Some remarks on invariant forms of a sphere bundle with connexion

By
Seizi Takizawa

(Received September 26, 1955)

Let us consider an $(n-1)$-sphere bundle $\mathfrak{F}^{n-1}\left(M, S^{n-1}, O_{n}^{+}\right)$over a differentiable manifold M with the proper orthogonal group O_{n}^{+} of degree n. Let $\mathfrak{B}^{\imath}\left(M, Y^{q}, O_{n}^{+}\right) \quad(0 \leqq q \leqq n-1)$ denote the associated bundle of \mathfrak{B}^{n-1} with the Stiefel manifold $Y^{\prime}=O_{n}^{+} / O_{1}^{+}$as fibre. Then, the associated principal bundle $\mathfrak{B}^{\prime \prime}\left(M, O_{n}^{+}\right)$can be also regared as principal bundles $\mathfrak{B}^{\prime \prime}\left(\mathfrak{F}^{7}, O_{n}^{+}\right)$over $\mathfrak{B}^{\prime \prime}$ with groups O_{π}^{+}. From a connexion defined on $\mathfrak{B}^{\prime \prime}\left(M, O_{n}^{+}\right)$, we can induce naturally connexions on $\mathfrak{B}^{\prime \prime}\left(\mathfrak{B}^{\prime}, O_{q}^{+}\right)$. In the present paper we show that by employing these induced connexions, the formulas in our preceding papers ${ }^{1}$) and their generalizations can be expressed in a simple manner
§ 1. Let V be an r-dimensional vector space over the real number field R. Its exterior algebra Λ is a graded ring whose homogeneous elements of degree k constitute the space $\Lambda^{*}(0 \leqq k \leqq n)$ of all exteior k-vectors; in particular $\Lambda^{\prime \prime}=R$ and $\Lambda^{1}=V$. Let M be a differentiable manifoid. For the sake of simplicity, we understand that the term "differentiable" means always the differentiability of suitable class. We denote by $T(M)$ and $T_{s}(M)$ the tangent vector bundle over M and the tangent vecter space of M at $x \in M$ respectively. From any differentiable mapping $\varphi: M \rightarrow M^{\prime}$, we can induce a linear map $T_{x}(M) \rightarrow T_{\varphi(())}\left(M^{\prime}\right)$ which we shall denote by φ^{*}. We consider a p-form θ with values in Λ^{*} : to any set of vectors $t_{1}, \cdots, t_{\mu} \in T_{t}(M) x \in M$, is assigned an element $\theta\left(t_{1}, \cdots, t_{p}\right) \in \Lambda^{k}$

1) S. Takizawa; On the Stiefel characteristic classes of a Riemannian manifold. ; On the primary difference of two frame functions in a Riemannian manifold.
T. Yagyu; On the Whitney characteristic classes of the normal bundle. These memoirs, 28, No. 1 (1953)
being multilinear and alternating with respect to the vectors t_{1}, \cdots, t_{p}. Take a base $\left(e_{1}, \cdots, e_{n}\right)$ of V. Then the elements

$$
e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}\left(i_{1}<\cdots<i_{k_{k}} ; i_{1}, \cdots, i_{k}=1, \cdots, r\right)
$$

constitute a base of Λ^{k}, and the p-form θ can be expressed by

$$
\begin{equation*}
\theta=\sum^{\theta i_{1} \cdots i_{k}} \otimes \boldsymbol{e}_{i_{1}} \wedge \cdots \wedge e_{i_{k}}, \tag{1}
\end{equation*}
$$

where $\theta^{i_{1} \ldots i_{k}}$ are p-forms with real values and are skew-symmetric with respect to the indices, and where \otimes denotes the tensor product. In (1), we have made use of the convention, to be used throughout, that when the same indices appear twice in a term the symbol \sum means the sum of the terms obtained by giving the indices each of their values. The exterior derivative of. θ is then given by

$$
\begin{equation*}
d \theta=\sum d^{\theta i_{1} \cdots i_{k}} \otimes e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \tag{2}
\end{equation*}
$$

Definition. Let θ be a p-form on M with values in Λ^{k} and φ be a q-form on M with values in A^{\prime}. The exterior multiplication $\theta \wedge \varphi$ being a $(p+q)$-form with values in $A^{\prime+l}$ is defined by

$$
\begin{gather*}
\theta \wedge \varphi\left(t_{1}, \cdots, t_{p+q}\right) \tag{3}\\
=\sum_{\sigma_{1}} \frac{\varepsilon(\sigma)}{(p+q)!} \theta\left(t_{\sigma(1,}, \cdots, t_{\sigma(p)}\right) \wedge \varphi\left(t_{\sigma(p+1)}, \cdots, t_{\sigma(p+\eta)}\right)
\end{gather*}
$$

for $t_{1}, \cdots, t_{p+q} \epsilon T(M) x \in M$, where the summation is extended over all permutation σ of the set $\{1,2, \cdots, p+q\}$ and where $\varepsilon(\sigma)$ is +1 or -1 according as σ is even or odd.

Expressing the forms θ, φ by their components referred to the base ($e_{1}, \cdots, \boldsymbol{e}_{r}$):

$$
\begin{aligned}
& \theta=\sum \theta^{\theta_{1} \cdots i_{k}} \otimes e_{i_{1}} \wedge \cdots \wedge e_{i_{i}}, \\
& \varphi=\sum \varphi^{j_{1} \cdots j_{l}} \otimes e_{j_{1}} \wedge \cdots \wedge e_{j_{l}},
\end{aligned}
$$

we have

$$
\begin{equation*}
\theta \wedge \varphi=\sum \theta^{i_{1} \cdots i_{k}} \wedge \varphi^{j_{1} \cdots j_{l}} \otimes e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \wedge e_{j_{1}} \wedge \cdots \wedge e_{j_{l}} \tag{4}
\end{equation*}
$$

By the definition we get the following formulas:

$$
\begin{align*}
& \varphi \wedge \theta=(-1)^{m+k+} \theta \wedge \varphi \tag{5}\\
& d(\theta \wedge \varphi)=d \theta \wedge \varphi+(-1)^{p} \theta \wedge d \varphi \tag{6}
\end{align*}
$$

For any form θ, we shall set

$$
(\wedge \theta)^{m}=\theta \wedge \theta \wedge \cdots \wedge \theta \quad(m \text { factors })
$$

Now we assume that V is a Lie algebra, and denote by $C_{j k}^{i}$ its structure constants for a base $\left(e_{1}, \cdots, e_{r}\right)$:

$$
\begin{equation*}
\left[e_{i}, e_{j}\right]=\sum C_{i j}^{k} e_{k} \tag{7}
\end{equation*}
$$

Definition. Let θ, φ be forms with values in V of degrees p, q respectively. The bracket product $[\theta, \varphi]$ being $(p+q)$-form with values in V is defined by

$$
\begin{gather*}
{[\theta, \varphi]\left(t_{1}, \cdots, t_{p+q}\right)} \tag{8}\\
=\sum_{\sigma} \frac{\varepsilon(\sigma)}{(p+q)!}\left[\theta\left(t_{\sigma(1)}, \cdots, t_{\sigma(p)}, \varphi\left(t_{\sigma(p+1)}, \cdots, t_{\sigma(p+q)}\right)\right]\right.
\end{gather*}
$$

for $t_{1}, \cdots, t_{p_{+q}} \epsilon T_{i}(M) x \in M$.
Expressing the forms θ, φ by their components referred to the base (e_{1}, \cdots, e_{n}): $\theta=\sum \theta^{i} \otimes e_{i}, \varphi=\sum \varphi^{j} \otimes e_{j}$, we have

$$
\begin{equation*}
[\theta, \varphi]=\sum C_{i j}^{i t} \theta^{i} \wedge \varphi^{j} \otimes e_{i .} \tag{9}
\end{equation*}
$$

By the definition we get the following formulas:

$$
\begin{align*}
& {[\varphi, \theta]=(-1)^{p y-1}[\theta, \varphi],} \tag{10}\\
& d[\theta, \varphi]=[d \theta, \varphi]+(-1)^{p}[\theta, d \varphi] . \tag{11}
\end{align*}
$$

Moreover if $\theta, \varphi, \xi^{\prime}$ are forms of degrees p, q, s respectively, then

$$
\begin{gather*}
(-1)^{q(p+s)}\left[\theta,\left[\varphi, \psi^{\prime}\right]\right]+(-1)^{s(\eta+\phi)}\left[\varphi,\left[\psi^{\prime}, \theta\right]\right] \tag{12}\\
+(-1)^{p(q+s)}\left[\psi^{\prime},[\theta, \varphi]\right]=0 .
\end{gather*}
$$

It follows that, if $\theta, \varphi, \psi^{\prime \prime}$ have same degree,

$$
\begin{equation*}
\left[\theta,\left[\varphi, \psi^{\prime}\right]\right]+\left[\varphi,\left[\psi^{\prime}, \theta\right]\right]+\left[\psi^{\prime},[\theta, \varphi]\right]=0 ; \tag{13}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
[\theta,[\theta, \theta]]=0 . \tag{14}
\end{equation*}
$$

Let $\mathfrak{B}(M, G, \pi)$ be a differentiable prinicipal fibre bundle over a differentiable manifold M with a Lie group G and with the projection $\pi: \mathfrak{B} \rightarrow M$. A connexion on \mathfrak{B} is given by a differentiable 1 -form ω satisfying the conditions:
(i) ω is a 1 -form on \mathfrak{B} with values in the Lie algebra of G.
(ii) If $t \in T_{b}(\mathfrak{B}) \pi^{*} t=0$, then $\omega(t)=\left(\chi^{*}(b)\right)^{-1} t$ where $\chi(b)$ denotes the admissible map corresponding to $b \in \mathfrak{B}$.
(iii) For any $s \epsilon G, \alpha\left(s^{-1}\right) \circ \omega=\omega \circ \rho^{*}(s)$, where $\rho(s)$ denotes the
right translation of \mathfrak{B} and α denotes the linear adjoint representation of G.

The curvature form Ω of the connexion is given by the equation of structure:

$$
d \omega=-\frac{1}{2}[\omega, \omega]+\Omega ;
$$

and taking the exterior derivative of this equation we get immediately Bianchi's identity:

$$
d \Omega=[\Omega, \omega] .
$$

§ 2. Let $\alpha(\sigma)$ denote the similarity by any matrix σ : i.e. $\alpha(\sigma) \tau=\sigma \tau^{t} \sigma$, where σ, τ are matrices of degree n and ${ }^{'} \sigma$ is the transpose of σ. Let O_{u}^{+}be the group of all real proper orthogonal matrices of degree n, and V^{n} be an n-dimensional real vector space with a fixed orthonormal base $\left(e_{1}, \cdots, e_{n}\right)$. Each vector $x \in V^{n}$ can be expressed by its components $x={ }^{t}\left(x_{1}, \cdots, x_{n}\right)$ with respect to the base, and O_{n}^{+}can be regarded as a group of linear automorphisms of $V^{\prime \prime}: x \rightarrow \sigma x, \sigma \epsilon O_{n}^{+}, x \in V^{n}$. Denote by $A^{k}\left(V^{n}\right)$ the space of all k-vectors generated by V^{n}. Any element $a \epsilon A^{2}\left(V^{n}\right)$ is given by a skew-symmetric matrix: i.e. $a=\sum a_{i j} e_{i} \wedge e_{j}, a_{i j}+a_{j i}=0$. An automorphism $\sigma \epsilon O_{n}^{+}$of V^{n} induces an automorphism of $\Lambda^{2}\left(V^{n}\right)$ which is given by $\alpha(\sigma): i . e$. $a \rightarrow \alpha(\sigma) a$ for all $a \in A^{2}\left(V^{n}\right)$. Let L_{n} be the Lie algebra of O_{n}^{+}. Each element of L_{n} can be expressed by a skew-symmetric matrix, and an elemet of the linear adjoint group of O_{u}^{+}is given by $\alpha(\sigma)$: i.e. $a \rightarrow \alpha(\sigma) a$ for $\sigma \epsilon O_{n}^{+}, a \in L_{n}$. Accordingly, we may make the identification $L_{n}=A^{2}\left(V^{n}\right)$ which is preserved by any operation of O_{n}^{+}. Let O_{q}^{+}be the subgroup of O_{n}^{+}consisting of all matrices of the type

$$
\sigma=\left(\begin{array}{ll}
\tilde{\sigma} & 0 \\
0 & \varepsilon
\end{array}\right),
$$

where $\tilde{\sigma}$ is a proper orthogonal matrix of degree q and ε is the unit matrix of degree $n-q$. The Lie algebra L_{η} of O_{η}^{+}is the subalgebra of L_{n} consisting of all matrices of the type

$$
a=\left(\begin{array}{cc}
\tilde{a} & 0 \\
0 & 0
\end{array}\right),
$$

where \tilde{a} is a skew-symmetric matrix of degree q. Let V^{v} be the subspace of V^{n} spaned by the vectors e_{1}, \cdots, e_{r}. Then O_{q}^{+}becomes a group of antomorphisms of V^{q}, and L_{q} can be identified with
$\Lambda^{2}\left(V^{\prime}\right)$. Let us define an endomorphism $\pi_{\eta}: L_{n} \rightarrow L_{n}$ by

$$
\pi_{q}=\boldsymbol{\alpha}\left(\iota_{q}\right) \quad \text { with } \quad \iota_{q}=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & 0
\end{array}\right),
$$

where ε is the unit matrix of degree q. Then it becomes a projection $\pi_{q}: L_{n} \rightarrow L_{q}$. Since $\sigma \iota_{q}=\ell_{q} \sigma$ for $\sigma \epsilon O_{q}^{+}$, we have

$$
\pi_{q} \alpha(\sigma)=\alpha(\sigma) \pi_{q} \quad \text { for } \quad \sigma \epsilon O_{q}^{+}
$$

To each $a \in L_{q}$, we assign a vector $p a \in V^{q-1}$ whose components are the q-th column ${ }^{\text {t }}\left(a_{1 q}, a_{2 q}, \cdots, a_{\eta-1 . q}, 0, \cdots, 0\right)$ of the matrix a. Thus we have the projection $p: L_{q} \rightarrow V^{q-1}$ for all q. It follows that $p \alpha(\sigma) a=\sigma p a$ for $a \in L_{q}, \sigma \epsilon O_{\eta-1}^{+}$. The base $e_{1} \wedge \cdots \wedge e_{q}$ of $A^{q}\left(V^{q}\right)$ is invariant under any operation of O_{q}^{+}; and so we can identify $\Lambda^{q}\left(V^{q}\right)$ with the real field R.
§ 3. Let $\mathfrak{B}^{\prime \prime}\left(M, O_{n}^{+}\right)$be a differentiable prinicipal bundle over a compact connected differentiable manifold M with group O_{n}^{\dagger}, and let $\mathfrak{B}^{\eta}\left(M, Y^{\eta}, O_{n}^{+}\right)$denote the associated bundle of \mathfrak{B}^{n} having the Stiefel manifold $Y^{q}=O_{n}^{+} / O_{q}^{+}$as fibre. Since the group O_{n}^{+}becomes a prinicipal bundle over Y^{q} with the group O_{q}^{+}, we can regard \mathfrak{b}^{0} as a principal bundle $\mathfrak{B}^{\prime \prime}\left(\mathfrak{V}^{7}, O_{q}^{+}\right)$over \mathfrak{B}^{0} with the group O_{q}^{+}. Let ω be a connexion on $\mathfrak{B}^{0}\left(M, O_{n}^{+}\right)$. If we set $\omega^{(\eta)}=\pi_{\eta}(\omega)$, then $\omega^{(\eta)}$ becomes a connexion on $\mathfrak{B}^{0}\left(\mathfrak{B}^{\prime \prime}, O_{4}^{+}\right)$, because the relation $\left.\alpha{ }^{\prime} \sigma\right) \circ \omega^{(\gamma)}=$ $\omega^{(q)} \circ \rho^{*}(\sigma)$ holds for any $\sigma \in O_{q}^{+}$. Denoting by $\Omega^{(\gamma)}$ the curvature form of the connexion $\omega^{(q)}$, we define the q-form θ^{q} on \mathfrak{B}^{0} with real values as follows: if q is even, we set

$$
6^{q q}=\left\{(-1)^{q / 2} 2^{-\tau} \pi^{-q / 2} /(q / 2)!\right\}\left(\wedge \Omega^{(q)}\right)^{q / 2} ;
$$

and if q is odd, $\Theta^{q}=0$. Then Θ^{q} being a form with values in $A^{\prime}\left(V^{7}\right)$ is invariant under any right translation of $\mathfrak{W}^{\prime \prime}\left(\mathscr{V}^{\prime \prime}, O_{q}^{+}\right)$, and is regarded as a form on \mathfrak{B}^{7} with real values. Obviously $d \theta^{\prime \prime}=0$; and by Weil's theorem, ${ }^{9}$ the cohomology class of $\forall^{\prime \prime}$ does not depend on the choice of the connexion on $\mathfrak{V}^{\prime \prime}\left(\mathfrak{V}^{\prime \prime}, O_{q}^{+}\right)$. Accordingly it is independent on the choice of the connexion ω on $\mathfrak{B}^{\circ}\left(M, O_{q}^{+}\right)$. Moreover, if we set

$$
\begin{gathered}
\Pi^{q-1}=(-1)^{q} 2^{-q} \pi^{-(q-1) / 2} \sum_{k=1}^{[(q-1) / / j]}\left\{(-1)^{k} / k!\Gamma((q-2 k+1) / 2)\right\} \\
\times\left(\wedge \Omega^{(q)}\right)^{k} \wedge\left(\wedge p \omega^{(q)}\right)^{q-2 / k-1},
\end{gathered}
$$

[^0]then $I^{\eta-1}$ is regarded as a form on $\mathfrak{B}^{\eta-1}$ with real values. It can be seen that $-d I^{\eta-1}=\theta^{\eta}$, and that the restriction of $/ I^{\prime-1}$ on a fibre $Y_{s}^{\eta-1}$ of $\mathfrak{B}^{\eta-1}$ reduces to the fundamental cocycle of Y_{x}^{q-1}. Thus we can consider θ^{7} to be the Whitney characteristic class of the bundle $\mathfrak{B}^{n-1}\left(M, S^{n-1}, O_{n}^{+}\right)$and $I^{\eta-1}$ to represent the difference cochain of cross-sections of $\mathfrak{B}^{\prime-1}\left(M, Y^{q}, O_{n}^{+}\right) .{ }^{1)}$

In general, by taking an invariant polynomial of the linear adjoint representation of O_{q}^{+}, we can obtain, on the associated bundle \mathfrak{V}^{\prime} of $\mathfrak{B}^{\prime \prime}\left(M, O_{n}^{+}\right)$, a form whose cohomology class does not depend on the choice of the connexion on $\mathfrak{B}^{\prime \prime}\left(M, O_{n}^{+}\right)$.

[^0]: 2) Cf. S. S. Chern; Topics in differential geomotry, Princeton, 1951.
