MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 2, 1955.

Derivation and cohomology in simple and other rings. II

(A remark on the Kronecker product $A \times {}_{c}A$)

By

Tadasi NAKAYAMA

(Received Nov. 2, 1954)

In our first paper I^{1} we proved first that if A is a simple ring (having unit element 1 and satisfying minimum condition) and if C is a weakly normal simple subring of A (which contains 1 and over which A is assumed to be finite for the sake of simplicity), then the Kronecker product (or, direct product, as we called it in I) $A \times {}_{c}A$ over C is completely reducible as A-C-doublemodule, under ordinary operation.²⁾ This we proved indeed by combining the following two facts, which were proved either in I or in a former paper of the writer: Under the same assumption, 1) the A-C-module A is completely reducible; 2) $A \times {}_{c}A$ is Atwo-sided completely reducible and is a direct sum of minimal Adouble-submodules which are A-left-semilinearly and A-right-linearly isomorphic to A. Thus arises our interest in investigating the relationship between the A-two-sided complete reducibility of $A \times {}_{c}A$ and the A-C-complete reducibility of A itself, where A is a ring with unit element 1 and C is a subring of A which contains 1. A typical case, where we have the latter but not the former, is the case of a field C and a non-separable semisimple algebra Aover C. It is also clear that the former does not imply the latter in general. For instance, let A be the complete matric ring $\mathcal{E}_{\mu}\mathcal{Q}$ $+\varepsilon_{12}\varOmega+\varepsilon_{21}\varOmega+\varepsilon_{22}\varOmega$ over a field \varOmega and C be its subring $\varOmega+\varepsilon_{21}\varOmega$; observe that A has even an (independent) two-sided basis over C,

1) Duke Math. J. 19 (1952), 51-63.

2) We proved the same also under Hochschild's cohomological operation. Further we considered Kronecker products $A \times_C A \times_C \ldots \times_C A$ with more factors than 2, and proved their *A*-*B*-complete reducibility, where *B* is any (necessarily weakly normal) simple subring of *A* which contains *C*.

Tadasi Nakayama

for example $\{1, \varepsilon_{12}\}$. Now, in the present short note we want to mention an easy condition under which the *A*-two-sided complete reducibility of $A \times {}_{c}A$ implies the *A*-*C*-complete reducibility of *A*. Thus,

Proposition. Let A be a ring with unit element 1. Let C be a subring of A which contains 1, and let A satisfy the minimum condition for its A-C-submodules. Suppose that A possesses an independent finite left (and in fact two-sided) C-basis, say $a_1, a_2, \ldots a_n$, satisfying³)

(1)
$$Ca_i = a_i C$$
 $(i=1, 2, ..., n).$

If $A \times {}_{c}A$ is, under ordinary operation, A-two-sided completely reducible, then A is completely reducible as A-C-double-module.

Proof. For each i=1, 2, ..., n and for each element c of C, there exist, because of the assumption (1), elements c^{τ_i} , c^{δ_i} of C such that

$$(2) ca_i = a_i c^{\tau_i}$$

$$(3) a_i c = c^{\delta_i} a_i$$

Let M be the sum of all minimal A-C-submodules of A. Then for each element $x \ge 0$ of A we have $AxC \cap M \ge 0$. Now, consider the submodule $M \times {}_{c}A$ of $A \times {}_{c}A$; because of the existence of a left C-basis of A, the Kronecker product $M \times {}_{c}A$ itself may be considered as a submodule of $A \times {}_{c}A$. Any element u of $A \times {}_{c}A$ may be expressed, uniquely, in the form

(4)
$$u = x_1 \times a_1 + x_2 \times a_2 + \ldots + x_n \times a_n \quad (x_i \in A).$$

Let $u \ge 0$. We wish to prove that

$$AuC \cap (M \times_c A) \succeq 0.$$

To do so let t be the youngest index such that $x_t \ge 0$. We take $y_{\mu} \in A$ and $c_{\mu} \in C$ so that we have

(5)
$$0 \rightleftharpoons \sum_{\mu} y_{\mu} x_{t} c_{\mu} \in M.$$

Construct then the element

(6)
$$v = \sum_{\mu} y_{\mu} u c_{\mu}^{\tau_{t}}$$

of AuC. This element v is equal to

3) It seems, to the writer, to be indicated that some properties of algebras over a commutative ring could be extended to rings of our type.

90

Derivation and cohomology in simple and other rings. II 91

$$\sum_{\mu} y_{\mu} (x_{t} \times a_{t} + x_{t+1} \times a_{t+1} + \dots + x_{n} \times a_{n}) c_{\mu}^{\tau_{t}}$$

$$= \sum_{\mu} (y_{\mu} x_{t} \times a_{t} c_{\mu}^{\tau_{t}}) + \sum_{\mu} (y_{\mu} x_{t+1} \times a_{t+1} c_{\mu}^{\tau_{t}}) + \dots + \sum_{\mu} (y_{\mu} x_{n} \times a_{n} c_{\mu}^{\tau_{t}})$$

$$= \sum_{\mu} (y_{\mu} x_{t} \times c_{\mu} a_{t}) + \sum_{\mu} (y_{\mu} x_{t+1} \times c_{\mu}^{\tau_{t} \delta_{t+1}} a_{t+1}) + \dots + \sum_{\mu} (y_{\mu} x_{n} \times c_{\mu}^{\tau_{t} \delta_{1}} a_{n})$$

$$= (\sum_{\mu} y_{\mu} x_{t} c_{\mu}) \times a_{t} + (\sum_{\mu} y_{\mu} x_{t+1} c_{\mu}^{\tau_{t} \delta_{t+1}}) \times a_{t+1} + \dots + (\sum_{\mu} y_{\mu} x_{n} c_{\mu}^{\tau_{t} \delta_{n}}) \times a_{n}.$$

Here the first summand $(\sum_{\mu} y_{\mu} x_{\iota} c_{\mu}) \times a_{\iota}$ is, because of (5), a nonzero element of $M \times cA$. Thus, if the remaining sum

(7)
$$w = (\sum_{\mu} y_{\mu} x_{t+1} c_{\mu}^{\tau_t \delta_{t+1}}) \times a_{t+1} + \ldots + (\sum_{\mu} y_{\mu} x_n c_{\mu}^{\tau_t \delta_{n}}) \times a_n$$

is 0, then our element v of AuC is a non-zero element of $M \times_c A$, whence $AuC \cap (M \times_c A) \succeq 0$. If however w is not 0, suppose that $AwC \cap (M \times_c A) \neq 0$, i.e. that there are $z_v \in A$ and $d_v \in C$ such that

(8) $0 = \sum_{\nu} z_{\nu} w d_{\nu} \epsilon M \times c A.$

We have

(9)
$$\sum_{\nu} z_{\nu} v d_{\nu} = \sum_{\nu} (z_{\nu} (\sum_{\mu} y_{\mu} x_{\ell} c_{\mu}) \times a_{\ell} d_{\nu}) + \sum_{\nu} z_{\nu} w d_{\nu} \epsilon M \times c A.$$

Moreover, this element (9), which belongs to AuC, is not equal to 0, since $\sum_{\nu} (z_{\nu}(\sum_{\mu} y_{\mu} x_{t}c_{\mu}) \times a_{t}d_{\nu})$ is in $A \times a_{t}$ (indeed in $M \times a_{t}$) while $\sum_{\nu} z_{\nu}wd_{\nu}$ is in $A \times a_{t+1} + \ldots + A \times a_{n}$ and $(A \times a_{t}) \cap (A \times a_{t+1} + \ldots + A \times a_{n}) = 0$.

By an easy induction, on the number of non-zero coefficients x in (4), we see $AuC \cap (M \times_c A) = 0$, as is desired. Since this is the case for any non-zero element of $A \times_c A$, it follows that $M \times_c A$ contains all minimal A-C-submodules of $A \times_c A$. If $A \times_c A$ is A-two-sided completely reducible, this implies $M \times_c A = A \times_c A$, whence M = A, or, what amounts to the same, A is completely reducible as A-C-module. Our proposition is proved.

Our proposition thus proved is however of mere formal nature. A somewhat, if not much, deeper consideration on the complete reducibility of $A \times_c A$, particularly on its relationship with the complete reducibility of the Kronecker product $A \times_c A \times_c \ldots \times_c A$ with more factors than two, will be given in our third note III.

Paris, 17 October, 1954