 3. Let o be a Noetherian local integrity domain of
rank 1. Then o is normal if and only if p/p* is principal, where
p denotes the maximal ideal of o.

Proof. If o is normal, then p is principal, whence p/yp’ is
principal. Conversely, if p/p® is principal, then p is principal by
Corollary 2 to Proposition 1 in §6. Therefore o is a principal
ideal ring and o is normal.

Corollary 3.. A Noetherian normal ring o is the intersection
of all op, where p runs over all prime ideals of v of rank 1. (Krull
(6]

Corollary 4. Let o be a Noetherian integrity domain. Assume
that for every prime ideal v of o of rank 1, op is normal. If a
principal ideal ao (aev) has an imbedded prime divisor q, q is also
an imbedded prime divisor of bo for any non-zero element b of q.

Proof. We may assume without loss of generality that q is
the unique maximal ideal of o. Let d be an element of ao:p
which is not in @ao. Then d/a is not in o and is integral over o
by Lemma 1. Let b be a non-zero element of q. Then c=(d/a)b
is in 0. Since d/a=c/b, we see that bo has q as an imbedded
prime divisor.

Remark. Let o be an integrity domain (which may not be
Noetherian). Then o is the intersection of all op, where p runs
over all maximal ideals of o.

Progf. Let b be the intersection of all vp. Then oCb. Let a
be an element:of b and let a be the set of elements of o whose
product with ¢ is in 0. If lea, then geo. We assume that 1¢a.
Since a is an ideal of o, there exists a maximal ideal p of o which
contains a. Then pp cannot contain a, which is a contradiction.
Therefore »Co and therefore b=o.
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