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Kelvin principle and some ‘inevqualities
in the theory of functions II

By

Tadao KuBo

(Recieved May, 1954)

In the previous paper® the author established, by means of
the Kelvin minimum energy principle, several inequalities which
may be reduced to the statements regarding the properties of
harmonic functions with a vanishing normal derivative on some of
boundary components of a given domain.

It is the object of this paper to deduce further inequalities of
the same kind and supplement the previous one. For the sake of
simplicity we shall use the same notations with that of the previous
paper.

1. Generalization of Theorem I. In this section we shall
generalize Theorem I to the case of a domain D which contains
a number of mutually disjoint subdomains D,, D,, ---, D,.. We now
have to introduce a number of singularity functions S,(z) (v=1,
..., m), which are harmonic and single-valued in the closure of D
—D,. For the shorter formulation we restrict ourselves to the case
of schlicht domains bounded by a finite number of analytic curves.

Thus we obtain the following -

THEOREM III. Let D be a schlicht domain and let D,, ---, D,
be mutually disjoint subdomains of D. Let S,(2) (v=1, -, m) be
the singularity functions defined above and let the functions p,(2)
(v=1, ---, m) be such that 3p,/on=0 on the boundary C, of D,, and
that p,(z) +S,(2) is harmonic in D,. If P(z) is a function which
has a vanishing normal derivative on the boundary C of D and for

which P(2) +§‘= S.(2) is harmonic in D, then

m‘ a—s > §§_
) 5,02 ds:LP 2 ds
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where S(z)—Z}S (2) and the differentiation is performea' with re-
spect to the outer normal.

Proof. We define a function #(z) as follows:
u(2)=p,(2)+S(@ zeD, (v=1, ---, m)
u(2) =S(2) 2¢D-3D,.

v=1

2

Although the function u(z) is, in general, discontinuous on C,, it
has, by the assumption on p,(z), a common value of outward

normal derivative along C, from both sides of it. Further consider
the function

3) v(2)=P@)+S(z) z2¢D.
Then there holds '

_a_uzﬂ on C.

on on

Therefore the vector qg= [Zu , %] satisfies the following condi-
tions : X Y :
(i) dive=0 everyvs}h_ere in D except along C,,

(ii) qn=—gzi— gv on C, n being unit normal vector.
n n

Accordingly, by the Kelvin principle and Remark of Sec. 2 of the
previous paper, there holds an inequality

4 @, 0) 5 < (@, ) 5 =330, ) 5, + (W, ) 53,

where (h, k), denotes a Dirichlet product as follows:

=[] (3 82 2y,

Applying Green’s formula to (4) and from (2) and (3),

the left-hand side of (4)=L (P+S) - 30;‘:5) ds

@ =L —g%d +sSans

and

the right-hand side of (4)
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=3[ (b +5) 28> s | 5954531 $.25 95 4
=Je, on ¢y on

(6)
S
=2 J g a—nds+j S>ds.
From (4), (5)-and (6) we obtain the required inequality (1).
Q.E.D.

2. Neumann functions of mutuaally disjoint domains. As an
application of Theorem III we deduce a result concerning Neumann

functions of mutually disjoint subdomains D, (j=1, :--, m) of the
domain D.
Take arbitrary two points ¢, »; in D; (j=1, ---, m) and con-

sider the functions”

N(z; &5, 1) =N(2, &) —N(z 1) o
(N (=1, -, m)

=log | =% |+ n(z; & 7y
z2—;

and

Nj(z; &5 7)) =N;(2, &) —Ns(z, 9) .
(8) ' (G=1, -, m)

=log /3 +n1(2; &y '01)
z—{; I
where N(z, x) and N;(z,x) (j=1, ---, m) are Neumann functions

of D and Dj, with a logarlthmlc smgularlty at z=2x, respectlvely
And further, putting

S(z)=——§ a, log i/ ,
“ j=] Z_Cj
9) p,(2)=a;N; (z; 7)), (j=1, -, m)

P(2) =§l} a;N(z; & 75 »

a, being arbitrary real constants, we can use Theorem IIl. Then
we obtain
)ds}

i= ljp’ ds——i {j a,N (2 ¢y 01)—(2_. a; log‘ 2=

cj =
——a 2j Ni(z; ¢, o;)—log 270 | gs
= z2—¢;
—%a,a,j N;(z;¢; 77,) log z_m ds

t
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m

:E an‘ N,(z; s ﬂj) ” i(2; &y mp)ds

Z2—"
Z_Ci

- a‘a,j N,(z; ¢, m)*’a—log ds.
i*s cj on

For, since ANy _0 on C, —2 log | 2=
on 8

”J(ZJ ¢» 2y on Cy
z2—5y

Here we apply the well-known formula® of Neumann function such
that for any harmonic function U(2) it holds
1

“ﬁj;ivj(z; o 9) 3(;}52) ds=U)—-U@), G=1, -, m).

Then we have

Ejpa 25 ds= 27’2“1 (72555 Co 75) —15(ny5 Ca 1) ]

=1

+47r§‘, a,a;log L=,
/] Ci
Similarly we obtain

sPaS ds—ZﬂZa,a,[n(C,, 3 7() n(’?j; St 771)]

Thus we obtain the following

COROLLARY 8. Let D, (j=1, ---, m) be mutually disjoint sub-
domains of the domain D and let- N (2, ) and N,(2, ) (j=1, .-,
m) be Neumann functions of the domain D and D, respectively.
Then there holds the following inequality

Stai (#0855 &y 75) —n5(n;; s 771)]'*'2 > aa;log Ll S Tt/
= i<i 72— Cai—
(10)

g‘%‘:‘ataj[n(Cj; Cor M) —"(771; o 7/‘)] ’

where a; are arbirary real constants.

3. Variation of outer boundary component. Let D and D,
be two finite multiply-connected domains such that D, contains D
and is obtained only by a variation of outer boundary component
of D, remaining fixed all the inner boundary components of D. For
the definiteness we denote the total boundary curves of two domains

D and D, by T+Z' C,, and r.+§] C,, r and 7, being outer boundary
components of D and D, respectlvely, and C, (v=1, ---, n) being
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common inner boundary components. For the sake of simplicity
we assume that D,—D be a ring domain. Then we obtain the
following
- THEOREM IV: Let D and D, be two domains as described above
and S(2) have the same meaning as in Theovem 1. Let p(z) denote
the function. satisfying the following conditions: (i) p(z) =0 on 7,
(ii) 3p/an=0 on each inner boundary component C,, (iii) p+S is
harmonic in D, (iv) S .0 (p+S)/ands=0 for any closed path B
topologically equivalent lo y in D. If p,(2) is the corresponding function
associated with D,, and moreover w(2) is the harmonic measure
which has the boundary values 1 and 0 on i and y,, respectively, then
there holds the following inequality :

Ls%ds—zy]jc?g—fds

(11) |
:L ap,ds -5 p, ds+_@(_.,)ﬁ__7,.

v (0, ®) -5

Proof. At first we formulate various rela_tions between three
functions p, (2), S(2) and w(2) harmonic in D,—D. Applying Green’s

identity in the domain D,— D, we obtain the following relations

12) si’ﬂds L(sﬂ— —)ds——L 's%%—%% ds

And further
13) jr( aﬁ, 171 ) S=jTI(S—%—Z—’—p‘%S‘_)dS j apl ds .

1

From the relation

[ (20 2= (5 320 2 )0

on
(14) 0 go | WO go—( 9P go— 8S
jﬁ, ds= 5 10 o ds L P ds L ™ ds,

because of the condition (iv) for p,(2).
After above preparatory consideration we define two functions
#(z) and v(z) as follows:

u(2)=p(2)+S(2)+a 2z2¢D,
u(2) =S(2) +aw(z) 2¢D,—D,



22 Tadao Kubo
a being arbitrary real constant, and
v(2) =p,(2) +S(2) zeD,.

It is obvious that the function u(2) is not only continuous in D
but also contmuous in D, —D beyond 7, w=v on 7, and au/an-—
av/an on C From the 1dent1ty '

(v, 0) = (v—u, v— u),,,+2(v u, u),)l-i-(u u)p,,
we obtam an mequallty :
(15> w20, 00 0, ) S

Remarkmg that u(2) is.stepwisely dlfferentlable in D,, and from
the definition of #(2), we get the following relations. -

(o, u) p,= (4, 4) p+ (U, 4) -5

=(p+S, p+S)D+ (S-}-aw S+aw),)1_,,

=3[ (948 28ED do [ (p45) 22ED)
v Joy on v on

(16) | |
_.j (S+am)wds+s (S+aw) a(S+d(l))ds
' on & on

=};L(vp+3)—g%ds_+j 2 gs—a| 25 g5

jsa‘“ [ B s +fsasds+ jsgid ,

TN T 1

(vr v) l‘1=»é (p1+sv pl+s)l)‘ N '
an =3 (5+9) 288 4oy [ (p,+.5) 2L*S) g
v Jo, on T on

81), 6S
A ds+j S—ds,

Ty

=;j (p,+S) ds+j

Cy T

and

(#, u—0) p,= (4, u—0) p+ (t, U—0) p,_5

_ 3 (n—wv) -, 0 (u—v)
18) =5 w2l oy [ o 20U g

j (u— v)—ds+s (u— v)——ds

(the 1 st and 4-th integrals vanish by the-above remark)
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;‘L(P-FS-}- a) 8_([_;;_1‘)1) ds -—,‘L(am—pl) (%j 2 0¢ )ds

=j Sa—pds——ysﬁds aj aSds aw
T on T on T on ran

+5P,—giz~ds+ jp, v 4

i%vi)afs=0 from the conditions (iv) for p(2) and
T

because -of j

p2).
F,ror‘n_‘(lﬁ) and (17)

n

(, u) p,— (v, v),,l=%,“j pas ds+J g.: dS'—ij,ﬁds

c, on

v Cv n
_j Sﬁp_lds—aj ﬁds—aj 5.9¢ ds+aj 529 4s
. on T n T on noon
19) _;12 dw d
T on

8S S0P g 3S ap,
; pands+j o ds ;{p' B jns mn ds

o] ]

by applying (12) to the 7-th term.
And further, from (18),

—2, u—0)n=—2[ S ds+2(| 5% as (525 as)

(20) +2aj 88 4s_2a jp, B g +2a‘-'j 20 4

’

—2f 520 ds+2j s ds+4aj BS st 2 j LI
Jr on n on T on
by applying (13) and (14) to the 2nd and 4-th term, respectively

Inserting (19) and (20) into (15), and remarking that (w, ®)p-%
:—J @ds and (S, w),), ,,——s ids
T

T R
2oy el s e

cy on
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< ESp,ﬁds—j S%ds+2a(s, ©) p,-p+a*(w, ®) p,_p .
v Joy on Ty on

The best inequality of this type is obtained for
_ (S, (l)) =D

a= .
((U, (u) Dy-D

If we choose this value of « in the above inequality, we obtain the
required result (11). ‘ Q.E.D.

Remark. Since the inequality (15) is deduced from the posi-
tive definite character of (#—wv, u—v),, there holds the equality in
(11) if and only if p,(2) =p(2) +a in D and p,(z) =aw(z) in D,—D,
in other words, p,(z) =const. on the outer boundary component y
of the domain D.

4. Some applications of Theorem IV. In this section we
shall apply the above theorem to the bounded radial slit mapping
functions of D and D, as mentioned in Sec. 6 of the previous paper.
The existence of such a mapping function was verified by Koebe®
by potential-theoretic method.

We denote by w=F(z, ¢) (F(, ) =0, £ ¢ D) the analytic function
which maps D onto the unit circle slit along radial segments
directed towards the origin such that the outer boundary com-
ponent y of D be transformed into the unit circumference. More-
over we denote by F,(z, &) (F,(¢, &) =0, ¢ € D) the mapping function
of the same type associated with D,. Then the harmonic functions

p(2)=log |F(z2,0)|, Sz =—log |2—¢]|,

and  p,(2) =log |F(z 0)|
satisfy all the conditions of Theorem IV. As obtained in Sec. 6
of the previous paper

@y [ s2as—5{ p-2 ds=2nlog IF' . 01,

v Jo,
and as is well-known,

(22) ) (0, ©) p,.- 5= 2m

log M’
M being the Riemann modulus of the ring domain D,—D. Further

(S, )p,p= —Lg—jds
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(23) =, -2 log l—¢lds

= f darg (z—¢) =27 .

By (21), (22), (23) and Theorem IV
log |[F' (&, 0)|=log |FY(Z, ©) | +1log M .

Thus we have the following '
COROLLARY 9. Let D and D, (DC D,) be two domains mention-
ed in the previous section. Further let F(z,{) and F,(z,{) be the
bounded radial slit mapping functions so normalized as described
above of D and D,, respectively. Then there holds an inequalily

(24) |F' (¢ OIZMIF/ (¢ 0,

M being the Riemann modulus of the ring domain D,—D.

It is obvious by Remark of the previous section that the
equality holds in (24) if and only if the outer boundary component
r of -D coincides with one of the level curves of the function F,(z, ),
ie. |Fy(z, &) |=const. In fact, if w=F,(2,¢) maps 7y onto a con-
centric circle |w|=@Q (<1), there holds

F(, 0) =%0F, (2,¢6) (f: a real number)

therefore

F'(€, 0l=-L1F/ @ 0l
Q

Obviously 1/Q equals to the Riemann modulus M of D,—D.

Considering the limiting case of (24) when each inner boundary
component C, converges to a points, we obtain the following
corollary concerning the inner conformal radii® of D and D..

COROLLARY 10." Let D and D, be two simply-connected domains
such that DC D, and let () and R () denote the inner conformal
radii of D and D, respectively, with respect to a point CeD. If M
denoles the Riemann modulus of the ring domain D,—D, then

R
<_._'4.
(25) M< )

It will easily follow from (24) by noticing that in the case of
simply-connected domain
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€ ol=L P
!F(C,C)I—r(c) and |F/( Ol RO

Kyoto University
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