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In the previous paper3 ) the author established, by means of
the Kelvin minimum energy principle, several inequalities which
m a y  b e  re d u c e d  to  the statements regarding the properties of
harmonic functions with a vanishing normal derivative on some of
boundary components of a given domain.

I t  is  the object of this paper to deduce further inequalities of
the same kind and supplement the previous one. For the sake of
simplicity we shall use the same notations with that of the previous
paper.

1 .  Generalization o f  Theorem I. In  th is  section we shall
generalize Theorem I to the case of a domain D  which contains
a number of mutually disjoint subdomains D 1 , D 2 , — ,D ,„ . We now
have to introduce a num ber of singularity functions S ,,(z )  (2)=1,
•••, m ) ,  which are harmonic and single-valued in the closure of D
— D ,,. For the shorter formulation we restrict ourselves to the case
of schlicht domains bounded by a finite number of analytic curves.

Thus we obtain the following
THEOREM III. L et D be a  s c h l i c h t  domain and let D„ •••,D„,

be mutually disjoint s u b d o m a in s  of  D .  L et S ,,(z )  ( v = 1 , • • • ,m )  be
the singularity functions defined above and let the functions p,(2)
(v = 1 , , m )  be such that apwan=0 on the boundary C. of D,„ and
that p ,,(z )+ S „ (z )  is harmonic in D , .  I f  P ( z )  is  a function which
has a  vanishing normal derivative on the boundary C  of D and for
which P (z)-F S „ (z )  is harmonic in  D , then

v=1

771.

(1) as >  „aS p, —  d s
,•=1 ,„ an —  

r-
c  an
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where S(2) S „(2) and the differentiation is performed with re-
v=1

spect to the outer normal.
Proof. W e define a  function u (z )  as follows :

u (z) =p, (z) + S (z) z E (1) - 1, • • • , m)
(2)

u (z) = S (z) z  E  D D ,  .
,=1

Although the function u (z )  is, in general, discontinuous on C„, it
h a s , b y  th e  assumption on p, (z ), a  common va lue  o f outward
normal derivative along C , from both sides of it. Further consider
the function

(3) v (z) -= P (z) + S (z)Z ED.
Then there holds

au a y  o n  c .an an
aaTherefore the  vector q  r  uu satisfies the following condi-

tions : L ay
d i v  =  0  everywhere in  D  except along C, ,

au ayq n ,= o e  = on C, n  being unit normal vector.
an an

Accordingly, by the Kelvin principle and Remark of Sec. 2 of the
previous paper, there holds an  inequality

(4) (y, 2)) D <_ - i ,  1 4 )  D
=

E  (u, u) +  (u, u )D -E D ,
1■•=1

w here (h, k ),, denotes a Dirichlet product as follows :

ah (h, k) ak + ah ak )dxdy
D\ ax ax ay ay

Applying Green's formula to  (4 )  and from  (2 ) and (3) ,

the left-hand side of (4) =1 (P+ S ) • ) ( P -
 '

S )  ds
c an

(5)

and

= d s + S  -LS- ds ,
c i c  an

the right-hand side of (4)

(i)
(ii)
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= (P,+s)  a ( P.+ S )  d s + S   as ds— S ds
c„ an C n , - 1  C , ,  an

(6)

From (4 ) , (5 )  and (6 )  we obtain the required inequality (1).
Q.E.D.

2 .  Neumann functions o f mutually disjoint dom ains. As an
application of Theorem III we deduce a result concerning Neumann
functions of mutually disjoint subdomains D, (j=1, •••, m ) of the
domain D.

Take arbitrary two points C1 , 7 ) ,  in  D, (j=1, m )  and con-
sider the functions' )

fp , œas d s + S   as  ds .
i - d c v  an c  an

N(z; C1 ,n i ) =N (z ,C 1) — N(z,n i )
(5=1, •-,m)

=log z—n i

z—C,
+n(z ; C i , ni )

N i (z; C1 , 03 ) =--N i (z , 0— N 1 (z, ni )

( j= 1 ,  •, m)

(7)

and

(8)
=log Z  — 72i

z—C1

where 'N (z , x ) and  N, (z , x ) ( 5=1, • • • , m) are N eum ann functions
o f D and D1,  with a  logarithmic singularity at z =x , respectively.
And further, putting

S(z) =  —E cej  log Z —  2 j  

1= 1z —  C 1

(9) p1(4=a1 (z ; c1 ,721), (5=1, m)

p ( 2 ) — E  j A r (2 ; CI,
1-1

ai  being arbitrary real constants, we can use Theorem III. Then
we obtain

as
ds— — aiN (z ; C

a
cj  anj d

E if; 1 ,  - 0 i  (11,a, log  
c

)ds}

IVi (z; Ci , ni )  

 a  log  j=1 cj a n
711 a ,— Nj(z; ) l o g

2 —  CI

ds

ds

+ni(z ;
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T it a—E ai
2 1 N 1 (2 ; Ci, Z .1) — n ;(2  ; C  7).1) dS

i I C j an
a ,N i (z; Ci , ni ) —  lo g  z — ) 9 1  d s .

44 j C  j an 

For, s in ce  
a N I  

 —0 on a— l o g  2 -
9

i   n l(z ; C i , n , )  on C .
an an z—g, an

Here we apply the well-known formula') of Neumann function such
that for any harmonic function U (z )  it holds

± j ; C i , vj )  W ( 2 )   ds—U(C i ) — U (v,), ( j = 1 ,  . . . , m ) .2n- c i an
Then w e have

r as E j d s= 2 7 T Y Ja ;[n i(C i; C i3 O — n i ( n i ;  C1, ni)]
c ;  an j=1.

+47rE a ï ,  log
i<i

 

Cl — Ci 7 )j —  )2i 

CI — n i— C ,

  

Similarly we obtain

a ds-=27r a i  a i [n(C i ; C, 0 — n(72i; C, 2 i ) ] .
c , an

Thus we obtain the following
COROLLARY 8 .  Let D, ( j= 1 , • • • ,m )  be mutually disjoint sub-

domains of  the dom ain D  and let N  (z, C ) and N ,(z ,C ) (j= 1 , ••• ,
m )  be Neumann functions of  the domain D  an d  Di , respectively.
Then there holds the following inequality

711

E a; [ni(Ci;Ci,>21) — n i( 72i;Ci3 O ]+  2 >2, a: a i  log
i = l f<1

(10)
afai[n(Ci; Co 7;i) — n(vi; C1, ,

where ai  are  a r b i r a r y  real constants.
3 .  Variation of outer boundary component. Let D  and D,

be two finite multiply-connected domains such that D , contains D
and is obtained only by a variation of outer boundary component
of D, remaining fixed all the inner boundary components of D .  For
the definiteness we denote the total boundary curves of two domains

Ti Tt

D and D, by r +  C„ and y, + E C,,, y  and Ti being outer boundary
u= 1

C i  C  ) 2a - 1 2i
7) i — C1

components o f  D  and D „ respectively, and C, (v=1, •-•, n) being
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common inner boundary components. F o r th e  sake of simplicity
w e assume that D,— D b e  a  r in g  d o m a in . Then we obtain the
following

THEOREM IV. Let D and D, be two domains as described above
and S (z ) have the same meaning as in Theorem I. Let p(z) denote
the function satisfying the following conditions :  ( i )  p(z) =0 on r,
(ii) apon=o on each inner boundary component C,, (iii) p+s is
harmonic in D , ( iv )  Li a(p+S )/ands=0 f o r  any  closed path i9
topologically equivalent to r in D . If p,(z) is the corresponding function
associated with D „ an d  moreover ( 0 ( z )  i s  the  harmonic measure
w hich has the boundary values 1 and 0 on y and yD  respectively, then
there holds the following inequality

asS  P  d sœ y , p  dsa
T an c. an

s  &Pi ds— Ef ds+  ( S
'  

w ) 2 "' - h

T1 an 1, C I ,  an (0 1 ,  ( 0 )  D i _b

Proof. A t first we formulate various relations between three
functions p,(z) , s (z) and (0  (z) harmonic in D,— D . Applying Green's
identity in  the domain D,—D, we obtain the  following relations

(12) {  s  a' as— (s  a' —wasps= = a '̀ —as )ds .
•  T i an Ti an an r a n  a n

And further

as ) ap as) ap ds(13) (S ap —p,  ds= —p,—  ds =
T an an T1 an an , T1 an

From the relation

 a p , a (0 0, p, — 0 , ) d s —  (p, —  )ds=0
J r " a n an T1 an an

(14)Ç  p, d s-1  (0  
 a

PT d s =  aP i  d s = f  as ds
TJ r an an r  an Jr  an

because of the condition (iv) for p, (z).
After above preparatory consideration we define two functions

u (z) and v (z) as follows :

u (z) =p(z) +S(z) + a  zED,
u (z) S  (z ) + ( z ) z E D,—D ,
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a being arbitrary real constant, and
v (2) p, (2) + (2) Z E D, .

It is obvious that the function u(z ) is not only continuous in  D,
but also continuous in D,— D beyond r, n =y  on r, a n d  z,c/an.--
ay /an on C , . From the identity

(v, = u, v— u) D , + 2 (v— u, (u, u)
we obtain an inequality

(15) (u, u) 1)1: -  (V , V )  Di .
Remarking that u (z )  is  stepwisely differentiable in D„ and from
the definition of u(z ), we get the following relations.

(u, u) Di =  (u, u),,+ (u, u)n,- -15

(P+ s, p+s)D+ (s+aw, s+cfm)„,_;-,

(P+s)  a( P± s )  ds+I (p+s) s) ds
an an

(s+ a w )  d s(S+ a(o)  3 ( S +  a
"

) )  d s +  (S + a(o)
an Ty an

as -=E f (p+s) d s +  S
aP  ds — « f  

as ds„ anJ T an an

J
awa .1.   ms ' as— a S ds -a -  d s  +  S  d s +  a  S

T an .  T  an • T y  an Ty a n

(y, (P,-FS, p,+S)„,

(17) -= E1  (A+S)  a( P' + s )  ds+1 (p i +s)  a( Pi + s )  dsan r1

a=E J (P1+S)  as d s +  S
p 

1 d s +  S
as  dsan Ty an T1 an

and
(n , V ) D1

=
 0

4
, IS —  h + D1- i )

(18) = E  f  u   3 (u— v) d s + Ç u   ( u  v )  d s
Jr,, an T an

JT( ) d s +  (u— v) ds
 T 1 an

(the 1 st and 4-th integrals vanish by the above remark)

(16)
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--1 (p + S+ a ) 
 a ( P

an
P1)(am -p ,) ( -Aa +a  aw )ds

T an an

fp+
= 1S  aP  d s- I 

T

 S  P' d s - a  f —aS ds-a-'1. --- -'a d s
T an an T an . r an

,—°S-ds+ a f p,  °̀ " ds
T an T an

because of f
a (

P i P)
 d s =0  from the conditions (iv) for p(z ) and

T an
p 1 (z).
From (16) and (17)

(u, u) th-  (v, v) » 1 = E  p aS  d s - d  S j - P  d  - E 1  p,  °S  ds
cv an T an V C v  an

1a w--4ds- a  a
5.2  d s  a  S d s + a  S ds

T1 an 1 . 
a
J r a n T i an

_  sr ds(19)

=E l p aSa p aS f  apd s +  S  d s - E d s -  S -   ' d s
cv  an T an•  c v  an T. an

-2 a t '  & S  ds f  
a(td s  ,

Jr &n

by applying (12) to the 7-th term.
And further, from (18),

-2(u, u - v ) , ,=  - 2 f  S ds + 2 s 
 °
Pi d s - f  p,

r an r an r an s)

(20) +2 af 0asa (a s  2 a  pi d s + 2 a ' ds
r f l T anJ r f l

- -2fS -a-t d s +  2 f S- a-/-3-1-ds+ 4a f  
 °S  ds + 2a? f  )̀ ds ,

T an T i an T  an r  an

by applying (13) and (14) to the 2nd and 4-th term, respectively.
Inserting (19) and (20) into (15), and remarking that (0,, w)„_ 7

= —J
a s  ds, and (S, (0) D1 - ii=  — 4 ds,
T  an T  an

p
aS apd s -  S  d s

cv  an T an
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as ap< p, —ds— + 2a (S, ( 0 ) „ 1 _:1 a 2 ( •
c „  an Ti an

The best inequality of this type is obtained for

a ( S ,  ( 0 )  14-7)
•

( " ,  (
0

)  D i -

If we choose this value of a in the above inequality, we obtain the
required result (11). Q.E.D.

Rem ark. Since the inequality (15) is deduced from the posi-
tive definite character o f (u — y, u— v) D „  there holds the equality in
(11) if and only if p,(2)=p(2)+ a in D  and p1 (2) =cm ( z )  in D,—D,
in other words, p, (z) const. on the outer boundary component r
of the domain D.

4 .  Some applications of Theorem IV .  In  th is  section we
shall apply the above theorem to the bounded radial slit mapping
functions of D and D, as mentioned in Sec. 6 of the previous paper.
The existence of such a mapping function was verified by Koebe
by potential-theoretic method.

We denote by w =F(z , C) (F(C, C) =0, C E D) the analytic function
w hich  m aps D  o n to  the unit circ le  slit a long  radial segments
directed towards the orig in  such  tha t the outer boundary com-
ponent r of D be transformed into the unit circumference. More-
over we denote by F, (2, C) (F (C, C) =0, CE D) the mapping function
of the same type associated with D ,. Then the harmonic functions

p (2) =log I F(z, C)I, S(z)= — log Iz— ,

and p,(z) =  log I Fl(z, C.)I
satisfy all the conditions of Theorem IV . A s  obtained in Sec. 6
of the previous paper

(21) JS ds— p ds=27r log IF' (C, ,r an ‘, u ,  an
and as is well-known,

27r
log M

M being the Riemann modulus of the ring domain D, —  D .  Further
as (s, ds

r  an

(22) ( 0 ) ,  (0 ) A .
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(23) f an  log lz—Clds

darg (z—C.) 27r .
• T

B y (21 ), (22 ), (23 ) and Theorem IV

log I F' (C, C) I log I F,'(C,C)I + log M .
Thus we have the following

COROLLARY 9. Let D and D, (D C D1 ) be two domains mention-
ed in the previous section. Further let F(z , c) and F, (z, C) be the
bounded radial slit mapping functions so normalized as described
above of  D and D„ respectively. Then there holds an  inequality

(24) IF' (C, C) I.>. MI F,' (C, C) I,
M  being the Riemann modulus of  the ring domain D,—D.

I t  is  o b v io u s  b y  R e m a rk  of the previous section th a t the
equality holds in (24) if and only if the outer boundary component
r of D coincides with one of the level curves of the function F, (z, C),
i.e. IF, (z, C)I co n st. In fact, if w=F (z, C) m aps r  onto  a  con-
centric circle I wl ( <1), there holds

F(z, C) = —e "  F,(z C) (N : a real number)
Q

therefore
1 IF' (C, C) I— 
Q

(C, C)

Obviously 17Q equals to the Riemann modulus M  of D,— D.
Considering the limiting case of (24) when each inner boundary

component C , converges t o  a points, w e o b ta in  the following
corollary concerning the inner conformal radii' ) o f D  and D,.

COROLLARY 1 0 ."  Let D and D, be two simply-connected domains
such that D CD, and let r (C) and R (c) denote the inner conformal
radii of  D and D„ respectively, with respect to a point c E D .  If  M
denotes the Riemann modulus of  the ring domain D,— D, then

(25) m <   R (c) 
— r (c)

It will easily follow from (24) by noticing that in the case of
simply-connected domain
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1 1  (C, 01— 
r(C )

and I (C.  C*)
R (C )

•

Kyoto University
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