MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 1, 1955.

On the stability of solutions of a system of differential equations

By

Taro Yoshizawa

(Received March 31, 1954)

Introduction. About the non-linear differential equation as well, as about the linear one, various authors have discussed the bounded ness, the convergence⁽¹⁾ of solutions and the existence of a periodic solution⁽²⁾ which we have also discussed recently. Moreover we have obtained necessary and sufficient conditions for the boundedness of solutions of a certain type.⁽³⁾ In these researches we have utilized the existence of a function of points which is characterised by the fact that it is non-increasing or non-decreasing along any solution of the given differential equation. Now by this idea, we will discuss the stability of solutions about which Liapounoff⁽⁴⁾ and various mathematicians and physicists have discussed actively and they have obtained many remarkable results in connection with the above mentioned problems.

Now we consider a system of differential equations,

(1)
$$\frac{dy}{dx} = F(x, y),$$

where y denotes an *n*-dimensional vector and F(x, y) is a given vector field which is defined and *continuous* in the domain

 $\Delta: 0 \leq x < \infty, \quad |y| \leq R \quad (|y| = \sqrt{y_1^2 + \dots + y_n^2}).$

Before the research of a solution, we assume at first that y(x) = 0 is a solution of (1), so that F(x, 0) is *identically* zero. And let $y=y(x; y_0, x_0)$ be any solution of (1) satisfying the initial condition $y=y_0$ when $x=x_0$.

Here we state the following definitions.⁽⁵⁾

a) The solution $y \equiv 0$ is said to be *stable* if, given any $\varepsilon > 0$, there exists a $\delta > 0$ such that if $|y_0| \leq \delta$, then $|y(x; y_0, 0)| \leq \varepsilon$ for all $x \geq 0$.

b) The solution $y \equiv 0$ is said to be asymptotically stable if it is stable and there exists a (fixed) $\delta_0 > 0$ such that if $|y_0| \leq \delta_0$, then $\lim y(x; y_0, 0) = 0$.

In this paper we will see the relations between these notions and the *strong stability* introduced by Okamura⁽⁶⁾ and one more, say *equistability* for the sake of convenience as compared with the above defined stability.

1. Stability. At first, we will obtain a necessary and sufficient condition in order that $y \equiv 0$ is stable.

Theorem 1. In order that the solution $y \equiv 0$ of (1) is stable, it is necessary and sufficient that there exists a function $\Phi(x, y)$ defined in Δ satisfying the following conditions; namely

1° $\Psi(x, y) > 0$, provided $|y| \neq 0$,

- 2° $\Phi(x, 0) = 0$ for all x,
- 3° there exists a $\kappa(\varepsilon)$ for any $(R \ge) \varepsilon > 0$ such that

$$\Psi(\mathbf{x},\,\mathbf{y}) \geq \kappa(\mathcal{E}) \quad (>0),$$

whenever $0 \leq x < \infty$ and $|y| = \varepsilon$,

- 4° $\Phi(0, y)$ is continuous at y=0,
- 5° for any solution of (1), y=y(x), the function $\Psi(x, y(x))$ is a non-increasing function of x.

Proof. At first, we show that the condition is sufficient. Now we assume that there exists such a function $\mathscr{O}(x, y)$. By 3° there is a $\kappa(\mathcal{E})$ for any $\mathcal{E} > 0$ and by 4°, we can choose a suitable positive number $\delta(<\mathcal{E})$ for this $\kappa(\mathcal{E})$ such that

(2)
$$\Psi(0, y) < \kappa(\varepsilon), \text{ if } |y| \leq \delta,$$

since $\Psi(0, y)$ is continuous at y=0 and $\Psi(x, 0)\equiv 0$. Now for a solution of (1) $y=y(x; y_0, 0)$ such as $|y_0| \leq \delta$, we suppose that we have at some x, say x_1 , $|y(x_1; y_0, 0)| = \varepsilon$. Thus we have by 3°

and hence we have

 $\Psi(0, y(0; y_0, 0)) \geq \kappa(\varepsilon),$

since $\Psi(x, y(x))$ is non-increasing for x by 5°. On the other hand we have

$$\Phi(0, y(0; y_0, 0)) < \kappa(\varepsilon)$$

by (2) and therefore there arises a contradiction. Hence any solution of (1) $y=y(x; y_0, 0)$ such as $|y_0| \leq \delta$ satisfies for $0 \leq x < \infty$

28

On the stability of solutions of a system of differential equations 29

 $|y(x; y_0, 0)| < \varepsilon$,

that is to say, the solution $y \equiv 0$ is stable.

Nextly we show that the condition is necessary. Now we suppose that $y \equiv 0$ is stable. Here we consider the solutions of (1) going to the right from a point P in Δ and we represent this family by \mathfrak{Y}_{P} . We will define $\delta(P)$ as follows; namely if there exists a solution of \mathfrak{Y}_{P} which arrives at |y| = R, then we take

$$\delta(P) = R$$

and if otherwise, i.e. if all the solutions of (1) passing through P lie in the interior of Δ ,

$$\delta(P) = \sup_{\substack{x_P \leq x < \infty \\ y(x) \in \mathfrak{Y}_P}} |y(x)|$$

and when P lies on |y| = R, $\delta(P) = R$. Then if P lies on the x-axis, we have $\delta(P) = 0$, since for any point P on the x-axis the solution through P is unique to the right and it is $y \equiv 0$ by the condition that $y \equiv 0$ is stable. When P does not lie on the x-axis, we have $\delta(P) > 0$. Thus for any $\varepsilon (\leq R)$ and P on $|y| = \varepsilon$, we have $\delta(P)$ $\geq \varepsilon$ whenever $0 \leq x < \infty$. This ε is $\kappa(\varepsilon)$ in the condition 3°. Moreover if for any $\varepsilon > 0$ we choose a suitable $\delta > 0$, we have for y_0 such as $|y_0| \leq \delta$ and $x \geq 0$

$$|y(x; y_0, 0)| \leq \varepsilon$$
,

since the solution $y \equiv 0$ is stable. Therefore we have

$$0 \leq \delta(P) \leq \varepsilon$$

for P lying in x=0, $|y| \leq \delta$. Clearly if P and Q lie on the same solution of (1) and $x_P \leq x_Q$, we have

$$\delta(P) \geq \delta(Q)$$
.

Here we put with P = (x, y)

$$\Phi(\mathbf{x},\,\mathbf{y}) = \delta(P),$$

and then it is clear from the above mentioned that this $\Psi(x, y)$ satisfies the conditions 1°, 2°, 3°, 4° and 5°. Therefore this $\Psi(x, y)$ is the desired.

2. Equistability. In §1 we have considered the case where $y \equiv 0$ is stable for solutions starting from a neighborhood of y=0 at x=0. Compared with this stability, here we consider the following case.

Definition. The solution $y \equiv 0$ is said to be equistable if, given any $\varepsilon > 0$, there exists a $\delta(x_0) > 0$ for every x_0 such that if $|y_0| \leq \delta(x_0)$, then $|y(x; y_0, x_0)| \leq \varepsilon$ for all $x \geq x_0$.

Namely for every x_0 , $y \equiv 0$ is stable when we consider $y \equiv 0$ as a solution going to the right starting from $x=x_0$. Often the equistability is said merely stable,⁽⁷⁾ specially in physical problems. As Theorem 3 below shows, the stability and the equistability are equivalent if $y \equiv 0$ is the unique solution starting from any point on the x-axis. If we can choose δ independent of x_0 , we shall say it *uniformly equistable*.

Then we have in the same way as in the preceding theorem of the stability.

Theorem 2. In order that the solution $y \equiv 0$ of (1) is equistable, it is necessary and sufficient that there exists a similar function $\Phi(x, y)$ as one in Theorem 1, but only the condition 4° being replaced by

 $4^{\circ'} \ \varphi(x_0, y)$ is continuous at y=0 for every x_0 . For the uniform equistability, $\varphi(x, y)$ is continuous at y=0 with regard to y uniformly for x.

When the solution $y \equiv 0$ is equistable, then it is of course stable; but there is a case where it is stable and yet it is not equistable. For example, let us consider such an equation,

(3)
$$\frac{dy}{dx} = f(x, y),$$

where

$$f(x, y) = \begin{cases} 2(x-1)y & (x \ge 1) \\ 2(x-1) & (0 \le x \le 1, (x-1)^2 \le y) \\ -2y^{1/2} & (0 \le x \le 1, 0 \le y \le (x-1)^2) \\ 2(-y)^{1/2} & (0 \le x \le 1, -(x-1)^2 \le y \le 0) \\ -2(x-1) & (0 \le x \le 1, y \le -(x-1)^2). \end{cases}$$

Clearly $y \equiv 0$ is stable, being considered as the solution starting from the point x such as $0 \leq x < 1$, but it is not stable for x such as $x \geq 1$. The solution going to the left from x such as $x \geq 1$ on the x-axis is *not unique* in this case. This fact characterises the non-equistability. About this matter we have

Theorem 3. When the solution $y \equiv 0$ of (1) is unique to the

30

On the stability of solutions of a system of differential equations 31

left for all points on the x-axis in Cauchy-problem,⁽⁸⁾ if $y \equiv 0$ is stable, it is also equistable. Namely in this case the stability and the equistability are the same.

Proof. Suppose that $y \equiv 0$ is not equistable. Then we assume that, even if we take any neighborhood of y=0 at $x=x_0$ for some $x_0 (> 0)$ and some ε , there exists a solution going to the right from there such as $|y| \ge \varepsilon$ at an $x (> x_0)$. For this ε and a suitable $\delta > 0$ we have $|y(x; y_0, 0)| < \varepsilon$ if $|y_0| \le \delta$, since $y \equiv 0$ is stable. By the uniqueness to the left of $y \equiv 0$, if we choose a suitable neighborhood $U(x_0, 0)$ of y=0 at $x=x_0$, all the solutions of (1) going to the left from U arrive at the plane x=0 and moreover we have $|y| \le \delta$ at x=0. Then there exists a solution starting from $|y| \le \delta$ at x=0 such as $|y(x; y_0, 0)| \ge \varepsilon$ and there arises a contradiction. Therefore $y \equiv 0$ is equistable.

In the case where the right-hand side of the system (1) does not depend on x, i.e. where

(4)
$$\frac{dy}{dx} = F(y),$$

we can prove easily the following theorem, where we assume that F(0) = 0.

Theorem 4. If the solution $y \equiv 0$ is stable for the system (4), it is also equistable (uniformly).

The proof is omitted.

3. Strong stability. Okamura has introduced a notion, i.e. the strong stability.

Definition. Let Y(x) be an arbitrary function such that

$$Y(0) = 0, |Y(x)| < R \ (0 \le x \le X)$$

which is of bounded variation in $0 \le x < X$ (X being arbitrary, $0 \le X < \infty$). The solution y = 0 of (1) is said to be *strongly stable* when for any given $\eta > 0$ and for a suitable positive number ε , we have $|Y(X)| < \eta$, provided

$$V_{\emptyset \leq x \leq X} \left[Y(x) - \int F(x, Y(x)) dx \right] < \varepsilon^{(9)}$$

holds, where V denotes the total variation.

Okamura has obtained the following theorems for the strong stability.

Theorem 5. A function $\varphi(y)$ being defined in a neighborhood of y=0, if $\varphi(y)$ is positive or zero according as |y| is positive or zero and $\varphi(y)$ satisfies the Lipschitz condition

$$\varphi(\mathbf{y}_1) - \varphi(\mathbf{y}_2) | \leq K |\mathbf{y}_1 - \mathbf{y}_2|$$

and finally it is a non-increasing function of x along any solution y(x) of (1), then the solution y=0 of (1) is strongly stable.

Theorem 6. In order that the solution $y \equiv 0$ of the system (4) is strongly stable, it is necessary and sufficient that there exists such a function $\varphi(y)$ as in Theorem 5 for F of the right-hand side of (4).

Moreover for an equation of the first order

$$\frac{dy}{dx} = f(y) \qquad (f(0) = 0),$$

in order that $y \equiv 0$ is strongly stable, it is necessary and sufficient that, given any $\varepsilon > 0$, both the measure of the set of y such as $[0 < y < \varepsilon, f(y) \leq 0]$ and that of the set of y such as $[-\varepsilon < y < 0, f(y) \geq 0]$ are *positive*. Hence for the equation,

(5)
$$\frac{dy}{dx} = \begin{cases} y \sin^2 \frac{1}{y} & (y \ge 0) \\ 0 & (y = 0) \end{cases}$$

the solution $y \equiv 0$ is stable, but it is not strongly stable. Besides in (5) $y \equiv 0$ is uniformly equistable by Theorem 4. Hence there is a case where $y \equiv 0$ is uniformly equistable, but it is not strongly stable. By considering $\varphi(y)$ in Theorems 5 and 6 as $\vartheta(x, y)$ in Theorem 2, we can see in these cases that if $y \equiv 0$ is strongly stable, then it is also uniformly equistable. And yet we have always

Theorem 7. If the solution $y \equiv 0$ of (1) is strongly stable, it is also uniformly equistable.

Proof. For every $x_0 (\geq 0)$, given any $\eta > 0$ and for a suitable $\varepsilon > 0$, let Y(x) be a function such that $Y(x) \equiv 0$ for $0 \leq x \leq x_0$ and it is a solution of (1) satisfying $|y| < \varepsilon$ as $x \to x_0 + 0$ for $x_0 < x \leq X$. Then by the strong stability of $y \equiv 0$, we have $|Y(X)| < \eta$, since for this Y(x) we have

$$V_{0\leq x\leq X} [Y(x) - \int F(x, Y(x)) dx] < \varepsilon.$$

Therefore $y \equiv 0$ is uniformly equistable.

Thus the equation (5) shows that the strong stability is *stronger* than the uniform equistability, *a fortiori*, than the stability. Therefore in the case where $y \equiv 0$ is equistable simply (not uniformly),

On the stability of solutions of a system of differential equations 33

 $y \equiv 0$ can not be strongly stable. For example, in

$$\frac{dy}{dx} = \begin{cases} y - 2e^{-x} & (y \ge e^{-x}) \\ -y & (y \le e^{-x}), \end{cases}$$

 $y \equiv 0$ is equistable, but it is not uniformly; hence it shall not be strongly stable.

Finally we add a theorem⁽¹⁰⁾ due to Okamura showing a relation between the strong stability and the asymptotical stability.

Theorem 8. If the solution $y \equiv 0$ of the system (4) is asymptotically stable, $y \equiv 0$ is strongly stable.

REFERENCES

(1) Yoshizawa; "On the convergence of solutions of the non-linear differential equation," Mem. Coll. Sci. Kyoto Univ., A Vol. 28, Mathematics, No. 2 (1953), pp. 143-151.

(2) Yoshizawa; "On the non-linear differential equation," ibid., pp. 133-141 and "Note on the existence theorem of a periodic solution of the non-linear differential equation," ibid., pp. 153-159.

(3) Yoshizawa; "Note on the boundedness of solutions of a system of differential equations," these Memoirs, Vol. 28, No. 3 (1953), pp. 293-298.

(4) Liapounoff; "Problème général de la stabilité du mouvement," Annals of Math. Studies, No. 17.

(5) Massera; "On Liapounoff's conditions of stability," Ann. of Math., Vol. 50 (1949), pp. 705-721.

(6) Okamura; "On the strong stability of the stationary point in the current," Functional Equations (in Japanese), Vol. 40 (1943), pp. 6-19.

(7) Lefschetz; "Lectures on differential equations," Annals of Math. Studies, No. 14.

(8) Hayashi and Yoshizawa; "New treatise of solutions of a system of ordinary differential equations and its application to the uniqueness theorems," these Memoirs, Vol. 26 (1951), pp. 225-233.

(9) Okamura; "Sur une sorte de distance relative à système differentiel," Proc. of Physico-Math. Soc. of Japan, 3rd Ser., Vol. 25 (1943), pp. 514-523.

(10) Okamura; pp. 16-17 in (6).